
Transactional Upgrade Rollback:
the DSL approach
Work Packages 3 and 2

Nature : Technical Report 004
Version : 1.01
Date : January 4, 2010



Transactional Upgrade Rollback: the DSL approach

John Thomson∗, Paulo Trezentos

December, 2009

Abstract

Todays mechanisms of providing transactional upgrades and roll-backs
on Linux systems are incomplete and unsafe. They do not provide the pos-
sibility of returning to a previous system state or, when they do, they don’t
predict if the roll-back is possible before execution. In this article we pro-
pose a new approach based on the use of a Domain Specific Language that
formally allows one to know beforehand if the rollback is possible or not.
Since the DSL approach requires a significant number of conditions to be
met, we devise mechanisms to overcome the absence of these requirements
and to minimise the number of cases where roll-back is infeasible.[3]

∗Vasco Silva, Andre Guerreiro

1



January 4, 2010

1 Introduction

In Free and Open Source Systems (FOSS), there exists a distributed mechanism
for developing and releasing software packages that is non-centralised and it is this
mechanism that allows for development in all areas of the components of these
systems. A package is seen as the smallest collection of software that allow a new
set of features to be performed by a machine on which it is installed. They are
normally archive files that contain the source or binary files necessary for a partic-
ular architecture of system to compile or run the software. Each package normally
performs a single role and performs it well. Using the ideas behind Object Ori-
entated Programming, the idea of packages is to promote code re-use, to create
efficient pieces of software that interact with other functional blocks and to have
software that is easily updatable by the end user that can be distributed over a va-
riety of mechanisms. One of the problems with a distributed code-base such as
that present in GNU/Linux and other FOSS based systems is that error checking
and collaboration becomes much more difficult tasks. Checking for consistency
not only with the packages that are part of the system but also with the package
universe becomes a very difficult problem. Traditional helper utilities that assist
package maintainers normally check for the usage of shared libraries and for con-
flicts and dependencies that certain packages will have with other software that is
available. This information is normally produced by helper utilities and package
maintainers to identify what will and what won’t work with a developed package.
This information is normally stored as meta-data in the package as a maintainer (or
configuration) script file and used by package meta-installers to check and solve
dependency trees for conflicts and warnings. A meta-installer apart from analysing
some of the meta-data will also pass package information to the actual installer
such that they can perform the operation of installation. The meta-installers also
are used for generating installation plans as well as solving the satisfiability prob-
lems. One aspect that has not been adequately researched and implemented by the
meta-installers according to D3.1 and D3.2 is that of transactional roll-backs. Roll-
back is the term used to describe when a software package is reverted to that of a
previous version. It is the logical inverse of an upgrade and perhaps because it is
seldom used, it has not been investigated nearly as much as the upgrade problem.
As part of the MANCOOSI project, Caixa Mágica Software are looking at design-
ing, creating and implementing a new roll-back mechanism for package manage-
ment using technologies previously researched. CMS have already implemented a
roll-back like feature once before for the branch of APT that they use, APT-RPM.
Using a Domain Specific Language (DSL) that has been developed as part of Work
Package 3 and specified in Deliverable 3.2, CMS intend to create a fully-fledge
roll-back mechanism for use with their package meta-installer as a proof of con-
cept of the MANCOOSI research. CMS already had a feature whereby a roll-back
could be called as a paramter from APT-RPM and the current version of a package
would be uninstalled and a named, prior version would be installed. This is not ac-
tually equivalent to roll-back but is a tidy mechanism for installing an older variant

Paper for Review page 2 of 42



January 4, 2010

of a package.

Upgrade version ~XY = Install version Y + Remove version X
Uninstall version Y + install version X 6= Roll-back( ~Y X)

Roll-back ( ~Y X) = (Upgrade ( ~XY ))−1

There are many issues with roll-back that need to be addressed and in the course
of this document we aim to suggest what could be possible solutions to the is-
sues raised and how we can use existing state-of-the-art technologies to focus our
research.

Packages Abstracting over format-specific details, a package is a bundle of 3
main parts:[3]

Package



1. Set of files
1.1. Configuration files

2. Set of valued meta-information
2.1. Inter-package relationships

3. Executable configuration scripts

These components can be used by the Package Meta-Installer and Installer on the
computer system to generate software that is customised to the environment and
availability of features on certain machines. Another approach that is discussed
later is that of provisioning and automated tools to help realise this. Briefly, provi-
sioning allows system administrators to efficiently set up a large number of systems
without having to repeat a lot of similar configuration settings on each machine.
Mathematical definitions:

1.1 Commutative:

[6] This is a mathematical property that means if the elements of something are
re-ordered that we do not change the end result. A + B = B + A

1.2 Deterministic:

[7] No elements of randomness are involved in the propagation of the state of a sys-
tem from one state to another. All inputs are therefore, if isolated from any other
systems, combined to perform a set of outputs. It may not be possible to capture
the method or algorithm in which the inputs match to the outputs but if a sufficient
number of input/output combinations are captured it may be possible to model the
cause and effect of systems. Also if the system is not isolated sufficiently from
another system it might be that although the smaller system is non-deterministic
that if the larger system is modelled sufficiently that the larger system is deter-
ministic. In computing, hardware failures and human inputs can be modelled as

Paper for Review page 3 of 42



January 4, 2010

non-deterministic inputs to the system. Petri-Net model of computational systems
http://en.wikipedia.org/wiki/Petri_net

1.3 Irreversible functions:

[8] If P 6= NP holds true then there may be irreversible functions.

1.4 Trap-door functions:

[9] Trap-door functions are a one-way function that relies on a secret piece of
information. If the information is lost or not stored it is very difficult to recover
the original information. Such a problem occurs when we try to analyse the state
of a system without any prior knowledge and try to deduce how the system arrived
at this state. Conditional commands are an example of a such a function, where if
we know how the state maps into another and have sufficient inputs and the current
state of the system that we can calculate the rest of the inputs.

f(A,B):= AxB; f(4,?) = 12; ? = 3;

If however we only have the answer we can not determine what the possible inputs
are.
By using a combination of capturing the state of the system, using a representation
of the system in terms of a model and by analysing the real data and the model we
hope to provide a mechanism for transactional roll-backs.

Paper for Review page 4 of 42

http://en.wikipedia.org/wiki/Petri_net


January 4, 2010

2 State of the art

We can describe the state of the art of existing tools in terms of scope and proper-
ties.
The scope can be analysed with respect to two different criteria:

Time : For how long a specific upgrade can be undone? During the transaction,
until the next transaction take effect, for N days, forever.

Granularity : what is in the scope of the roll-back mechanism? File system, RPM
files, single file.

Where each analysed tool can be classified in terms of scope:

Rollback tool Granularity Reported time period
NexentaOS All file system Since last snapshot
Conary Set of files contained in a package Triggered by the upgrade of the package
NixOS Set of files contained in a package Permanent
MacOS All file system Since last snapshot.
Time machine Triggered by user, time or changes.
Apt-RPM Set of files contained in a package Triggered by the upgrade of the package
Pacman-ARM Set of file contained in a package Daily
Btrfs All file system Since last snapshot.
Zumastor Filesystem Since last snapshot

Table 1: Classification of rollback tools regarding scope

And we can classify in terms of properties:

Out of order : rollback can take place in an out of sequence manner;

Merging configurations : if a file was modified after the transaction, the user
modifications are merged into the previous configuration;

ACID properties : respect Atomicity, Consistency, Isolation and Durability;

File system independence : the roll-back mechanism don’t depend on a specific
file system;

User transparency : user doesn’t need to perform special operations to roll-back
(as reboot or other intrusive operations);

In terms of configuration management there are a few mechanisms that are capable
of provisionning. With this type of system, the system state is stored and can be
restored. Rather than focusing on having individual packages state’s saved, provi-
sionning enables the entire configuration state of the system to be captured and to

Paper for Review page 5 of 42



January 4, 2010

Tool Out of order Merging ACID FS independence user transparency

NexentaOS Yes No Yes No No
Conary No Yes Not sure No Yes
NixOS No Yes No No Yes
Current Apt-RPM No No No Yes Yes
Pacman-Arm Yes No Not sure No Yes
Btrfs Yes No No No No
Zumastor

Table 2: Classification of rollback tools regarding properties

be recalled at a later stage. This is useful for large enterprises where working on
rolling back individual packages is seen as too time consuming and it is felt that
restoring the system to a known state is more important. This fire-and-forget type
of configuration management is certainly easier for administrators but configura-
tion settings that have changed from the state of provisionning may be lost. Using
the DSL it may be possible to save a configuration state of the system and use
algorithms to detect which DSL statements need to be run to get a system to that
state from the current state. For more information on Fedora’s implementation of
such a mechanism http://www.redhat.com/rhn/rhntour/. For other implementations
it is possible to see Puppet http://reductivelabs.com/trac/puppet/
which runs on top of Augeas http://augeas.net/. There are other mech-
anisms and applications that bridge between configuration and package manage-
ment. For a definition of provisioning this might be helpful http://help.
sap.com/saphelp_nwidmic71/en/mc/dse_provisioning.htm.
Conary cannot be used out of order http://lwn.net/Articles/138358/.
Using absolute changesets though it should be possible. Keeping all the possible
combinations of changesets as absolute change-sets appears to be the limitation to
achieving this.
http://blog.chris.tylers.info/index.php?/archives/17-How-to-Rollback-Package-UpdatesInstallation-on-Fedora.
html

2.1 Nexenta OS

Nexenta is a combination of OpenSolaris, the GNU utilities, and Ubuntu. It is a free
and open source operating system based on Nexenta Core Platform 1.0 (Nexenta-
Core includes complete OpenSolaris kernel and runtime) using GNU applications.
This operating system uses a specific filesystem – ZFS. The ZFS filesystem inserts
a lot of features that have the capabilities of the filesystems becoming administra-
tive control points. This will allow: snapshots, compression, backups, privileges,
etc. The application that makes available these options to the user is Apt-clone.
Apt-clone uses capabilities of ZFS commands and apt-get, with its own features. It
uses snapshot’s capability to manage the system and creates one checkpoint every
time a user upgrades a package. Once the installation done and working (live), one

Paper for Review page 6 of 42

http://reductivelabs.com/trac/puppet/
http://augeas.net/
http://help.sap.com/saphelp_nwidmic71/en/mc/dse_provisioning.htm
http://help.sap.com/saphelp_nwidmic71/en/mc/dse_provisioning.htm
http://lwn.net/Articles/138358/
http://blog.chris.tylers.info/index.php?/archives/17-How-to-Rollback-Package-UpdatesInstallation-on-Fedora.html
http://blog.chris.tylers.info/index.php?/archives/17-How-to-Rollback-Package-UpdatesInstallation-on-Fedora.html


January 4, 2010

can proceed to the rollback. Apt-clone manages Grub menu and ZFS system pool
filesystems.

