
Converting Eclipse metadata into CUDF

Technical Report TR5.3

Nature : Technical Report

Due date : 01/09/2010

Delivery Date: 01/09/2010

Start date of project : 01/02/2008

Duration : 36 months

Distribution: Public

Web site: www.mancoosi.org Blog: blog.mancoosi.org

www.mancoosi.org
blog.mancoosi.org

November 23, 2010

Specific Targeted Research Project
Contract no.214898
Seventh Framework Programme: FP7-ICT-2007-1

List of the authors

Project acronym MANCOOSI
Project full title Managing the Complexity of the Open Source Infrastructure
Project number 214898
Author list Çagdas Bozman
Reviewers Pietro Abate

Roberto Di Cosmo
Workpackage number WP5
Deliverable number 3
Document type Technical Report
Version 1
Due date 01/09/2010
Actual submission date 01/09/2010
Distribution Public
Project coordinator Roberto Di Cosmo 〈roberto@dicosmo.org〉

Abstract

This technical report presents a description of the conversion of the metadata for Eclipse plugins
into the Common Upgradeability Description Format (CUDF) developed by the Mancoosi Project.
This work is the result of the author’s internship at the PPS laboratory, Paris 7, during the summer
2010.

Deliverable TR5.3 Version 1 page 1 of ??

mailto:roberto@dicosmo.org

November 23, 2010

Contents

1 Introduction 3

2 Eclipse p2 3

3 Eclipse plugins 4
3.1 Eclipse Terminology . 4
3.2 Metadata of an Installable Unit for Eclipse . 4

4 Common Upgradeability Description Format (CUDF) 5

5 P2 metadata translation 6
5.1 Basic metadata . 7

5.1.1 Identifier and version . 7
5.1.2 Capabilities / Provides . 7

5.2 Special metadata items . 8
5.2.1 Uniqueness flag . 8

5.3 P2 comparison function and CUDF version mapping 9
5.4 Extra properties . 10

6 Using the converter 10
6.1 Configuration file . 10
6.2 Filtering . 11
6.3 Translation algorithm . 11

7 Weather report 12

8 Conclusion 15

9 Acknowledgements 16

Deliverable TR5.3 Version 1 page 2 of ??

November 23, 2010

1 Introduction

Modern software systems are deployed in the form of a collection of components from which the
user may chose the software packages that they wish to install on their platform. This choice is
not permanent: additional components may need to be added, others may require updates, and
obsolete or unwanted components may get removed.

In the FOSSworld, the most common platforms are the so-colled GNU/Linux distributions,
whose software components are commonly called packages. It is the job of the distribution editor
to create and maintain a coherent distribution. Each distribution editor chooses their format of
metadata that describes some abstract properties of the packages in their distribution. The most
important pieces of information in the package metadata are the name and version number of a
package, its requirements, what it conflicts with, and the features it provides. In the GNU/Linux
world, two families of metadata formats are most commonly used: the RPM format which stems
from the Redhat distribution, and the Debian format defined by the distribution editor of the
same name. There are some important differences not only between these two families of metadata
formats, but also between different instances of these as defined by different distribution editors.
Even when syntactic similarities might lead to the impression that the formats are more or less
the same there still might be an essential difference in the semantics of the metadata.

One of the objectives of the Mancoosi project is to build a database of problem reports regarding
failed attempts to modify the installation status of the packages on the system. For this reason, a
metadata format, specifically designed to be independent of each distribution’s peculiarities, has
been designed: CUDF, the Common Upgradeability Description Format.

The goal of this work has been to validate the generality and expressive power of CUDF by
providing an encoding into CUDF of the metadata coming from an entirely different world, the
Eclipse platform with its components called plugins.

As we will see, it is possible to encode with some effort all the peculiarities of the Eclipse
metadata into CUDF: a converter implementing this encoding has been developed and made
available.

This allows, as a benefic side effect, to apply to the Eclipse world all the tools and algorithms
originally developed in the Mancoosi project for the GNU/Linux distributions, and in particular an
Eclipse plugin weather service tracking daily the status of Eclipse plugins has been made available.

The report is structured as follows: we briefly recall the structure of the Eclipse plugin metadata
in Section 3, and the main characteristics of the CUDF format in Section 4; then we detail our
translation in Section 5 and we give some examples of the information that can be presented using
the Eclipse plugins Weather Service in Section 7.

