
Upgrade description formats:
generalities and DUDF submission format

Ralf Treinen
Stefano Zacchiroli

Technical Report 001

Version 2.0

24 November 2009

November 24, 2009

Abstract

The solver competition which will be organized by Mancoosi relies on the standardized format
for describing upgradeability problems. This document describes the layout of the infrastruc-
ture for building a data base of upgradeability problems, and in particular the DUDF format
(Distribution Upgradeability Description Format) which is intended for the submission of up-
grade problem instances from user machines to a (distribution-specific) database of upgrade
problems.

Status of this Document

The contents of this document in version 2.0 is based on the chapters of Deliverable D5.1 [TZ08]
on DUDF, with some minor modifications (see Chapter C). Future modifications of DUDF shall
be documented as new versions of the current document.

Conformance

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,
“SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to
be interpreted as described in RFC 2119 [Bra97].

This document is copyright c© Ralf Treinen 2007, 2008, 2009
c© Stefano Zacchiroli 2007, 2008, 2009

This document is licenced under a Creative Commons license Attribution-Noncommercial-No
Derivative Works 2.0 France (license terms are available at http://creativecommons.org/
licenses/by-nc-nd/2.0/fr/deed.en_US).

Report 001 Version 2.0 page 1 of ??

http://creativecommons.org/licenses/by-nc-nd/2.0/fr/deed.en_US
http://creativecommons.org/licenses/by-nc-nd/2.0/fr/deed.en_US

November 24, 2009

Contents

1 Introduction 3

1.1 Two different upgrade description formats . 3

1.2 Problem data flow and submission architecture 5

1.3 Glossary . 6

2 Distribution Upgradeability Description Formats 8

2.1 Upgrade problems . 8

2.2 Content . 9

2.3 Extensional vs intensional sections . 12

2.4 Serialization . 13

3 Conclusion 15

A DUDF skeleton serialization example 16

B RELAX NG schema for DUDF 18

C Changes from previous versions 20

C.1 From deliverable D5.1 to version 2.0 . 20

Report 001 Version 2.0 page 2 of ??

November 24, 2009

Chapter 1

Introduction

The aim of work package 5 (WP5) of the Mancoosi project is to organize a solver competition
to attract the attention of researchers and practitioners to the upgrade problem1 as it is faced
by users of FOSS distributions [DC08]. The competition will be run by executing solvers
submitted by the participants on upgrade problem descriptions (or “problems”, for short) stored
in upgradeability problem data bases (UPDBs). A substantial part of the problems forming
UPDBs, if not all of them, will be real problems harvested on user machines; users will be given
tools to submit on a voluntary basis problems to help Mancoosi assemble UPDBs.

In such a scenario, problem descriptions need to be saved on filesystems (for long term storage)
and transmitted over the network (to let them flow from user machines to UPDBs). This
document gives the specifications of document formats used to represent problem instances in
the various stages of their lives.

1.1 Two different upgrade description formats

Upgrade description formats serve at least two different purposes:

Problem submission problems will be created on distant user machines and need to flow to
more centralized UPDBs. Both the user machine itself and the network connection may
have only limited resources.

Problem description problems will be stored by Mancoosi to form a corpus of problems on
which the solvers taking part in the competition will be run.

In the Mancoosi Description of Work we announced the definition of a so-called Common Up-
gradeability Description Format, abbreviated CUDF, that would serve these two purposes. It
turned out that having one single format for both purposes is not practical since both pur-
poses come with contradicting constraints: problem submissions should take as few resources
as possible on a user’s machine, and they may contain references that are meaningful only in

1Throughout this specification, the word “problem”—as in “upgrade problem”—is used in the sense of “prob-
lem solving”. Hence, an “upgrade problem” is just an upgrade scenario in which a solution to an upgrade request
posed by a user needs to be found. In particular, an upgrade problem is not necessarily troublesome for users:
the whole upgrade process can go well; still, in its evolution, it has posed an upgrade problem (in the sense of
this specification), that a software entity has solved, most likely finding a suitable upgrade path.

Report 001 Version 2.0 page 3 of ??

November 24, 2009

the context of a particular distribution. On the other hand, problem descriptions as used for
the competition are not subject to strong resource limitations but must be self-contained and
must have a formally defined semantics that is independent from any particular distribution.

As a consequence, we decided to define two different formats, one for each of the main purpose:

DUDF (Distribution Upgradeability Description Format) This is the format used to
submit a single problem from user machines to a UPDB. DUDF is specialized for the
purpose of problem submission.