2.2 Conary

Conary is a distributed software management system developed by rPath. Conary
has the same objective as dpkg and rpm, but is more than a Package Management
System, it can also be a package creator, a repository of software, and a version-
ing tool. The tool to manage the installations, upgrades, and rollbacks is named
Conary. Like installer, it has an interesting difference from the other ones: Conary,
after downloading and first installing a package, updates faster than other tools
because it only requires downloads to update a file and does not require the full
binary. It has the capability of doing rollback. Every time a user installs a package
that creates a rollback point, the tool takes a snapshot. Conary was developed by
the rPath community and is implemented as the base system of managing packages
of the rPath Linux. A Linux Distribution based on rPath Linux is a Conary-based
system. Foresight Linux is based on rPath Linux, it is thus a conary system-based
and they use all the functionalities of conary to manage packages.

2.3 Nix OS

NixOS started around 2004 with a PhD Thesis, as an experience to use a purely
functional way. The intention is to solve package dependency problems. This ex-
periment aims to see if is possible an operating system in which software packages,
configuration files, boot scripts and the like are all managed in a purely functional
way, that is, they are all built by deterministic functions and they never change after
they have been built. The main characteristics of Nix package manager(Package
manager used on NixOS) is:

• The entire system — kernel, system services, configuration files, etc. — is
built by a Nix expression in a deterministic and repeatable way.

• Since configuration changes are non-destructive (they don’t overwrite exist-
ing files), you can easily roll back to a previous configuration.

• Upgrading a configuration is as safe as installing from scratch, since the
realisation of a configuration is not stateful. This is a result of being purely
functional.

• Multi-user package management — any user can install software through the
same mechanisms that the administrator uses. This is not the case for most
package managers such as RPM.

2.4 Apt-RPM

Apt-RPM is a meta-installer that selects, retrieves and installs RPM packages.
Apt-RPM is a fork project of APT. The original APT (Advanced Packaging Tool)

Paper for Review page 7 of 42



January 4, 2010

project was initially developed to extend some of the capabilities of the dpkg com-
mand, which allows the installation of local DEB files. The DEB files contain
applications to be installed. The apt comes from the lack of features at the installer
level(rpm/deb) that are important to the user, such as Retrieving files, solving de-
pendencies or searching for packages. Rpm has a rollback feature that allows a
backup of all files of the version that has to be replaced to be stored in the disk
in each transaction. This files are kept in a RPM package associated with TID
(transaction ID). This feature is very interesting but has two major problems: a)
a large space is needed in the disk since all files, even binaries, are maintained
and b) changes performed by installation scripts outside of the set of RPMs are
not stored. An evolution of this approach was proposed in 2005 by CaixaMágica
Software in the framework of the EDOS FP6 project The most interesting in this
scope is transactional rollback at meta-installer level. Like Apt-rpm exists other
meta-installer using rpm-rollback feature. An example of this is yum to confirm
this, we can check that the version of rpmlib is the same for both:

[root@localhost˜]#rpm-qRapt
rpmlib(PayloadIsLzma) <= 4.4.6-1

[root@localhost˜]#rpm-qRyum
rpmlib(PayloadIsLzma) <= 4.4.6-1

2.5 Pacman-ARM

Pacman is a utility which manages software packages in Linux. It uses simple
compressed files as a package format, and maintains a text-based package database
(more of a hierarchy), just in case some hand tweaking is necessary. Pacman, like
previous meta-installers, will add, remove and upgrade packages in the system, and
it will allow to query the package database for installed packages, files and owners.
It also attempts to handle dependencies automatically and can download packages
from a remote server. Pacman allows the user to perform rollbacks. To do this,
Pacman uses Arch Rollback Machine (ARM). Arch contains archived snapshots
of all the repositories going back to 1 November 2009. The rollback consists in
installing the previous version that is available in repository.

2.6 Augeas - a configuration API

Augeas is not a tool to manage Rollbacks (because has not features to upgrade
packages), but can be useful for the rollback on the level of configuration files.
Augeas is a configuration editing tool. It parses configuration files in their na-
tive formats and transforms them into a tree. Configuration changes are made by
manipulating this tree and saving it back into native config files. Thus, it can be
used to save the configurations before the upgrade of a package. If a rollback were
needed, the configurations could be reverted again using this tool, to load previous
definitions and set on the specific configuration files. Puppet is an example tool

Paper for Review page 8 of 42

[root@localhost ~]# rpm -qR apt
[root@localhost ~]# rpm -qR yum


January 4, 2010

using Augeas. Puppet is a tool to make automated system administration, it’s used,
among other things, for deploy central configurations for clients. Puppet uses the
Augeas features to distribute and load these configurations.

2.7 Btrfs filesystem

Btrfs is a new copy on write filesystem for Linux aimed at implementing advanced
features while focusing on fault tolerance, repair and easy administration. Initially
developed by Oracle, Btrfs is licensed under the GPL and open for contribution
from anyone. Btrfs is capable of creating lightweight filesystem snapshots that
can be mounted (and booted into) selectively. The created snapshots are copy-on-
write snapshots, so there is no file duplication overhead involved for files that do
not change between snapshots. A snapshot can be created at any time, it should
do before a upgrade, or on any moment that user wants. A rollback to an older
snapshot is not destructive to data. It switches to an earlier snapshot, and later
snapshots are still available afterwards. The user could choose which snapshot
will be mounted next, and making that choice does not affect or destroy any other
snapshots.

2.8 Zumastor

Zumastor has not been active since the middle of 2008 when DSL 3.1 was created.
No other projects seem to refer to it or implement their findings. This may be for
many reasons and the project may yet produce notable results but at this moment
we will consider other package management systems.

Paper for Review page 9 of 42



January 4, 2010

3 Domain Specific Language Intro/Re-cap

As part of Work-Package’s 2[4] and 3[1][5], a Domain Specific Language (DSL)
was decided upon as a potential mechanism for realising the aim of transactionally
protected package upgrades and roll-back. The DSL has been defined in Deliver-
able 3.2 but it is a language that has been designed to be extended and as such in
this document we will refer to version 1 as corresponds to the first release of the
DSL. For our proposed solution we are going to use an abstraction of the system
state in terms of a model of the system. This model is defined as per Work-Package
2. The important part of our implementation in Work Package 3 is to realise that
there is a model of the system and that we can modify the state of the variables of
the system by using transformations in terms of the ATLAS Transformation Lan-
guage (ATL)[5]. Through monitoring the configuration states and by describing
the action of maintainer script files contained in package configuration files, we
can capture the modification of states using our model and the DSL. Erroneous
states of the model will be detected by the simulator and failure detector and once
this erroneous flag has been reported back to our sub-system we will provide a
roll-back mechanism using the current state of the system, the captured configura-
tion states and the transaction logs to revert packages back to a previous version.
We also enable the end user to select as a switch to apt-rpm the ability to roll-
back transactions. The user will only be presented the sub-list of roll-back enabled
transactions from the entire transaction state. The DSL has been designed to cap-
ture particular failures that occur with package upgrades that currently occur and
also to present new facilities allowing roll-back but generally providing a trans-
actionally protected package management. The DSL by definition is not a fully
Turing complete language but rather an extensible language that has been designed
to capture the effects of maintainer script files being run on systems. Using the
abstraction we will be able to detect certain known failures before the packages are
even installed and inform the user that the system will not work as expected. The
grammar of the DSL can be represented as a tree structure as show in Figure 1.
The tree structure can have recursive elements, hence be cyclic and potentially be
infinite in size. As the leaf nodes are individual DSL statements or an empty state-
ment, as long as the maintainer scripts from which the DSL is being formed are not
recursive, the DSL grammar tree will be finite in length. If there is no limitation
on the database size then the leaves can be pruned and formed into a sequential
list. The ordering of the list is important as the DSL statements will be performed
in that order on the model and should mirror those of the real system as much as
possible. Also in terms of roll-back the order will be used to generate the roll-back
equivalent. The system and the changes that are performed on it that modify the
state are not necessarily commutative. This means that we cannot guarantee if we
perform one operation first and then the second that it will lead to the same result
as doing the operations in another order.
DSLiD corresponds to a unique auto-incrementing key entry for the log. Every
upgrade of all types, including roll-back and even downgrades, will be stored as

Paper for Review page 10 of 42



January 4, 2010

Figure 1: A Tree representation of the DSL grammar

DSL elements to store in log
DSLiD TransactionID DSL Statement DSL ParentID DSL InvCommand Dependent

1 1 ChgGrp(sys, file) 1 ChgGrp(prior, file) No
2 1 ChgGrp(sys, file2) 1 ChgGrp(prior2, file2) No
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
x 1 ChgGrp(sys, file(x)) 1 ChgGrp(prior(x), file(x)) No