2 Eclipse p2

Eclipse is a multi-language software development environment comprising and integrated develop-
ment environment (IDE) and an extensible plugin system. It is written in the Java programming
language and it is today used both to write software development tools and rich client applications.
On important feature of eclipse from the early stage of development was its module platform to
integrate and share third party components easily. The success of eclipse quickly highlight the
necessity of a stable framework to handle plugins. During eclipse evolution, the system handling
the plugin mechanism has evolved from a custom component able to handle hundreds of different
plugins (Update Manager) to a full blow distribution platform able to handle thousand different
plugins with complex interdependencies (Eclipse p2). Eclipse is based on the OSGi is a specifi-
cation of a service platform where a bundle is a unit of modularization that is comprised of Java
classes and other resources which together can provide functions to end users. As of Eclipse 3.0,
the Runtime is fully based on the OSGi notion of bundle which in the rest of the document we will
use as a synonym of plugin. The development of the eclipse p2 provisioning platform addressed
three main problems.

The first challenge was to handle homogeneously the way OSGi and eclipse based application

Deliverable TR5.3 Version 1 page 3 of ??

November 23, 2010

were to interact with the environment The second was to provide a provisioning platform able
to cope with different scenarios such as official repositories and private repositories with different
release cycles The third challenge was to provide a simple solution to install and upgrade plugins
with Eclipse avoiding the so called “plugin hell”. The Eclipse p2 provisioning platform was released
with Eclispe Galileo.

Our work is based on the infrastructure of the p2 component of Eclipse. One of the main
objective of our work is to convert p2-metadata to cudf in order to facilitate its analysis with the
tools and algorithms developed for the Mancoosi problem. The software itself was developed as
an eclipse plugin directly using the p2 API.

3 Eclipse plugins

The components in the Eclipse platform are called plugins or installable units. Eclipse plugins are
structured bundles of code and/or data that contribute functionality to the system. Functionali-
ties can be contributed in the form of code libraries, platform extensions, or even documentation.
Plug-ins define extension points, well-defined places where other plug-ins can add additional func-
tionalities.

3.1 Eclipse Terminology

In order to make it easier for the reader, we provide a concise summary of the Eclipse terminology
used in this report.

Equinox p2 is a component of the Equinox project. It provides a new provisioning system
which replaces Update Manager mechanism to deal with Eclipse install, update and the
installation of new functionality. This new provisioning system was introduce in the Eclipse
3.4/Ganymede release.

Installable Units (IUs) are metadatas which describe things that can be installed, updated or
removed. As we say before, they are metadata, they are not things, hence they do not
contain the actual artifacts but have essential information about them (e.g. names, version,
etc). The bundle Jar is an artifact.

Artifacts are the actual content and may be composed of other artifacts. Bundle JARs and
executable files are examples of artifacts.

Repository is a store of metadata or artifacts.

Profile are the target of install/management operations. They are a list of IUs that go together
to make up a system.

3.2 Metadata of an Installable Unit for Eclipse

Eclipse installable units are composed of a list of key-values pairs. The concrete syntax used by
the P2 platform is xml. In the following we give an overview of the principal fields describing an
IU. An installable unit is completely determined by an identifier and a version. Other fields in the
OSGi terminology describes dependencies and conflicts

Capabilities : a capability is the way for an IU to exports to other IUs what it has to offer. A
capability is uniquely determined by a namespace, a name and a version.

Requirements : a requirement express dependencies among IUs. A requirement is represented
by a namespace, a name and a version range1.

1A version range is expressed by two number separated by a comma and surrounded by an angle bracket,
meaning value included, or a parenthesis, meaning value excluded.

Deliverable TR5.3 Version 1 page 4 of ??

November 23, 2010

Dependencies among IUs must be expressed through capabilities: a particular IU may list
in its requirements a set of (versioned) capabilities, that maybe fulfilled by installing one of
the IUs that provides them.

A requirement can be associated to a filter (See section ??) to enable or disable it depending
on the environment where the IU will be installed. It can also be optional meaning the
failing to satisfy the requirement does not prevent the IU from being installable.

Filter indicates in which contexts an IU can be installed. Typical filters are used to express
variants of the Eclipse platform (on which OS it runs, with which GUI, etc.)

Singleton : the singleton flag specifies if it is possible to install to plugins with the same identifier
at the same time.