DUDF instances (or “DUDFs” for short) need to be as compact as possible in order to
avoid inhibiting submissions due to excessive bandwidth requirements. To this end, the
DUDF specification exploits distribution-specific information, such as the knowledge of
where distribution-wide metadata are stored and where metadata about old packages can
be retrieved from mirrors that may or may not be specific to Mancoosi.

Since a DUDF is by its very nature distribution dependent there cannot be a a single com-
plete DUDF specification. We rather present in Chapter 2 a generic specification of DUDF
documents, the DUDF skeleton, which has to be instantiated to a full specification by all
participating distributions. Documents to be published separately, one per distribution,
will describe how the general scheme is instantiated by the various distributions.

All in all we have a family of DUDF specification instances: Debian-DUDF, RPM-DUDF,
etc.; one for each possible way of filling the holes of the generic DUDF specification. How
many instances should be part of the DUDF family? We recommend to have one instance
for each distribution taking part in the competition. While different distributions may
share a common packaging format, they may also allow for different means of compact
representations, for example due to the different availability of mirrors with historical
information. Furthermore, there are sometimes subtle semantic differences from distri-
bution to distribution, hidden behind a shared syntax. To discriminate among different
distributions, an appropriate distribution information item is provided. Of course, noth-
ing prohibits different distributions to agree upon the same DUDF specification instance
in case they find that this is feasible.

CUDF (Common Upgradeability Description Format) This is the common format used
to abstract over distribution-specific details, so that solvers can be fed with upgradeabil-
ity problems coming from any supported distribution. The CUDF format is specifically
designed for the purpose of self-contained problem description.

The conversion from a given DUDF to CUDF expands the compact representations that
have been performed for the purpose of submission, exploiting distribution-specific knowl-
edge. At the end of such a conversion, a problem described in CUDF is self-contained,
only relying on the defined semantics of an upgradeability problem, which includes the
starting state, the user query, and probably non-functional quality criteria.

Structure of this document This document is structured as follows: Chapter 1 gives intro-
ductory information about the various kinds of documents involved in the organization of the
competition and about the problem submission infrastructure. Chapter 2 contains the actual
specification of the DUDF skeleton; this chapter is normative and defines what it takes for a
document to be valid with respect to its specification. Appendixes to this document contain
various non-normative information, which may be helpful to implementors of DUDF. Docu-
ments to be made available separately will describe how each distribution is instantiating the
DUDF skeleton.

Report 001 Version 2.0 page 4 of ??

November 24, 2009

Figure 1.1: Data flow of UPDB submissions, from users to the corpus of problems for the
competition

1.2 Problem data flow and submission architecture

Figure 1.1 gives an overview of the data flow of upgrade problems from user machines to the
actual solver competition; several stages of transmission and filtering, as well as several different
formats are involved.

Problems originate on user machines and are serialized in DUDF format (i.e. distribution-
specific DUDF instances) using some client software. DUDF documents created that way will
then be submitted to distribution-specific repositories using some other client software. All
involved client software will be provided by distributions, such software will constitute imple-
mentations of the DUDF specification.

Distributions need to set up their own repositories to collect DUDF submissions coming from
their users. Submissions that do not match the minimal quality requirements of DUDF will be
rejected during a validation phase; this mainly boils down to rejecting problems that are not
reproducible, see Chapter 2 for more details. All submissions that survive the validation phase
are stored by the distribution editor in a distribution-specific UPDB.

Periodically, problems collected by distributions will be injected into a common (i.e. distribution-
independent) UPDB, hosted on an infrastructure provided by Mancoosi as a project resource.
The injection happens in CUDF format since distribution-specific details are not useful for the
purpose of running the competition. Distributions are in charge of performing the conversion
from DUDF to CUDF as they are the authoritative entities for the semantics of their proper
DUDF instance and for resolving distribution-specific references. When exactly the conversion
is performed is not relevant as long as CUDFs are ready to be injected when the periodic
injections take place.

Report 001 Version 2.0 page 5 of ??

November 24, 2009

Among all the problems collected in the common UPDB, a subset of “interesting” problems
will then be selected to form a corpus of problems on which the competition will be run. The
act of selecting problems will not change the document format: the resulting corpus will still
be a set of CUDF documents, chosen as a subset of the common UPDB.

1.3 Glossary

This section contains a glossary of essential terms which are used throughout this specification.