Table 3: Sample DSL Log

an entry, corresponding to every time a DSL statement is run. If an upgrade fails
this log will be used to return to the original system state. The most recent DSL
statement will correspond to the latest DSLiD. Older events are therefore stored
as ‘lower’ entries and branches in system state are serialised by capturing every
statement.
TransactionID refers to a group of DSLiD statements that correspond with Package
scriptlets. Many DSLiD statements will correspond to a single TransactionID but
each DSL statement is associated with a single transaction. Rolling back a single
DSLiD statement would not revert all the changes made in a package scriptlet
and so would leave the package in an intermediate state. Even though it may be
possible to roll-back individual DSL statements we want to be able to roll-back at
the granularity of packages. We can however use the DSLiD statements to search
and filter Transactions at a lower level to identify when a particular action was

Paper for Review page 11 of 42



January 4, 2010

performed.
The DSL Statement corresponds to nodes as defined in Figure 1 and the syntactical
elements of the DSL that can be found in the specification of the language, for
version 1 namely in Deliverable 3.2[5]. The statement will capture the variables
that are modified and the parameters that they are passed.
DSL ParentID is a method for linking TransactionIDs into a larger transaction. For
instance if a set of packages are all upgraded as a command by the user, that larger
statement can be broken down into the upgrade of individual packages. New gen-
erated ParentIDs will be unique but they may be common to multiple transactions.
Each TransactionID that corresponds to the same ParentID are the top-most level
in a transaction from which sub-transactions are generated. Sub-transactions allow
for individual packages to have corresponding DSL statements. For a parent trans-
action to be capable of roll-back it is necessary to meet the condition that all the
children of it have roll-back capable statements associated. Any element incapable
of roll-back will mean that the parent transaction cannot use roll-back.
The DSL InvCommand is a location where the inverse operation of the DSL can be
stored or if it refers to a set of DSL statements it may refer to a TransactionID. If a
command is not stated, found or cannot otherwise be generated then it is assumed
that for this DSL statement there is no roll-back command and hence none of the
parent transactions can be used for roll-back.
Dependent is currently a boolean flag or it could be associated with another Trans-
actionID to state that another transaction has to be capable of roll-back for this one
to be able to roll-back. There may be no need for this flag or key association.

Paper for Review page 12 of 42



January 4, 2010

4 Requirements for a roll-back component

For roll-back we require a certain number of features and there are some that are
desirable. A component diagram of what is required to develop a roll-back mech-
anism using the DSL is shown in Figure 2. Table 4 makes reference to some of
the properties required by a roll-back system using a DSL. What is key is knowing
which package from the source configuration is desired to have a roll-back opera-
tion performed on it. Also the target configuration, or the mechanism to provide a
roll-back is required. At this stage we have to identify which files and environmen-
tal variables need to be modified to restore the system to the previous state. Mech-
anisms such as snapshots which utilise copy-on-write schemes, store the state of
the whole file system (depending on the granularity) and if implemented correctly
allow the system and importantly the package to be reverted back to a particular
saved state. A simplistic roll-back will not need the state of the current system as
it will simply revert back to a previously installed backup of the package or it will
even more naively just install the previous version of the software as identified by
the target identifier. As stated before this is not really roll-back but a removal of
the previous software and an installation of the older package, bundled together in
a neat mechanism. Where roll-back differs is how the changes since the installa-
tion of the upgraded version are merged back. Most solutions will either use the
configuration file of the old package or if they are more advanced they might save
the configuration on upgrade and restore it on roll-back. A further advancement is
that of using the old configuration and merging changes back.

Roll-back configuration files
What to do with the con-
fig files

Mechanism Benefits Disadvantages

Use config from target
package

Overwrite Simple Loses all user changes

Use a backup configura-
tion

Restore old file Fairly simple Loses changes since
update

Use a hybrid config VCS merge target
and source

Keeps user changes Complex

User choice of merge VCS + user selec-
tion

User responsible
for changes

Potentially complex
for user

Use source configuration Overwrite Simple May not work with
old binaries

Table 4: How to manage the configuration files on roll-back

The Log system and mechanism is critical to the design of the roll-back mechanism
as we will be using it to retrieve the inverse DSL statements and decide on a plan to
get from one configuration state to another. Having a reliable log is necessary if we
are going to be able to determine the state of the system and move between states.
The design of the logging system should therefore be ACID compliant to ensure
that transactions between configuration states are maintained. Of the types of the

Paper for Review page 13 of 42



January 4, 2010

Figure 2: An UML component model of the components we will be developing

DSL elements to store in log
Feature Necessity

Package Name Yes
Version number Yes

Package fully qualified name Yes
Target package version Yes

Binaries associated with package version Yes (local or remote)
Configuration files of target package version Yes (for merging)

Connection to remote repository Depends where files are stored
Current version binaries No (Unless the roll-back fails)

Snapshot of the entire system No (only granularity of package)
Additional processing time Yes

DSL logs Yes (for our implementation)
User input Depends (for feedback or selection mechanisms)

Table 5: Roll-back requirements

storage mechanisms investigated in Table 4 a Berkeley Database would appear to
be a suitable mechanism for storing the logs. It is not fully ACID compliant but it
does maintain ACID transactions 1. SQLite is another potential database we could
use for storing the log data. The ACID property that it does not enforce is that of
integrity as it allows any type of data to be inserted into any field without checks.
By adding an application level check this ACID property would be enforced and
we could use it as an alternative to Berkeley. RPM already uses a Berkeley system
so in terms of programming consistency it also makes some sense to re-use the
components already established for our implementation but it is not essential and
can be chosen by the vendor.

1http://blog.r1soft.com/2009/11/02/the-fine-print-on-file-system-journaling-%
E2%80%93-part-3/

Paper for Review page 14 of 42

http://blog.r1soft.com/2009/11/02/the-fine-print-on-file-system-journaling-%E2%80%93-part-3/
http://blog.r1soft.com/2009/11/02/the-fine-print-on-file-system-journaling-%E2%80%93-part-3/


January 4, 2010

System Database ACID compliant DBMS required

Berkeley Yes Full No
Stasis No No No

MySQL Yes Partial Yes
SQLite Yes Almost No
Oracle Yes Yes Yes

Table 6: DSL log storage mechanisms

Berkeley Full ACID compliance 2 Other types of database 3 Description of Berke-
ley DB Engine 4 Isolation and serialisation 5

2http://products.databasejournal.com/dbtools/ss/
Sleepycat-Software-Berkeley-DB.html

3http://www.amaltas.org/list/database.html
4http://www.linuxplanet.com/linuxplanet/tutorials/6034/7/
5http://sheeri.com/content/isolation-%2526amp%3B-concurrency

Paper for Review page 15 of 42

http://products.databasejournal.com/dbtools/ss/Sleepycat-Software-Berkeley-DB.html
http://products.databasejournal.com/dbtools/ss/Sleepycat-Software-Berkeley-DB.html
http://www.amaltas.org/list/database.html
http://www.linuxplanet.com/linuxplanet/tutorials/6034/7/
http://sheeri.com/content/isolation-%2526amp%3B-concurrency


January 4, 2010

5 System Architecture Definition

The architecture of a roll-back system is not trivial and can be achieved in many
ways. Using pseudo-code to demonstrate the structure of the roll-back mechanism
it may become more apparent how a DSL benefits the roll-back mechanism that
will be implemented.
In Listing

Read TiD⇐ UserInput
foreach STiD in TiD do

foreach DSL Statement in STiD do
if DSL Statement ! = reversible then

Exit ”Not Reversible”
end
else if STiD = TiD then

Reversible = “true”
end

end
end

Algorithm 1: Algorithm to detect if all the children are reversible

Once we have detected whether or not all the sub-transactions and the transaction
itself is invertible we then need to proceed with the roll-back.

foreach STiD in TiD do
switch type of transaction(STiD) do

case update

end
case remove

end
case downgrade

end
case install

end
end

end
Algorithm 2: Second sub-algorithm

Where

• TiD = Transaction ID

• STiD = Sub-Transaction ID

Paper for Review page 16 of 42



January 4, 2010

InverseDSL(Pkg V)
foreach DSL Statement in STiD do

switch DSL Statement Type do
case DSL Invertible

if FilesModified then
StoreFilesInFlatFileSystem()
CreateLinkInBDB()
StoreLogEntry()

end
else if ConfigurationModified then

StoreCurrentSettingsInVCS()
LoadPreviousConfig()
if UserChoice then

RequestInput()
end
else

Either use old files or try to merge
end

end
end
case VCS

CheckCurrentState()
DetectFilesPreviousState(TiD)
ReplaceFiles()
SaveStateFlag(true)

end
case FS State

end
end

end
Algorithm 3: Third sub-algorithm

Paper for Review page 17 of 42



January 4, 2010

# Requirement Designation
M1 REQUIRED Transaction respect ACID properties
M2 REQUIRED Transaction Independence
M3 REQUIRED Package level granularity
M4 REQUIRED Monitoring domain
M5 REQUIRED Device independence
M6 REQUIRED Minimum disk space use
M7 REQUIRED User transparency
M8 REQUIRED File-system Independence
O1 MAY Permanent change monitoring
O2 MAY User interaction

Table 7: High level specification of transactional upgrade system with rollback
capabilities.
[1]

• DSL Statement corresponds to an individual statement in DSL.

In our architecture we must hold to the principles mentioned in Deliverable 3.1.
Although a more intensive work in the scope of Mancoosi’s Workpackage 3 has to
be performed, a first approach to specification of a transactional upgrade system
with rollback capabilities should follow the high level specification[2] in table 7.
A brief description of the mandatory elements of the high level specification fol-
lows. This is a slightly modified version from that of Deliverable 3.1 where the
majority of the criteria were selected.[1]

• Respect ACID properties: the system should respect the ACID properties:
Atomicity, Consistency, Isolation and Durability.

• Transaction independence: One transaction should be independent of other
transactions. This means that a rollback of a transaction has to be executed
without needing other transactions to be rollbacked as well. This condition
has to be slightly relaxed to accommodate for parent and sub-transactions.
Sub-transactions must be rolled back to allow parent transactions to roll-
back. Different transactions should rely on different children transactions
and be independent from each other though.

• Package level granularity: the level of granularity of the transaction is the
package. This does not block the possibility of maintaining state of files
independently and allow some operations to be performed at that level. We
will try and maintain the state of files but in terms of roll-back the target will
be a package version, not the state of a file.

• Monitoring domain: A rollback system should monitor all files related with

Paper for Review page 18 of 42



January 4, 2010

the package. This files comprise not only the files included in the package
but all files created, modified or deleted during the transaction.

• Device independence: the rollback capability should be available in differ-
ent devices like servers, desktops, mobile devices and others.

• Minimum disk space use: the used disk space for storing transactional in-
formation should be limited to the absolute necessary. The disk space should
be limited to 5% to 10% of the total disk space used by the system. This
property is not the most important for roll-backs that are performed infre-
quently but as the roll-back system will be on all the time it is important to
make sure that we are storing information efficiently.

• User transparency: If activated, the support for rollback transactions should
not oblige the user to specific actions or decisions. Automatic roll-back
mechanisms should be ‘safe’ and should maintain information at the cost
of storage space and efficiency. As with traditional meta-installers, current
user choices should be maintained. [1]

The following element is crucial for the uptake of any proposed system:

• File system Independence: a transactional upgrade system must be inde-
pendent of a specific file system. Requiring a certain system state or file-
system means that porting a transactional update scheme would require extra
changes to incorporate the differences in the system types. An ideal system
will be file-system and distribution agnostic.

The following elements may be implemented but are not mandatory:

• Permanent change monitoring: permanently monitoring the supervised
files without being triggered by the user or the transactional system may
be an option of implementation. This would involve a monitoring daemon
and catching any changes to files or system variables. Aside from the de-
tails of getting such a system to work, to be able to store the large amount
of information generated it would be necessary to realise when a change has
occurred and to save the new information. This is similar to an automatic,
scheduled snapshot system.

• User interaction: the transactional system may allow the user to add new
files to be supervised. It may be that the end user would like to store more
than just the system state and perhaps important files. However as our system
focuses on package management we would just be storing the files in a VCS
or database and this would be like widening the scope of a snapshot system.
It is certainly possible but is not the core focus of using a DSL supported
mechanism. [1]

Paper for Review page 19 of 42



January 4, 2010

Order of
preference

Type of roll-back

1 1-1 mapped inverse DSL command (DSL)
2 From the DSL of the forward command try and create an inverse (DSL)
3 Analysis of configuration states before and after (DSL)
4 Perform the roll-back using the maintainer script files as before
5 Do not perform the roll-back at all and inform the user.

Table 8: Order of precedence of inverse DSL selection

If this mechanism fails then there may be other facilities to try and attempt the
rollback but currently we will define that the roll-back using the DSL directly is
not possible. We can then perform the remove scripts associated with the package
and analyse which reverse mappings it performed. If a roll-back is not possible then
we will provide the user with feedback explaining the situation. Notes: If ParentID
and DSLiD are the same then the DSL command is the head of a transaction. Null
would refer to an orphaned value. Are parentID and transactionID equivalent terms
or can one be derived from the other? Another issue is in terms of granularity of
capturing changes as identified before, on two (using scope generally) axes; time
and scale. The overall size of our transactional logs will be determined by the
scopes of resolution and how often we capture changes. If we frequently capture
all the changes of all files on a system then we will very quickly run out of space
on the system and there will be frequent usage of the capturing system we use.
Less frequent and less focused scopes of resolution will possibly not capture all
the necessary information to perform roll-backs. The overall mechanism can be
seen in terms similar to that of the Nyquist Theorem for capturing audio. We need
a sufficient capture rate and sufficient information stored to roll-back. Unlike in
backup-mechanisms and snapshots it is important to maintain all previous changes
as we require the sequence of steps to resolve back to a previous point. A backup
point using the proposed system would involve collating all the saved system model
states and the DSL transaction logs.
This process is fine for elements that have a direct reverse command and that the
command is bundled with the rest of the DSL code in the packages. Whenever
such a modified package is downloaded it has the corresponding DSL entries and
we can store both into the database when they are encountered. This assumes that:

1. we will be modifying packages to have an additional set of DSL commands.

2. we are able or have the DSL inverse commands available.

3. the reverse commands provided by the package maintainers are correct.

Point 1 is quite a large issue to solve non-programmatically and it also adds ad-
ditional overhead to the size of packages. By the definition of the DSL being
expressive enough the DSL should be able to replace the current maintainer scripts

Paper for Review page 20 of 42



January 4, 2010

entirely but for backwards compatibility with non-DSL compliant installers this
will have to be left in. We are then left with the possibility of back-porting a se-
lection of packages to have DSL compliance. We can either then store the DSL
commands within the packages themselves as an additional element or using a
unique key, describing the package we could link to the corresponding DSL file.
This is similar to the system employed by Conary where packages link to a main-
tainer file on the rpath webserver that link packages to changeset files. Another
option is analysing the maintainer script files in-situ and interpreting them into a
set of DSL statements.

Location Size difference Local Remote Backporting Unique Key

RPackage i) -config +DSL size No Yes Yes No
APackage ii) +DSL No Yes Yes No
Ext Package DSL Possible Possible No Yes
In-situ Temporary (+DSL) Possible Possible No No

Table 9: Locations to store the DSL

Point 3 can be addressed by using the failure detector at a later stage to see if
the configuration states before and after the roll-back are consistent regarding the
system meta-meta-models. If there is a failure we can then perform an immediate
roll-back or inform the user of the mis-matched configuration states.
Point 2 however is more complicated to resolve. If there are no direct DSL invert-
ible commands or the commands require a capture of the state of the system we
then need to use additional facilities to perform the roll-back.
There are many types of files associated with packages that we will maintain in our
system and depending on the type of file it may be better to maintain a local copy, a
server-side copy, maintain it in a Version Control System (VCS) or a database. To
promote discussion there is a table of files commonly found in packages, Table 5.
Some of these files are candidates to be stored using particular mechanisms because
of the type of file and their role. The main issue is that binary files are difficult to
maintain in terms of differences in versions. A small change in a binary file, e.g.
changing a variable is likely to be difficult to track down as the whole file will
have a different checksum but it is difficult to isolate the change. Media files are
one example of binary files that do not change often between packages usually
and are interesting to identify as they tend to be large files even when compressed
in archives and may not change that often. If we are to maintain every revision
of a package in a repository it will be of importance to minimise the usage of
redundant files and save space. Links to previous versions of the file that have not
been modified could be stored in terms of sym-links in the repository. This is a
server-side issue but it means that for any package we should be able to point to
a resource and the server should resolve it to that of a new file or that from an
old package. Also it may be that package maintainers may choose to re-arrange
the layout of the package. Documentation for instance may be consolidated into a
directory ./docs/ rather than at various locations previously by a maintainer. If this

Paper for Review page 21 of 42



January 4, 2010

is the case files may not have changed but the package layout will have changed.
Using the DSL and sym-links on the server side it may be possible to reduce the
size of large repositories by identifying redundant files. Dynamic package creation
using checksums of files and DSL is not the main consideration but it is something
to look at given that roll-back will need access to old revisions of files and is not
currently performed.
Executable files are usually, unique to packages and when a new version of a pack-
age is released it is normally the executable code and formal logic that is modified.
As they are normally not used by other packages they can generally be stored as
different versions and as they are binary a VCS would not be suitable to store them.
Instead the executables should be stored as files on a per-package basis.
Documentation files are an example of an ASCII file that could be maintained
in a VCS locally. The changes are likely to be additive between revisions with
modifications of version numbers and reworked text. If any changes are merged
incorrectly they are unlikely to cause a package failure and so can be merged with
less safe-guards. They also generally are not modified by the end-user.
Configuration files on the other hand are modified by the end-user and have to
be kept in a working state. Particular elements may be added or removed by an
upgrade and others will be done by the end-user. These changes have to be merged
together to keep the configuration consistent. For the example we will compare
the cupsd.conf file between instances of CUPS version 1.2.0 and 1.4rc1 as shown
by Table 5. There are many entries that are identical, some which are modified,
some removed and others which are completely new entries. Removing and adding
entries are the easiest to deal with as they do not need resolving. Modified elements
and elements that are modified by the end user after changes have been made are
more complicated. For instance if some modifications are made to the elements by
an end user these changes may or may not necessarily be backwards compatible. If
a reference is made to a new feature that was not available in the previous version of
the package should that value be maintained, maintained but hidden or completely
removed. These are just a few of the possibilities available when merging. It might
not always be possible to know what sort of merging should take place though.

Version 1.2.0 Version 1.4rc1 DiffType

# Log general information in error log
- change “info” to “debug” for

# Log general information in error log
- change “@CUPS LOG LEVEL@”
to “debug”

Modify

@CUPS SYSTEM AUTHKEY@ Addition
Allow localhost Removal
# Sample configuration file for the
Common UNIX Printing System
(CUPS)

# Sample configuration file for the
Common UNIX Printing System
(CUPS)

No change

Table 10: Some snippets of configuration differences between versions of CUPS

Paper for Review page 22 of 42



January 4, 2010

File-Type Example ASCII/Binary Diff Local Server

Executable cupsd Binary No No Yes
Library libcups.so.2 Binary No Yes Yes
Documentation README.txt ASCII Yes No Yes
Media cups.png Binary No No Yes
Configuration cupsd.conf ASCII Yes Yes Yes
Resource files cups.desktop ASCII Yes No Yes
Archive laserjet.ppd.gz Binary No No Yes
Template users.tmpl ASCII Yes No Yes