Distribution A collection of software packages that are designed to be installed on a common
software platform. Distributions may come in different flavors, and the set of available
software packages generally varies over time. Examples of distributions are Mandriva,
Caixa Mágica, Pixart, Fedora or Debian, which all provide software packages for the the
GNU/Linux platform (and probably others). The term distribution is used to denote both
a collection of software packages, such as the lenny distribution of Debian, and the entity
that produces and publishes such a collection, such as Mandriva, Caixa Mágica or Pixart.
The latter are sometimes also referred to as distribution editors.

Still, the notion of distribution is not necessarily bound to FOSS package distributions,
other platforms (e.g. Eclipse plugins, LaTeX packages, Perl packages, etc.) have similar
distributions, similar problems, and can have their upgrade problems encoded in CUDF.

Installer The software tool actually responsible for physically installing (or de-installing) a
package on a machine. This task particularly consists in unpacking files that come as
an archive bundle, installing them on the user machine in persistent memory, probably
executing configuration programs specific to that package, and updating the global sys-
tem information on the user machine. Downloading packages and resolving dependencies
between packages are in general beyond the scope of the installer. For instance, the in-
staller of the Debian distribution is dpkg, while the installer used in the RPM family of
distributions is rpm.

Meta-installer The software tool responsible for organizing a user request to modify the col-
lection of installed packages. This particularly involves determining the secondary actions
that are necessary to satisfy a user request to install or de-install packages. To this
end, a package system allows to declare relations between packages such as dependencies
or conflicts. The meta-installer is also responsible for downloading necessary packages.
Examples of meta-installers are apt-get, aptitude and URPMi.

Package A bundle of software artifacts that may be installed on a machine as an atomic unit,
i.e. packages define the granularity at which software can be added to or removed from
machines. A package typically contains an archive of files to be installed on a machine,
programs to be executed at various stages of the installation or de-installation of a package,
and metadata.

Package status A set of metadata maintained by the installer about packages currently in-
stalled on a machine. The package status is used by the installer as a model of the software
installed on a machine and kept up to date upon package installation and removal. The
kind of metadata stored for each package varies from distribution to distribution, but
typically comprises package identifiers (usually name and version), human-oriented infor-
mation such as a description of what the package contains and a formal declaration of

Report 001 Version 2.0 page 6 of ??

November 24, 2009

the inter-package relationships of a package. Inter-package relationships can usually state
package requirements (which packages are needed for a given one to work properly) and
conflicts (which packages cannot coexist with a given one).

Package universe The collection of packages known to the meta-installer in addition to those
already known to the installer, which are stored in the package status. Packages belonging
to the package universe are not necessarily available on the local machine—while those
belonging to the package status usually are—but are accessible in some way, for example
via download from remote package repositories.

Upgrade request A request to alter the package status issued by a user (typically the system
administrator) using a meta-installer. The expressiveness of the request language varies
with the meta-installer, but typically enables requiring the installation of packages which
were not previously installed, the removal of currently installed packages, and the upgrade
to newer version of packages currently installed.

Upgrade problem The situation in which a user submits an upgrade request, or any abstract
representation of such a situation. The representation includes all the information needed
to recreate the situation elsewhere, at the very minimum they are: package status, package
universe and upgrade request. Note that, in spite of its name, an upgrade problem is not
necessarily related to a request to “upgrade” one or more packages to newer versions, but
may also be a request to install or remove packages. Both DUDF and CUDF documents
are meant to encode upgrade problems for different purposes.

Report 001 Version 2.0 page 7 of ??

November 24, 2009

Chapter 2

Distribution Upgradeability
Description Formats

This chapter contains the specification of the Distribution Upgradeability Description Formats
(DUDFs). Their purpose is to encode upgrade problems as faced by users, so that they can be
submitted as candidate problems for the solver competition organized by the Mancoosi project.

Additionally, DUDF can also be used as a format to store information about the execution
of a meta-installer on a user machine. A possible use case for this is to trace information for
the purpose of composing problem reports against meta-installers. This is an added benefit for
distribution editors which is, however, beyond the scope of the Mancoosi project itself.

Technically, the DUDF specification is not complete, in the sense that some parts of DUDF
documents are under-specified and called “holes”. How to fill in those holes is a distribution-
specific decision to be taken by each distribution implementing DUDF. The overall structure of
DUDF documents is defined by the current document and is called the DUDF skeleton.