Table 11: Different types of file to monitor

Figure 3: The evolution of a package using configuration scripts

Paper for Review page 23 of 42



January 4, 2010

6 Roll-back transaction definition

If a pure DSL command or set of commands does not perform the roll-back suf-
ficiently we will need to use additional information that the DSL has provided
in combination with other facilities to provide roll-back. The System meta-meta-
model file will maintain certain aspects of the state of the system. If provided with
the state of the system before and after an operation takes place we can view the
change in states and try to ascertain which were as a result of the DSL.
We can capture all the elements that change during the configuration by trapping all
system calls. A file caught by this kind of trapping might be similar to the example
seen in Table 6. However there are many other details that could be captured and
this would be implementation specific. Also there would be many files that have
nothing to do with the package in question that get modified during the two system
states (before and after) and would possibly get captured. This blanket coverage
of the file-system/monitored files is akin to taking snapshots of the system before
and after a change has taken place. Of course there are the problems associated
with large snapshots such as how often to take the snapshots, where to store them,
garbage collection, snapshot window to data change rate, granularity amongst oth-
ers. With the DSL we are capturing all commands that are forward acting but the
problem is that we might not have the reverse DSL commands available. We there-
fore have a large hint in terms of what we expect to be modified. We can therefore
analyse the DSL statements and narrow the focus of what we will be capturing
with file-system captures or any other methods to the meta-classes of the system
that we expect to be modified. For instance if we perform an action that we know
will be modifying a set of files in a folder ˜/home/.arb_data/ but don’t know
exactly how we can then combine the other mechanisms that we will discuss and
this one to capture the state of the folder before and after. Again if we know that
certain environmental variables are likely modified but we have know exact knowl-
edge of how they will be modified we can capture certain environmental variables
that are modelled within the system and then again afterwards and notice changes
and either deduce what happened or just capture the change. With file manipu-
lations we for instance don’t expect environment variables to change and so can
capture just file changes for the associated DSL statements. It might be that the
DSL commands that we produce from the before and after case are insufficient to
capture what is changing in which case we will have to know when we fall back to
using the standard maintainer script files and when to abort the transaction. It has
already been found in research by Olivier Rosello of Mandriva for MANCOOSI
that there are subtleties to do with a wide range of issues such as implicit library
dependencies amongst others. As it may take time to be able to resolve these is-
sues our architecture has to be designed such that if a package is not a candidate
for roll-back that it will inform the user and perform at least as well as the current
breed of package managers. From an implementation perspective what this means
is that we will have to allow the roll-back mechanism to pass control back to the
meta-installer if we are unable to come up with a suitable strategy for roll-back.

Paper for Review page 24 of 42

~/home/.arb_data/


January 4, 2010

Files before chksum TransactionID Files after chksum

/etc/cups/classes.conf 8838... 1 /etc/cups/classes.conf 758b...

Table 12: The file system before and after a transaction

One of the issues of the implementation is knowing whether or not a reverse DSL
command exists. If a pure DSL statement can be recorded that would alter the sys-
tem to the state before another DSL statement then it is the logical inverse of that
DSL statement. Knowing if we can roll-back or not means that we can look at a
transaction and determine if a roll-back can be performed on it. For instance take
the cups example we have been using and a set of transaction and DSL statements
that are recorded as a result in Figure 4. What we can say is that a transaction
subtree is suitable for roll-back iff all the sub-elements have roll-back DSL equiv-
alents. If any of the sub-elements of a transaction cannot be reverted then there is
no chance of performing a full roll-back of the parent transaction. If this is the case
then we can quickly determine if a roll-back should be possible for a large set of
sub-transactions by looking at the leaf elements and seeing if any of them do not
have associated roll-back elements. It may still be possible for a roll-back of the
system even if sub-elements do not have DSL syntax.

Figure 4: TransactionID Based Tree

Paper for Review page 25 of 42



January 4, 2010

Installed package files

Packages Repository

DSL log

Installed package files

Packages Repository

DSL log

Install

Package

Files

Scripts

DSL

Time

System T+1

Rollback

1.− Revert DSL statements

2.− Remove package System T

System T+i

1.− Install Files

3.− Execute scripts

2.− Interpret DSL

Figure 5: Install and rollback process

Paper for Review page 26 of 42



January 4, 2010

7 Example of package roll-back

In the following section a specific example of a package will have its maintenance
script files converted into DSL statements and captured accordingly. By working
through this example it may simplify the process that is envisaged for the imple-
mentation mechanism. For this example we will use the architecture defined before
and the methodology of Deliverable 3.2 to describe what will happen on a system
that has a DSL supported roll-back mechanism.
The Package Meta-Installer that will be modifyied, apt-rpm into DSL TTSG RPM
runs off rpmLib = 4.4.6. The module which has been identified as being the one to
modify is that of rpmcc.c.
Listing 1 refers to the post install configuration that is run by the Meta-Installer
after installing CUPS.

Listing 1: Maintainer script file
1 cups.spec.post
2 %post
3 # Make sure group ownerships are correct
4 chgrp -R sys %{_sysconfdir}/cups %{_var}/*/cups

The files found in Listing 2 are representative of those which would be modified
by the maintainer script. We capture as a list all the DSL statements modifying
the individual files. Using the log we can then see which DSL statements are
recorded in a transaction and if directly available run the inverse DSL commands
or use the parameters to see what was modified and by which DSL statement. For
simple cases such as this where the files will have their permissions changed we
can capture what they changed from and to and the command is easily invertible
but not self-inverting.

Listing 2: Sample file structure
1 /etc/cups/classes.conf
2 /etc/cups/cupsd.conf
3 /etc/cups/mime.convs
4 /etc/cups/printers.conf
5 /etc/cups/snmp.conf
6

7 /var/cache/cups/job.cache
8 /var/cache/cups/ppds.dat
9 /var/cache/cups/remote.cache
10 /var/cache/cups/rss/
11

12 /var/log/cups/access_log
13 /var/log/cups/error_log
14 /var/log/cups/page_log
15

16 /var/run/cups/cups.sock
17 /var/run/cups/certs/
18

19 /var/spool/cups/

Listing 3 collapses the expanded tree of all the files that will be modified as per List-
ing 2. This can be expanded by an implementation that looks recursively through

Paper for Review page 27 of 42



January 4, 2010

the directories and is less redundant. However for the initial implementation it is
better to explicitly log all the information serially and think about compressing the
information at a later stage.

Listing 3: Sample directory structure
1 /etc/cups/*
2 /var/cache/cups/*
3 /var/log/cups/*
4 /var/run/cups/*
5 /var/spool/cups/*

Listing 4: Equivalent DSL Grammar
SCRIPT :: STATEMENT_LIST :: {CONTROL_STATEMENT :: {CASEPOSTINST ::

CasePostinst(){CONFIGURE :: configure :: STATEMENT_LIST ::
ITERATOR_STATEMENT :: ITERATOR_DIRECTORY}, STATEMENT_LIST :: {
TEMPLATE_STATEMENT :: {CHGGRP}, \varepsilon}, \epsilon }ABORTUPGRADE
:: \epsilon ABORTREMOVE :: \epsilon ABORTDECONFIGURE :: \epsilon },
STATEMENT_LIST :: \epsilon

DSL Grammar in a diagrammatic tree

Figure 6: A tree showing the sub-section of the grammar tree related to CUPS post
inst script

Listing 5 is an example of how the CUPS maintainer script would be represented in
the ATLAS Transformation Language (ATL). This representation allows the model
of the system developed as part of Work Package 2 to be transformed from a source
to a target configuration. The exact semantics of the rules will not be exactly as
per this listing but it is demonstrative of how the simulator and failure detector will
modify their internal properties based on DSL commands. ATL commands onto
the model are not commutative and as such the order in which they are performed
is important. They will be run in the same order as the DSL statements in the log
mechanism.

Paper for Review page 28 of 42



January 4, 2010

Listing 5: ChangeGroupRule
rule file_chg_group(file_name,group_name){
using{
Environment!SystemDirs
}
do{
file_name.Groupname <- group_name
}
}

Listing 6: Equivalent DSL Commands
ChgGrp(sys,/etc/cups/classes.conf)
ChgGrp(sys,/etc/cups/cupsd.conf)
ChgGrp(sys,/etc/cups/mime.convs)
...
...

Listing 7: Inverse DSL Commands
ChgGrp(owner1,/etc/cups/classes.conf)
ChgGrp(owner2,/etc/cups/cupsd.conf)
ChgGrp(owner1,/etc/cups/mime.convs)
...
...

Now if we want to reverse the set of DSL statements performed by:

chgrp -R sys %{_sysconfdir}/cups %{_var}/*/cups

we could perform a number of different procedures. The simplest is iff we store
the invertible DSL statement along with the DSL command, we can just find the
associated Transaction ID, check to see that all elements are invertible, and run
the inverse DSL statements. If however a direct mapping does not exist there may
exist a method by which we can capture the original configuration and through a
capture of the system state afterwards be able to compare the differences and create
a reverse mapping in terms of multiple DSL statements.

Paper for Review page 29 of 42



January 4, 2010

8 Implementation

8.1 Overview

All of the previous sections have mentioned the areas that we will have to explore
and work around to get a working implementation of transactional roll-back using
the DSL. There are a few named techniques as well as other techniques that have
not been investigated that all try and cover the problem of rolling back software up-
dates and restoring previous system configurations. What is clear is that the amount
of research that has gone into investigating roll-back, falls far short of the research
into upgrading software systems. This is understandable as after all software de-
velopers try to release software that is functional and that each successive iteration
improves upon the previous version of the software. Rolling back software can
therefore be seen as counter-productive. There are times though that the end-user
or system administrators would want to be able to roll-back to a previous con-
figuration. The options available for roll-back have been identified as insufficient
and as such could benefit from the research carried out as part of the MANCOOSI
project. As part of Work Package 2 using a Domain Specific Language (DSL)
was decided upon as a potential way of solving some of the problems associated
with the granularity of package management and to provide a new framework from
which package maintainers and users can benefit from this new technique.

8.2 Timeline

A proposed timeline has been suggested for discussion with @rpm5.org and the
other members of MANCOOSI as well as serving as an internal document that can
be used for reference. It might be possible that the timeline is unworkable or that
there are delays or that it needs reconsideration in which case it will serve as a base
from which we can refine milestones and co-ordinate. The main deadlines are that
of the March review for the MANCOOSI project and also that of the FOSDEM
2010 conference of 6th and 7th February where we are looking to present some
of our findings. We are aiming to have a working implementation for FOSDEM
and to refine it in time for the March Review of the project. @rpm5.org timeline
is only for reference as other commitments may interfere with the development
process but generally the goals and milestones identified will be held to.

8.3 Logical Blocks

There are many areas that need development for working with the results of Work
Packages 2 and 4. The key areas that have been identified as sections that need to
be addressed as part of Work Package 3 are:

• Roll-back mechanism

• Log storage mechanism

Paper for Review page 30 of 42



January 4, 2010
M

A
N

C
O

O
S

I

P
ro

je
ct

 C
oo

rd
in

at
or

:J
oh

n 
T

h
om

so
n

T
od

ay
's

 D
at

e:
1

/4
/2

0
1

0
(M

on
) (

ve
rt

ic
a

l r
e

d
 li

ne
)

[4
2]

S
ta

rt
 D

at
e:

1
1

/2
/2

0
0

9
(M

on
)

F
irs

t 
D

a
y 

o
f 

W
e

e
k 

(S
u

n
=

1
):

2#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

W
B

S
T

a
s

k
s

T
a

s
k

 L
ea

d
S

ta
rt

E
n

d

Duration (Days)

% Complete

Working Days

Days Complete

Days Remaining

02 - Nov - 09

09 - Nov - 09

16 - Nov - 09

23 - Nov - 09

30 - Nov - 09

07 - Dec - 09

14 - Dec - 09

21 - Dec - 09

28 - Dec - 09

04 - Jan - 10

11 - Jan - 10

18 - Jan - 10

25 - Jan - 10

01 - Feb - 10

08 - Feb - 10

15 - Feb - 10

22 - Feb - 10

01 - Mar - 10

08 - Mar - 10

15 - Mar - 10

22 - Mar - 10

1
Jo

h
n

02
/1

1
/0

9
21

/1
2/

09
49

29
%

3
6

1
4

3
5

1
.1

02
/1

1
/0

9
1

6
/1

1
/0

9
1

4
5

0%
1

1
7

7

1
.2

R
e
so

u
rc

e
 A

llo
ca

ti
o
n

09
/1

1
/0

9
1

6
/1

1
/0

9
7

0%
6

0
7

1
.3

R
e
v
ie

w
 o

f 
Im

p
le

m
e
n
ta

ti
o
n

P
a
u
lo

1
7/

1
1

/0
9

1
9

/1
1

/0
9

2
0%

3
0

2

1
.4

M
id

-t
a
sk

 R
e
v
ie

w
P
a
u
lo

20
/1

2/
09

21
/1

2/
09

1
0%

1
0

1

1
.5

Fi
n
a
l 
R

e
v
ie

w
P
a
u
lo

27
/1

/1
0

3
0/

1
/1

0
3

0%
3

0
3

2
Jo

h
n

02
/1

1
/0

9
06

/2
/1

0
9

5
1

%
70

1
9

4

2.
1

02
/1

1
/0

9
1

6
/1

1
/0

9
1

4
1

5
%

1
1

2
1

2

2.
2

P
ro

g
ra

m
m

in
g

20
/1

1
/0

9
21

/1
/1

0
6

2
0%

45
0

6
2

2.
2

In
v
e
st

ig
a
ti

o
n

1
0/

1
1

/0
9

24
/1

1
/0

9
1

4
0%

1
1

0
1

4

2.
5

24
/1

1
/0

9
1

5
/1

2/
09

21
0%

1
6

0
21

2.
4

T
P
P
M

 m
e
ch

a
n
is

m
1

5
/1

2/
09

3
0/

1
/1

0
46

0%
3

4
0

46

2.
3

09
/1

/1
0

3
0/

1
/1

0
21

0%
1

5
0

21

2.
2

C
o
n
ti

n
g

e
n
cy

29
/1

/1
0

05
/2

/1
0

7
0%

6
0

7

2.
6

Fi
n
a
l 
T
e
st

 o
f 

Im
p

le
m

e
n
ta

ti
o
n

22
/1

/1
0

05
/2

/1
0

1
4

0%
1

1
0

1
4

3
Je

ff
02

/1
1

/0
9

05
/2

/1
0

9
5

1
8

%
70

1
7

78

3
.1

02
/1

1
/0

9
1

6
/1

1
/0

9
1

4
9

0%
1

1
1

2
2

3
.2

P
ro

g
ra

m
m

in
g

02
/1

1
/0

9
21

/1
/1

0
8

0
5

0%
5

9
40

40

3
.3

R
P
M

D
B

 S
ch

e
m

a
02

/1
1

/0
9

1
3

/1
1

/0
9

1
1

5
0%

1
0

5
6

3
.4

C
o
n
v
e
rs

io
n
 T

o
o
ls

1
3

/1
1

/0
9

1
3

/1
2/

09
3

0
0%

21
0

3
0

3
.5

U
n
it

 T
e
st

s
1

3
/1

1
/0

9
23

/1
2/

09
40

0%
29

0
40

3
.6

Lo
g

g
in

g
 r

e
p

re
se

n
ta

ti
o
n

20
/1

1
/0

9
20

/1
2/

09
3

0
0%

21
0

3
0

3
.8

A
tt

a
ch

in
g

 S
e
co

n
d

a
ry

 S
to

re
s

29
/1

1
/0

9
05

/1
/1

0
3

7
0%

27
0

3
7

3
.8

H
e
a
rt

s 
a
n
d

 M
in

d
s

02
/1

1
/0

9
3

1
/1

/1
0

9
0

5
%

6
5

4
8

6

3
.9

Fi
n
a
l 
T
e
st

 o
f 

Im
p

le
m

e
n
ta

ti
o
n

22
/1

/1
0

05
/2

/1
0

1
4

0%
1

1
0

1
4

4
E
v
e
n

ts
N

/A
02

/1
1

/0
9

02
/1

1
/0

9

4.
1

C
h
ri

st
m

a
s/

N
a
ta

l
21

/1
2/

09
04

/1
/1

0
1

4
0%

1
1

0
1

4

4.
2

T
h
a
n
k
sg

iv
in

g
25

/1
1

/0
9

28
/1

1
/0

9
3

0%
3

0
3

4.
3

N
ic

e
 M

A
N

C
O

O
S
I 
m

e
e
ti

n
g

06
/1

/1
0

09
/1

/1
0

3
0%

3
0

3

4.
4

06
/2

/1
0

06
/2

/1
0

0
0%

0
0

0

4.
5

FO
S
D

E
M

06
/2

/1
0

09
/2

/1
0

3
0%

2
0

3

4.
6

M
a
rc

h
 R

e
v
ie

w
24

/3
/1

0
26

/3
/1

0
2

0%
3

0
2

C
ai

xa
 M

a
g

ic
a

 S
of

tw
a

re

O
rg

a
n

is
a
ti

o
n

 &
 P

la
n

n
in

g
C

re
a
ti

o
n

 o
f 

ti
m

e
-s

h
e
e
ts

 a
n

d
 

lo
g
is

ti
cs

C
a
ix

a
 M

a
g

ic
a
 S

o
ft

w
a
re

 
In

m
p

le
m

e
n

ta
ti

o
n

D
e
si

g
n
/S

p
e
ci

fi
ca

ti
o
n
 o

f 
Im

p
le

m
e
n

ta
ti

o
n

D
a
ta

b
a
se

 d
e
si

g
n

 a
n

d
 i
m

p
l.

S
im

u
la

to
r/

Fa
ilu

re
 D

e
te

ct
o
r 

In
te

g
ra

ti
o
n

Je
ff

 J
o
h

n
s
o
n

 @
rp

m
5

 
Im

p
le

m
e
n

ta
ti

o
n

D
e
si

g
n
/S

p
e
ci

fi
ca

ti
o
n
 o

f 
Im

p
le

m
e
n

ta
ti

o
n

Fi
gu

re
7:

Pr
op

os
ed

Ti
m

el
in

e

Paper for Review page 31 of 42



January 4, 2010

• File and configuration storage mechanism

• Server communications and interfacing

• Integration with rpmpm.cc

• Communication with Failure Detector

• Interfacing with Simulator

The log storage mechanism is one of the most important areas of the overall roll-
back system. Having a serialised and consistent log is essential as we will rely on
the information stored in the log to move between configuration states. Any short-
comings or corruption within the log will mean that we are not guaranteed to reach
a valid configuration state which is usable with the simulator and failure detector.
It is therefore essential if we are going to maintain a representation of the system
in terms of a Domain Specific Language that we store the representation using
mechanisms that guarantee the data are in a known state. For this implementation
branch we will be using SQLite3 to store the logs.
The first main implementation point is how much we will use the DSL for the
package installation process. For this first version of the approach we look at using
the DSL as a log fabricator that will store the effects of DSL as specified in a
.dsl file included in some way with the package. These logged DSL statements
will provide the first approach for tackling roll-back. Also in this implementation
scheme we look at providing hooks to a simulator and failure detector that will
be created as part of the work in Work Package 2. The log mechanism will store
all the DSL commands that change a configuration A to A’. By capturing these
changes we hope to be able to revert back from configuration A’ to A. The reasons
for doing this are mentioned in D3.2 and in the supplementary document, Rollback
Component Definition.
Log file As mentioned the log file will capture the DSL commands and the consis-
tency of such commands are integral to having a reliable mechanism from which
we can move between package configuration states. If we cannot be assured of
the state of the log or the data contained within then we cannot guarantee that we
are in a given state. For this reason preliminary work and research has been car-
ried out into how we will store the logs. Two main contenders arose, Berkeley
DB and SQLlite3. There are other options available such as Stasis and using fully
fledged database management systems. The choice has been taken to use SQL-
lite 3 due to familiarity with SQL of the developers involved. Berkeley DB has
been investigated but as JJ has already implemented such a mechanism and that
time constraints are now the major issue it is seen as a suitable tradeoff between
complexity of a first implementation and the resulting efficiency benefits.
As for the roll-back mechanism we defined at the beginning of the document that
any mechanism chosen would be selected in such a way as to minimise the cases
where roll-back is infeasible. The choices will therefore be made to maximise the
potential for roll-back.