2.1 Upgrade problems

Upgrade problems manifest themselves at each attempt to change the package status of a given
machine using a meta-installer. One of the aims of WP5 for the solver competition is to
collect upgrade problem descriptions which faithfully describe the upgrade problems faced by
users when invoking a meta-installer on their machine. Informally, “faithfully” means that the
descriptions should contain all information needed to reproduce the problem reported by the
user, and possibly to find better solutions if they exist.

As discussed in Chapter 1, problem descriptions will be encoded as DUDFs and submitted to
distribution-specific repositories. Two kinds of submissions are supported by DUDF:

(a) Sole problem descriptions.

(b) Pairs 〈problem description, problem outcome〉 where the outcome is a representation of
the actual result of the originating meta-installer which has been used to generate the
problem.

Pairs problem/outcome are the kind of submissions to be used for the competition. Their
validity as submissions can be checked by attempting to reproduce them upon receipt (see

Report 001 Version 2.0 page 8 of ??

November 24, 2009

below), and the outcome of competing solvers can be compared not only among each other, but
also with respect to the originating meta-installers in order to check whether they are doing
better or worse than the contenders.

Sole problem descriptions cannot be checked for reproducibility. As such they are not interesting
for the competition since they can not be “trusted”. Still they can be useful for purposes other
than the competition. In particular they can be used—as well as pairs problem/outcome—
by users to submit bug reports related to installers, meta-installers, and also incoherences in
package repositories [EDO06]. This intended use is the main reason for supporting them in this
specification.

2.2 Content

A DUDF document consists of a set of information items. Each item describes a part of the
upgrade problem faced by the user. In this section we list the information items (or sections)
that constitute the different kinds of DUDF submissions.

The actual format and content of each information item can either be fully described by this
specification, or be specific to some of its instances (and hence not described here). In the
latter case, we distinguish among parts which are specific to the installer and parts which are
specific to the meta-installer. Installer-specific parts have content and format determined by
the installer (e.g. rpm, dpkg, etc.) in use; similarly, parts specific to the meta-installer are
determined by the meta-installer (e.g. apt-get, URPMi, etc.) in use.

Unless otherwise stated, all information items are required parts of DUDF documents.

The submission of a sole upgrade problem description consists of the following information items:

Package status (i.e. installer status) the status of packages currently installed on the user
machine.

This item is installer-specific, but can also contain data specific to the meta-installer in
case the meta-installers save some extended information about local packages. A concrete
example of such extended information is the manual/automatic flag on package installation
used by aptitude on Debian to implement “garbage collection” of removed packages.

Package universe the set of all packages which are known to the meta-installer, and are hence
available for installation. This item is specific to the meta-installer.

The package universe is composed of one or more package lists; a number of well-known
formats do exist to encode package lists. The package universe can generally be composed
of several package lists, each encoded in a different format. Each package list must be
annotated with a unique identifier describing which format has been used to encode the
package list. A separate document will be published to list the set of well-known package
list formats, as well as their unique identifiers.

Requested action the modification to the local package status requested by the user (e.g.
“install X”, “upgrade Y”, “remove Z”). This item is specific to the meta-installer.

Desiderata user preferences to discriminate among possible alternative solutions (e.g. “mini-
mize download side”, or “do not install experimental packages”). The exact list of possible
user preferences depends on the distribution, and on the capabilities of the meta-installer
(for instance, for Debian’s apt these may be defined in the file /etc/apt/preferences).

Report 001 Version 2.0 page 9 of ??

November 24, 2009

This information item is optional.

Tool identifiers two pairs 〈name, version〉 uniquely identifying the installer and meta-installer
which are in use, in the context of a given distribution. One pair identifies the installer
used, the other the meta-installer used.

Distribution identifier a string uniquely identifying the distribution run by the user (e.g.
debian, mandriva, pixart, . . .), among all the implementations of DUDF.

As far as GNU/Linux distributions are concerned, a hint about what to use as a distribu-
tion identifier comes from the file /etc/issue. Its content should be used as distribution
identifier where possible.

Timestamp a timestamp (containing the same information encoded by dates in RFC822 [Cro82]
format, i.e. the same as used in emails) to record when the upgrade problem has been
generated.

Problem identifier (i.e. uid) a string used to identify this problem submission univocally,
among other submissions sent to the same distribution.

The intended usage of this information item is to let CUDF documents cross-reference
the DUDF documents which were used to generate them.

In addition to what is stated above, the submission of a pair problem/outcome also contains
the following information items:

Outcome either the new local package status as seen by the used meta-installers (in case of
success) or an error message (in case of failure, i.e. the meta-installer was not able to
fulfill the user request). The error message format is specific of the used meta-installer, it
can range from a free-text error message to a structured error description (e.g. to point
out that the requested action cannot be satisfied since a given package is not available in
the package universe).

It is worth noting that Mancoosi is not interested in all kinds of errors, and that not all errors
reported to the end user mean a failure that is interesting for the competition. Mancoosi is in-
terested only in errors stemming from the resolution of package relations, which is the case when
the meta-installer is not able to solve the various constraints expressed in the summary infor-
mation about the packages. Mancoosi Workpackage 5 is not interested in runtime errors such as
installation failures due to disks running out of space or execution errors of maintainer scripts.
These errors, however, may still be relevant for submitting problem reports to a distribution
vendor using the DUDF format.

Note that tool identifiers are part of the problem description since the requested action depends
on the tools the user is using. Since available actions, as well as their semantics, can change
from version to version, tool versions are also part of the problem description.

The distribution identifier is needed to avoid bloating the number of specified DUDFs too much.
We observe that similar distributions (e.g. Debian and Ubuntu) can submit upgrade problems
using the very same submission format (say Debian-DUDF). However, even though extensional
data (see Section 2.3) are independent of which of the similar distributions were used, intensional
data are not. Indeed, there is no guarantee that package p at version v is the same on Debian
and Ubuntu; similarly there is no guarantee that an intensional package universe reference
originated on Debian is resolvable using Ubuntu historical mirrors and vice-versa. Using the

Report 001 Version 2.0 page 10 of ??

November 24, 2009

- dudf:

- version: 2.0
- timestamp: timestamp
- uid: unique problem identifier
- distribution: distribution identifier
- installer:

- name: installer name
- version: installer version

- meta-installer:
- name: meta-installer name
- version: meta-installer version

- problem:
- package-status:

- installer: installer package status

- meta-installer: meta-installer package status
- package-universe:

- package-list1 (format: format id.; filename: path; url: url): package list
- . . .
- package-listn (format: format identifier ; filename: path): package list

- action: requested meta-installer action

- desiderata: meta-installer desiderata
- outcome (result: one of ”success”, ”failure”):

- error: error description (only if result is “failure”)
- package-status: (only if result is “success”)

- installer: new installer package status

- meta-installer: new meta-installer package status

- comment: additional, user-provided information (optional)

Figure 2.1: The DUDF skeleton: information items and holes corresponding to problem/out-
come submissions.

distribution identifier we can reuse the same DUDF instance for a set of similar distributions
since the distribution identifier allows us to resolve the ambiguity.

A required property for each submission of problem/outcome pairs is reproducibility : an unre-
producible submission is useless and a waste of user bandwidth. When submissions of prob-
lem/outcome pairs are received they have to be validated for reproducibility. This can be
achieved by keeping (possibly stripped down) copies of commonly used tools on the server side
and by running them on the received problem description to check that the outcome matches
the reported one. Given that we are not taking into account runtime upgrade errors, an er-
ror should manifest itself on the server side if and only if it has manifested itself on the user
machine.

Together, the information items supported for submissions of problem/outcome pairs denote
an outline called DUDF skeleton. In the skeleton, the following information items are holes:

Report 001 Version 2.0 page 11 of ??

November 24, 2009

(installer and meta-installer) package status, package universe, requested action, desiderata,
outcome, and an optional use comment. Fully determined DUDF instances are made of this
specification, together with distribution-specific documents describing how those holes are filled.
A sketch of the DUDF skeleton is reported in Figure 2.1.

Holes are denoted by framed text. Additional information (annotations or attributes) of in-
formation items are reported in parentheses. The names used for information items are for
presentational purposes, yet actually normative (see Section 2.4).

Note that in the skeleton, the package universe is sketched in its full generality: it is made of
several package lists, each of which is annotated with its package list format. It is possible,
though not granted, that to each package list corresponds a single file on the filesystem; in
that case it is possible to annotate package lists with a filename containing the absolute paths
corresponding to them. Also, it is possible that there exists an URL identifying the source from
which the package list originated (e.g., where it was downloaded from on the web); in that case,
it is possible to annotate package lists with a url representing the list source.