Paper for Review page 32 of 42



January 4, 2010

To store files in such a way that it is not file-system dependent means that files
should be stored either remotely or in cases which are not suitable for remote stor-
age, to use a storage system that is independent of architecture and system used.
There are arguments both ways for whether to store binary data in databases or to
have the data stored in a file-system. As for our new proposed implementation we
are trying to keep it as system agnostic as possible and hence will store files in
the file-system and link to them with a database. As we are already proposing to
use BerkeleyDB we can also store locations of files in this way. If at a later point
we decide to compress the files or do something else with them, they will not be
contained within a single type of database but rather be associated with a location.
This does mean that we lose some of the safety mechanisms of storing files within
a database and there is the potential that the files could be modified by the end user
or become corrupted but there are mechanisms such as digests that we can use to
counter-act this.
In terms of communication with the repository servers we will use the mechanisms
already offered in apt-rpm, namely rpmlib, to name a specific version of a package
that we intend to use. Creating a new system for communication with the server is
not necessary but the mechanism by which the servers store the information has to
be addressed. If we intend to store all the binaries for all versions of the packages
on the repository server then we will need to have a more efficient diff mechanism
to maintain the changes between packages. A VCS mechanism that maintains just
the difference in the source that generates the binary files would be ideal but as
we are using the binaries, VCS tend to be less efficient for storing data. There
exists a few solutions for storing binary files in a VCS manner. One such solution
is Checkpoint 6. Bsdiff 7 can be used to compare binary files and to create small
patch files. Courgette 8 is a system that is being developed by Google as part of
the Chromium OS and allows even more efficient storing of changing application
files. Sending small updates from the server will mean that the whole package will
not have to be resent but rather the elements that have changed. Initially though
the files to be restored can be stored locally, then moved to a remote server and
eventually any mechanism that reduces the amount of redundant information stored
and transmitted between versions of software can be investigated at a later stage.
As for integration with the existing apt-rpm and more specifically having a version
that implements the usage of the DSL we are going to use a new fork in the software
branch. As stated before, apt-rpm currently uses rpmlib version 4.4.6, the same as
that of Yum. Within the facilities provided by rpm we could choose to maintain
functionality or create new code to realise our aims. The dependency solving, con-
flict catching facilities available in rpmlib as well as the facility to create package
transactions has been investigated and it would appear a suitable location for in-
serting our new code. Of the sections of rpmlib, the install packages function and

6http://code.google.com/p/checkpoint/
7http://www.daemonology.net/bsdiff/
8http://www.chromium.org/developers/design-documents/

software-updates-courgette

Paper for Review page 33 of 42

http://code.google.com/p/checkpoint/
http://www.daemonology.net/bsdiff/
http://www.chromium.org/developers/design-documents/software-updates-courgette
http://www.chromium.org/developers/design-documents/software-updates-courgette


January 4, 2010

more specifically just after the topological sort on the transaction seems to be a
good location to insert our software. From the list of packages to be installed we
can then take any information about those packages and run a simulation of what
installing the packages would do to the state of the system. At this simulation stage
we could decide if a roll-back was possible or not and decide whether to continue
with the installation of the system, either automatically or with the assistance of
the user.
The communication with the failure detector by design will be quite limited. If we
have received an error from the failure detector it is likely that it will have handled
the communication to the end user so what is left is to decide on and implement a
roll-back plan. At this stage we will need error checking to make sure we are not
in an infinite loop searching for a plan that is infeasible. Once the error has been
rolled-back we then need to inform the end user of the current state of the system
and what has happened.
Communications from the simulator will be more complicated as the roll-back
mechanism will suggest a strategy for roll-back and if we wish to simulate this we
will have to interact with both the input and output of the simulator.

Figure 8: State Transition Diagram of package versions

Get the TiD corresponding to the package version that we want to roll-back to.
Check the current file digest with that of the files in the target system. If they have
been modified we should preserve the files we currently have that will be modi-
fied as part of this system-state. Depending on the files changed we use different
mechanisms to store the changed information. Configuration files for instance will
be stored in a VCS, whereas binary files may use the Courgette system and have
a patch applied to them to restore them to the target state. These patches would
need to be downloaded from the repository server or created by using a combi-
nation of the DSL and other mechanisms that will be explained in more detail.
The configuration files will be stored in a VCS as the current configuration. We
can analyse the DSL elements and suggest which files might be configuration files
through the analysis of the actions performed on them. Then need to request from
the server the old versions of the binaries or the patch files. Only need to down-
load files for which the files have changed and so we can reduce the amount of

Paper for Review page 34 of 42



January 4, 2010

information needed to be stored and transmitted by the server. Could detect which
files are modified using a combination of pstrace and other file monitoring mech-
anisms. We could also generate packages on the fly using the information from
various sources and then send the client the requested package or differential in the
package. In the first instance a simple mechanism would be to retain all the old bi-
naries rather than patch back to the old version. Next we must run the pre-removal
DSL equivalent scripts to make sure that any services that need to be de-registered
can be performed etc. Applying the patches and returning the file-system to the
state of the previous stored configuration is the next step and uses the files we have
downloaded. Either apply patches or overwrite the target files with those of the
original system. As for the configuration files we will then request to the end-user
if a verbose mode is selected, whether or not they want to roll-back the configura-
tion files. The choices will be to keep the configuration as is/use the configuration
stored on the server/use the configuration stored in the VCS before the update was
performed/ or lastly to merge the changes. If no user input is used, then to maintain
the maximum potency of the roll-back mechanism we will use the stored configu-
ration file from the VCS. We can then run the failure detector and see if there is a
configuration mis-match and if so advise the user if a roll-back of the roll-back is
required. The implementation would be the same as the roll-back used here but that
the target is the state before the original roll-back and the source is the failed state
that we are in. The effect would be akin to that of reverting a snapshot. Roll-back
of a roll-back may yet return as a failure but if the configuration is the same as that
before the roll-back was performed then we have got back to the original system
state and will stop at this point.

Figure 9: State Transition Diagram of packages dependent on libraries

One of the problems when rolling back that has been identified by Olivier in his
research for Mandriva’s implementation strategy is that of library dependencies.

Paper for Review page 35 of 42



January 4, 2010

Figure 9 helps to indicate some of these problems. It can be further expanded when
considering all the possible roll-back states for these two example packages as
shown in Figure 10. Returning to Figure 9 if the roll-back arrows that are indicated
by the arrows roll[1-3] are to be successful then a few things have to be identified.
Rolling back Package B from version 1 to 0 i.e. roll3 in the Figure is the simplest
scenario. Both version 1 and 0 of Package B are dependent on and use Lib0.
Rolling back the Package B therefore has no implicit effect on Package A through
the modification of Lib0. What is more complicated are the roll-backs indicated by
arrows roll2 and roll1 in Figure 9. If Package B is to be rolled back from version
2 to either 1 or 0 there are now additional considerations. If Package B versions 1
and 0 are only dependent on having a library version greater than 0 then again we
can be reasonably assured that rolling back Package B to either of the versions will
lead to a valid state. What is more complicated is if version 0 of B was dependent
on version 0 of the Library exactly and cannot use any later editions. If package
A versions, 1,2 or 3 are installed then there is a difficulty in rolling-back B in
this case as rolling back the version of the Library will break those packages. If
concurrent versions of the library can exist simultaneously on the system we could
then re-install if not already present Library version 0 and roll-back B, leaving
A associated with Library version 1. If however the versions of the library are
not mutually exclusive and cannot be run on the system at the same time we will
either have to roll-back all packages that are dependent on Library Version 1 to
allow Library version 0 to be installed, to create a sandbox environment for the
library to run in, implement some other mechanism for running two versions of
the library to run or to inform the user that a roll-back is not possible. There may
also exist the situation where roll-back 2 is possible and 3 and 1 are not. If this
is the case we have to decide whether when the user chooses roll-back 1 whether
we investigate the other roll-back possibilities and inform the user whether or not
an alternative roll-back is possible. This could further be expanded to include
searching for roll-backk strategies for versions older than the requested one. To
maximise the number of cases where roll-back is feasible it would could be argued
that searching the other roll-back strategies is important. One contrary view is
that we want to maximise the number of cases where the user and only the user
specified roll-back is achievable in which case we would not investigate the other
possibilities. Moving to the more complicated as shown in Figure 10, we have yet
more cases where roll-back stages might occur, but using the principles suggested
above it should be possible to move between different versions of packages or
suggest when such a roll-back strategy is infeasible. It might be necessary for
instance to roll-back a collection of packages to enable a roll-back in which case it
is similar to the upgrade scenario where an upgrade strategy is decided. For certain
other compiled and binary resources it may not be so important to maintain exact
versions for different packages. The consistency of files between states is important
and so although this could be relaxed for certain types of files we will endeavour
to repeat the process for all types of files. It also makes an implementation scheme
easier as we do not have to segregate files (other than configuration files).