2.3 Extensional vs intensional sections

We have to minimize space consumption (in terms of bytes) in order not to discourage sub-
missions by wasting the user’s resources. In general, all the information items required for
submissions are locally available on the user machine; in principle they are all to be sent as
part of a submission. However, while some of the information items are only available on the
user machine (e.g. current local package status and requested action) some other items can be
grouped into parts stored elsewhere (e.g. package lists forming the current package universe)
which have possibly been replicated on the user machine in a local cache.

We distinguish two alternative ways of sending submission information items (or sections):
a section can either be sent intentionally or extensionally. An extensional section is a self-
contained encoding of some information available on the user machine, for example a dump of
the current local package database, or a dump of the current package universe.

An intentional section is a non self-contained encoding of some information available on the
user machine, consisting of a reference pointing to some external resource. De-referencing the
pointer, i.e. substituting the contents of the external resource for it, leads to the corresponding
extensional section. For instance, several distributions have package repositories available on
the Internet which are regularly updated. The current package universe for a given user machine
may correspond to package indexes downloaded from one or several such repositories. A set of
checksums of such indexes is an example of an intensional package universe section. Provided
that a historical mirror of the distribution repositories is available somewhere, a corresponding
extensional package universe can be built by looking up and then expanding the checksums in
the historical mirror.

The use of intensional sections instead of extensional ones is the most straightforward space
optimization we recommend to implement in collecting problem submissions. Here are some
use cases for similar optimization:

• Most likely intentionality has to be used for the current package universe, though it will
require setting up historical mirrors (the package metadata is sufficient for that, it will
not be necessary to mirror the packages themselves).

Report 001 Version 2.0 page 12 of ??

November 24, 2009

• Even though the local package status appears to be a section that should forcibly be sent
extensionally (as the information are not stored elsewhere), some partial intension can be
designed for it.

For example, assuming that the pair 〈pkg name, pkg version〉 is a key univocally deter-
mining a given package (version uniqueness assumption1), one can imagine sending as
the local package status a set of entries 〈〈pkg name, pkg version〉, pkg status〉, letting
the server expand further package metadata (e.g. dependency information) on reception
of the submission. In those rare cases where the version uniqueness assumption is not
verified, the check for reproducibility is sufficient to spot non-reproducible submissions
and discard them.

• The upgrade problem outcome has to be sent extensionally as to check for its reproducibil-
ity upon reception. Of course, the same optimizations as proposed in the previous point
are applicable to outcomes in case of success.

Any section of a submission can be sent intentionally or extensionally, independently from the
other sections; different choices can be applied to different submissions. In fact, the choices
of how to submit the various sections are driven by the need of fulfilling the reproducibility
requirement. For instance, if a given package universe is composed like the union of several
remote package repositories, we will need to know all the involved packages, potentially coming
from any repository in order to reproduce a submission. While a suitable intention might be
available for some repositories, this may not be the case for some others (e.g. we might be
lacking the needed historical mirror). In such a situation the proper solution is to send some
repository reference intentionally, and the whole package listing of others extensionally.

It is up to the DUDF submission tool to know which parts of the package universe can be sent
intentionally and which cannot.

2.4 Serialization

In this section we describe how to serialize any given instance of DUDF to a stream of bytes
so that it can be serialized on disk (e.g. to create a local archive of problem descriptions to be
submitted as a single batch) or over the network (for the actual submission to a distribution-
specific problem repository).

The serialization of DUDF is achieved by describing a mapping from the DUDF skeleton to an
XML [BPSM+06] tree. The actual serialization to bytes can then be done following the usual
XML serialization rules.

To obtain the XML tree of a DUDF problem/outcome submission, one only needs to start from
the corresponding outline (see Figure 2.1) and do the following:

1. Create a root element node called dudf, put it in the (default) namespace identified by
http://www.mancoosi.org/2008/cudf/dudf.

2. Add an attribute dudf:version2 to the root node, the value of which value is the value
of the subsection version of the dudf section in the DUDF outline.

1This is assumption is not necessarily well-founded: users can rebuild packages locally, obtaining different
dependency information, while retaining 〈pkg name, pkg version〉

2The namespace prefix dudf: is bound to http://www.mancoosi.org/2008/cudf/dudf

Report 001 Version 2.0 page 13 of ??

November 24, 2009

3. Starting from the DUDF outline root (and excluding the already processed version sec-
tion), traverse the outline tree, adding child elements the general identifier of which is
the section name used in the DUDF outline and the content of which is the result of
recursively processing its content in the DUDF outline.

4. For annotated outline elements (e.g. package lists composing the package universe, which
are annotated with format identifiers), map annotations to XML attributes of the relevant
XML elements (note that the attributes should be explicitly prefixed with dudf:, as in
XML attributes do not inherit the default namespace).

The same procedure is applied to obtain the XML tree of a DUDF sole problem submission,
except that the outcome section (which should be missing anyhow in the starting DUDF outline)
has to be skipped.

A non-normative example of serialization from the DUDF skeleton of Figure 2.1 to XML can
be found in Appendix A, Figure A.1.

Report 001 Version 2.0 page 14 of ??

November 24, 2009

Chapter 3

Conclusion

The Mancoosi project will run a solver competition [DC08], in which each participant will try
to find the best possible solutions to upgrade problems as those faced by users of FOSS software
distributions. This document outlines the infrastructure for submitting problem instances from
user machines to a distribution-independent repository.

The first class of document formats that are part of this infrastructure is DUDF (Distribution
Upgrade Description Format), described in Chapter 2. Specific instances of DUDF will be
used as document formats to encode real life problems encountered by users of FOSS software
distributions. DUDF is meant to be a compact representation of upgrade problems, suitable
to be transferred over the network. In addition to the purposes of the competition, DUDF
documents might be useful to store and transfer the state of package managers, for example for
reporting bugs concerning package managment tools.

Distributions that are interested in providing problems on which the competition will possibly
be run should have an interest in implementing DUDF for their own distributions. The current
document only describes the outline (or skeleton) of DUDF. Implementing DUDF actually
means standardizing a specific instance of it, by describing in a separate document how the holes
left open by this specification have to be filled in the context of a specific software distribution.
Equipped with this specification and the specification of a DUDF instance, implementors will
be able to produce and interpret DUDF corresponding to upgrade problems faced on final user
machines.

The second important document format is CUDF (Common Upgrade Description Format). Its
purpose is to provide a model in which upgrade problems can be encoded, by abstracting over
distribution-specific details. In the context of the competition, the interest of CUDF is to
encode problems on which the actual competition will be run. This way, participating solvers
will not need to implement distribution-specific semantics, and will only have to reason about a
self-constained problem. The CUDF format has first been described in Deliverable D5.1 [TZ08];
an up-to-date description can be found in [TZ09].

Report 001 Version 2.0 page 15 of ??

November 24, 2009

Appendix A

DUDF skeleton serialization example

This non-normative section contains an example of DUDF serialization to XML. The example is
given in Figure A.1, which is the serialization of the DUDF skeleton given in Figure A.1. In the
example, XML comments have been put in place of outline holes and other missing information.

Report 001 Version 2.0 page 16 of ??

November 24, 2009

<dudf version="1.0"
xmlns="http://www.mancoosi.org /2008/ cudf/dudf"
xmlns:dudf="http: //www.mancoosi.org /2008/ cudf/dudf">

<timestamp ><!-- timestamp in RFC822 format --></timestamp >
<uid><!-- unique problem identifier --></uid>
<distribution ><!-- distribution identifier --></distribution >
<installer >

<name><!-- installer name --></name>
<version ><!-- installer version --></version >

</installer >
<meta -installer >

<name><!-- meta -installer name --></name>
<version ><!-- meta -installer version --></version >

</meta -installer >
<problem >

<package -status >
<installer ><!-- installer status --></installer >
<meta -installer >

<!-- meta -installer status -->
</meta -installer >

</package -status >
<package -universe >

<package -list
dudf:format =<!-- package list format identifier -->
dudf:filename=<!-- package list absolute path --> >

<!-- package list -->
</package -list>
<!-- ... other package lists ... -->
<package -list

dudf:format =<!-- package list format identifier -->
dudf:filename=<!-- package list absolute path --> >

<!-- package list -->
</package -list>

</package -universe >
<action ><!-- requested meta -installer action --></action >
<desiderata ><!-- meta -installer desiderata --></desiderata >

</problem >
<outcome dudf:result =<!-- one of: "success", "failure"--> >

<error><!-- error description (result: "failure")--></error>
<package -status > <!-- result: "success" -->

<installer ><!-- new installer status --></installer >
<meta -installer >

<!-- new meta -installer status -->
</meta -installer >

</package -status >
</outcome >
<comment >

<!-- additional , user -provided information -->
</comment >

</dudf>

Figure A.1: XML serialization skeleton of a DUDF problem/outcome submission

Report 001 Version 2.0 page 17 of ??