Paper for Review page 36 of 42



January 4, 2010

Figure 10: State Transition Diagram of packages dependent on libraries

8.4 Actual Implementation

We will be using some of the design inferences mentioned before and we will take
other decisions to make a working implementation by the deadlines as stated in
the Gantt chart, Figure 7. As some of the design considerations have taken longer
than originally planned for some trade-offs have had to be taken to make sure a
working implementation is ready in time. The design has also been simplified
somewhat to make sure that it is block based and so may be more inefficient than
a streamlined design but makes it simpler to refine and improve upon. The DSL
will be contained in the binary package as a .dsl text file. It will be a list of DSL
Commands that will be extracted and read by a utility as described later. These
DSL commands will then be converted into a sequence of commands using an
external pseudo-interpreter written in Python. This same Python script will then
store the DSL commands into a SQLite3 DB along with any other elements dictated
by the definition of the database and its schema. The main decision has been to
avoid using a full interpreter that works within apt-rpm and that would have been
able to parse DSL commands and perform the executions itself. Instead the original
functionality of rpm will be maintained and a separate, external Python script will
take care of receiving the DSL commands and storing the relevant commands to
the log. Execution will for the time being, be deferred back to rpm which will use
the maintainer scripts as was. The idea behind this is that we will still be able to
capture the DSL elements, store them in a log and pass them to a hook that would
be the simulator (that is being created as a part of WP2) and then to receive a
notional valid or not valid signal and continue with the package upgrade/rollback.
This is shown in Figure 12. Our mechanism breaks the normal flow just before
the transaction would normally be run and control passed to RPM. For our imple-

Paper for Review page 37 of 42



January 4, 2010

Figure 11: Inserting roll-back code

mentation, the transaction set information will be passed to the Python script that
will act as a dumb logging agent. For each file it will read the DSL commands and
break them down into serialised elements and store them into the SQLite3 based
DSL log. Also, provision will be made in terms of call-backs to the installation
scriptlets. Instead of creating a full interpreter that will be able to execute the state-
ments what we will do is when we have picked up certain commands, link in some
CLI code but for the vast majority we will initially look at passing control back
to apt-rpm and let rpm unpackage, move and install the files. All we will do in
the forward direction is to log what is happening but in terms of DSL. The inverse
commands if they exist will be captured alongside the forward commands. To per-
form the inverse DSL would therefore be to run the sequence of inverse statements
in reverse for the associated transaction. Linking the transactions together is an
important part of the Database design as it will suggest what the limit is of grouped
statements. Otherwise there is no guarantee that we will start using inverse state-
ments from previous transactions that would lead to an erroneous configuration
state.

DSL Log Schema

• DSL ID : Primary Key Integer Unique Auto-increment

• TransactionID : Integer

• DSL Statement : VarChar

• DSL ParentID : Integer NOT NULL

• DSL InvStatement : VarChar

• Dependent : Integer (boolean)

Paper for Review page 38 of 42



January 4, 2010

Figure 12: Roll-back implementation

The TransactionID that will be used is generated from apt-rpm, specifically rpm
and encodes other details such as date installed alongside, a fully qualified NEVRA
name and the changes made to packages amongst others. DSLiD will be a numeric
auto-incrementing unique Key from which we will be able to explore this log. The
TransactionID will however make a better index as several DSL commands will
be associated with a particular TransactionID. DSLstatement is the location where
we will store the serialised DSL commands that we are performing. It will take
the form of DSL syntax and also will capture the variables that were passed into
the command as arguments. DSLparentID is a way to group DSLiD statements
together. By capturing the initial command and linking all associated DSLiD ele-
ments to a parent element we will be able to say which DSL commands relate to
what. DSLInvStatement is where we will store inverse commands that are either
generated from the .dsl file, manually or otherwise. This is where the mechanism
will first look for invertible commands and if they are present will indicate invert-
ibility and the commands to run, otherwise if blank it will mean that other fall-back
mechanisms will be relied upon. Dependent is a place-holder in case we find that
roll-back mechanism cannot roll-back without first performing a statement located
else-where.

.dsl file This will be additional to control.tar.gz and .spec file scripts. Normally
these files are not included in the binary files and through manipulation of apt or
rpm we should be able to recover the meta data that these files contain but for
convenience we will store these files in the binary archive file so we can capture in-
formation relatively easily. The .spec file information and control code is normally

Paper for Review page 39 of 42



January 4, 2010

encoded into meta-data that is included in the package and this could eventually be
how the .dsl file information will be stored but for now it will be stored as a .dsl file
in the root of the binary package as well. The terms stored will be DSL functional
equivalents of the maintainer scripts that they are aimed at replacing. Rather than
have to create a new interpreter solely for performing operations that rpm would
already do, we are designing a system where we will use a perl/python/ruby script
that will open the archive, get the associated .dsl and .spec or control.tar.gz files,
serialise the commands and then save them into a log. This log will then be used
to drive the roll-back. Once this has been implemented we will look at having the
DSL form into an interpreter that is capable of running DSL commands and there-
fore eliminate the need for maintainer scripts. This however is for review once
development of the other stages has occurred. The reason for a perl/python/ruby
script is that they will be able to interface with BASH/POSIX shell and also to the
database more simply than just a set of BASH scripts or from using pure C/C++.
It may be that further down the development cycle that another development lan-
guage might be preferable but the aim is to show an implementation of the DSL
and as such having something that works in a block structure and is easier to seg-
regate may not be the most efficient mechanism but for a proof of concept design
it is the desired choice.

Example of what the DSL would look like in the .dsl file For CUPS therefore
the DSL would be:
if :: (Environment.configuration.architecture == x86 64 , then CtrlStmt1, else Ctrl-
Stmt2)
CtrlStmt1 :: if ((FileSystem.File(/usr/lib64/cups) == File.directory) && (FileSys-
tem.File(/usr/lib64/cups) != File.symlink), then CtrlStmt3, else CtrlStmt4);
CtrlStmt2 :: Environment.configuration.addgroup(lpadmin);
CtrlStmt3 :: if ((FileSystem.File.location(/usr/lib/cups) == File.symlink, then Ctrl-
Stmt5, else CtrlStmt6);
CtrlStmt4 :: null;
CtrlStmt5 :: FileSystem.UpdateFileSystem.File.location(/usr/lib/cups)→ FileSys-
temStatement.iterator.directoryiterator(%File.removeFile), CtrlStmt7;
CtrlStmt6 :: FileSystem.File.location(/usr/lib64/cups).move(/usr/lib64/cuprs.rpmsave),
CtrlStmt8;
CtrlStmt7 :: FileSystem.File.location(/usr/lib64/cups).move(/usr/lib/cups), null;
CtrlStmt8 :: echo (text), null; //irrelevant to DSL

//End %pre capture
CtrlStmt9 :: InstallFiles(); //Necessary to separate?
CtrlStmt10 :: InstallConfFiles();

CtrlStmt11 :: FileSystemStatement.iterator.DirectoryIterator(File.location(/usr/lib64/cups))
→ (FileSystem.File.chgowner(sys));

Paper for Review page 40 of 42



January 4, 2010

CtrlStmt12 :: FileSystemStatement.iterator.DirectoryIterator(File.location(/var/*/cups))
→ (FileSystem.File.chgowner(sys));
//Handling wild cards...
// End post capture
//REMOVAL
//Pre uninstall
/usr/share/rpm-helper/del-service

CtrlStmt13 Environment.runningServices.File.location(/usr/sbin/cupsd)→ prerm init()
‖→ postrm init(); //Need to think whether these still need to be split and if so need
to put the postrm init() after the removefiles() process. This DSL element removes
the service from the running system akin to p.51 of D3.2. The Debian equivalent
is shown on that page. For rpm systems the equivalent would be /usr/share/rpm-
helper /del-service %servicename. Configuration and Package meta-class settings
need to be modified. PackageSetting.services.executable.location(/usr/sbin/cupsd)
→ prerm init() ‖ → postrm init();

CtrlStmt14 :: removefiles();

/usr/share/rpm-helper/del-group
CtrlStmt15 :: Configuration.Groups.RemoveGrp(lpadmin);

CtrlStmt 5,6,7 do not have inverses in these configuration scripts and this would?
be detected by a DSL.

Paper for Review page 41 of 42



January 4, 2010

References

[1] Paulo Barata, Paulo Trezentos, Inês Lynce, and Davide Di Ruscio. Survey
of the state of the art technologies for handling versioning, rollback and state
snapshot in complex systems, September 2008. http://www.mancoosi.
org/reports/d3.1.pdf.

[2] Scott O. Bradner. Key words for use in rfcs to indicate requirement levels.
Internet RFC 2119, March 1997.

[3] Roberto Di Cosmo, Stefano Zacchiroli, and Paulo Trezentos. Package up-
grades in foss distributions: details and challenges. In HotSWUp ’08:
Proceedings of the 1st International Workshop on Hot Topics in Software
Upgrades, pages 1–5, New York, NY, USA, 2008. ACM.

[4] Davide Di Ruscio, Patrizio Pelliccione, Alfonso Pierantonio, and Stefano Za-
cchiroli. Metamodel for describing system structure and state, January 2009.
http://www.mancoosi.org/reports/d2.1.pdf.

[5] Davide Di Ruscio, John Thomson, Patrizio Pelliccione, and Alfonso Pieranto-
nio. First version of the dsl based on the model developed in wp2, November
2009. http://www.mancoosi.org/reports/d3.2.pdf.

[6] Various. Commutativity, December 2009. http://en.wikipedia.org/
wiki/Commutativity.

[7] Various. Determinism, December 2009. http://en.wikipedia.org/
wiki/Deterministic.

[8] Various. One way function, December 2009. http://en.wikipedia.
org/wiki/One-way_function.

[9] Various. Trap-door function, December 2009. http://en.wikipedia.
org/wiki/Trapdoor_function.

Paper for Review page 42 of 42

http://www.mancoosi.org/reports/d3.1.pdf
http://www.mancoosi.org/reports/d3.1.pdf
http://www.mancoosi.org/reports/d2.1.pdf
http://www.mancoosi.org/reports/d3.2.pdf
http://en.wikipedia.org/wiki/Commutativity
http://en.wikipedia.org/wiki/Commutativity
http://en.wikipedia.org/wiki/Deterministic
http://en.wikipedia.org/wiki/Deterministic
http://en.wikipedia.org/wiki/One-way_function
http://en.wikipedia.org/wiki/One-way_function
http://en.wikipedia.org/wiki/Trapdoor_function
http://en.wikipedia.org/wiki/Trapdoor_function

	Introduction
	Commutative:
	Deterministic:
	Irreversible functions:
	Trap-door functions:

	State of the art
	Nexenta OS
	Conary
	Nix OS
	Apt-RPM
	Pacman-ARM
	Augeas - a configuration API
	Btrfs filesystem
	Zumastor

	Domain Specific Language Intro/Re-cap
	Requirements for a roll-back component
	System Architecture Definition
	Roll-back transaction definition
	Example of package roll-back
	Implementation
	Overview
	Timeline
	Logical Blocks
	Actual Implementation