November 24, 2009

Appendix B

RELAX NG schema for DUDF

This non-normative section contains a RELAX NG [CM01] schema which can be used to check
whether a given XML document represents a valid DUDF skeleton serialization. The schema
only ensures that the skeleton part of the XML document is valid with respect to this specifi-
cation, since the details about how holes are filled are distribution-specific.

Additional comments in the schema denote “side conditions”—e.g. the fact that dates should be
in RFC882 format—which are not expressed by the schema itself, and which should be checked
to ensure proper implementation of DUDF.

The RELAX NG schema is reported in Figure B.1.

Report 001 Version 2.0 page 18 of ??

November 24, 2009

default namespace dudf = "http://www.mancoosi.org /2008/ cudf/dudf"

any = (element * { any* } | attribute * { text }* | text)

tool_id = (
element name { text }, # must be a package name
element version { text } # must be a version number

)

package_status =
element package -status {

element installer { any* }, # installer -specific
element meta -installer { any* }? # meta -installer -specific

}

start = element dudf {
attribute dudf:version { "2.0" },
element timestamp { text }, # must be a date in RFC822 format
element uid { text },
element distribution { text },
element installer { tool_id },
element meta -installer { tool_id },
element problem {

package_status ,
element package -universe {

element package -list {
attribute dudf:format { text }?,
attribute dudf:filename { text }?, # must be an

absolute path
attribute dudf:url { xsd:anyURI }?,
any*

}+
},
element action { text },
element desiderata { text }?

},
(element outcome {

attribute dudf:result { "success" },
package_status

}
| element outcome {

attribute dudf:result { "failure" },
element error { text }

}),
element comment { any* }?

}

Figure B.1: RELAX NG schema for the DUDF skeleton

Report 001 Version 2.0 page 19 of ??

November 24, 2009

Appendix C

Changes from previous versions

C.1 From deliverable D5.1 to version 2.0

• DUDF skeleton, Chapter 2:

– add support for an optional url attribute on package lists, pointing to the package
list origin

– add support for additional, user-provided information, to be shipped via the new
comment element

• Appendix B: fix the RELAX NG schema reported in so that the anyURI data type used
on the url attribute is qualified.

Report 001 Version 2.0 page 20 of ??

November 24, 2009

Bibliography

[BPSM+06] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and François Yergeau.
Extensible Markup Language (XML) 1.0 (Fourth Edition). http://www.w3.org/
TR/REC-xml, August 2006. W3C Recommendation.

[Bra97] S. Bradner. Key words for use in RFCs to indicate requirement levels. RFC 2119
(Best Current Practice), March 1997.

[CM01] James Clark and Makoto Murata. RELAX NG specification. OASIS specification,
2001.

[Cro82] D. Crocker. Standard for the format of ARPA Internet text messages. RFC 822
(Standard), August 1982.

[DC08] Roberto Di Cosmo and Sophie Cousin. Project presentation. Deliverable D1.1, The
Mancoosi project, January 2008. http://www.mancoosi.org/deliverables/d1.
1.pdf.

[EDO06] EDOS Work Package 2 team. Report on formal management of software depen-
dencies. Deliverable WP2-D2.2, The EDOS project, March 2006.

[TZ08] Ralf Treinen and Stefano Zacchiroli. Description of the CUDF format. Deliver-
able D5.1, The Mancoosi project, November 2008. http://www.mancoosi.org/
deliverables/d5.1.pdf.

[TZ09] Ralf Treinen and Stefano Zacchiroli. Common upgradeability description format
(CUDF) 2.0. Technical Report TR003, The Mancoosi project, November 2009.
http://www.mancoosi.org/reports/tr3.pdf.

Report 001 Version 2.0 page 21 of ??

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.mancoosi.org/deliverables/d1.1.pdf
http://www.mancoosi.org/deliverables/d1.1.pdf
http://www.mancoosi.org/deliverables/d5.1.pdf
http://www.mancoosi.org/deliverables/d5.1.pdf
http://www.mancoosi.org/reports/tr3.pdf

	Introduction
	Two different upgrade description formats
	Problem data flow and submission architecture
	Glossary

	Distribution Upgradeability Description Formats
	Upgrade problems
	Content
	Extensional vs intensional sections
	Serialization

	Conclusion
	DUDF skeleton serialization example
	RELAX NG schema for DUDF
	Changes from previous versions
	From deliverable D5.1 to version 2.0