Update : the identifier and a version range identifying predecessors to this IU. Making this
relationship explicit allows us to deal with the IUs being renamed or avoid undesirable
update paths.

In Figure 3.2 we provide a little example of the metadata for Eclipse installable units, showing
some of the typical combinations of values one find in an Eclipse plugin repository.

<uni t id=’ org . e c l i p s e . core . net . l i nux . x86 ’ version=’ 1 . 0 . 0 . I20080521 ’>
. . .

<prov ide s s i z e=’ 5 ’>
<provided namespace=’ org . e c l i p s e . equinox . p2 . iu ’

name=’ org . e c l i p s e . core . net . l i nux . x86 ’
version=’ 1 . 0 . 0 . I20080521 ’ />

. . .
</ prov ide s>
<r e q u i r e s s i z e=’ 1 ’>

<r equ i r ed namespace=’ o s g i . bundle ’
name=’ org . e c l i p s e . core . net ’
range=’ 1 . 1 . 0 ’ />

. . .
</ r e q u i r e s>
< f i l t e r>

(& ; (o s g i . os=l inux) (o s g i . arch=x86))
</ f i l t e r>

</ un i t>

Figure 1: content.xml

4 Common Upgradeability Description Format (CUDF)

The Common Upgradeability Description Format (CUDF for short) is a common format used to
abstract over distribution-specific details, so that solvers can be fed with upgradeability problems
coming from any supported distribution. This format is specially designed for the purpose of
self-contained problem description[4].

A Cudf file is composed by three elements: a preamble, a package universe and a request.
The preamble specify global information about the CUDF document that contains it. A CUDF

document must contain at most one preamble information.
A package universe contains a list of package stanza. Each stanza contains the description

several facets of a package such as the package name, version, dependencies, conflicts and features
declared by the package (provides).

Deliverable TR5.3 Version 1 page 5 of ??

November 23, 2010

package: car

version: 1

depends: engine , wheel , door , battery

installed: true

package: bicycle

version: 7

package: gasoline -engine

version: 1

depends: turbo

provides: engine

conf l i c t s : engine , gasoline -engine

installed: true

package: gasoline -engine

version: 2

provides: engine

conf l i c t s : engine , gasoline -engine

package: electric -engine

version: 1

depends: solar -collector | huge -battery

provides: engine

conf l i c t s : engine , electric -engine

[...]

request: ID1

i n s t a l l : bicycle , electric -engine = 1

upgrade: door , wheel > 2

The request stanza describes the user upgrade request that has been submitted to the package
manager. The request can be either to install, remove or upgrade a package.

5 P2 metadata translation

In this section, we show how to encode all the relevant P2 metadata into a CUDF document: in
many cases, the encoding is quite natural, but there are some cases that deserve special attention,
like filters, the uniqueness and the greedy flags.

We also use the output format of Debian. This format contains less information than the
document CUDF, it is more portable and compact. Indeed we will convert in this format only the
following information:

• the package name

• the integer version

• the dependencies

• the conflicts

• the provides

• the recommends

• the suggests

Deliverable TR5.3 Version 1 page 6 of ??

November 23, 2010

• the source version of p2 metadata

This conversion is preferred when using the tool distcheck. Indeed it allows us to obtain a
Yaml document with the integer versions transformed in the original p2 metadata’s versions,
which allows for better readability. Here is an example of a Yaml document obtained from the
Debian format:

...

-

package: org.eclipse.emf.rap.common.ui.source.feature.group

version: 2.6.0. v20100914 -1218

status: broken

reasons:

-

missing:

pkg:

package: org.eclipse.emf.rap.common.ui.source.feature.group

version: 2.6.0. v20100914 -1218

missingdep: A.PDE.Target.Platform_Cannot_be_installed_into_the_IDE (>= 0.0.0)

...

Since filters are used only to distinguish among different Eclipse deployment platforms, their
values actually correspond to the architecture specifications for GNU/Linux distributions, and
we decided to follow the same approach of distributions: create a separate document for each
architecture, holding the component metadata relevant for that architecture. As in GNU/Linux
distribution one has different repositories for i386, hppa, arm, etc., in our treatment of Eclipse
metadata we produce different documents for each combination of values found in the filters.

The enablement filter is of the form of an LDAP filter. Filters evaluation are done against a
set of valued variables called an “evaluation context”. Here are some examples of filters found in
Helios release:

(o s g i . os=l inux) (o s g i . os=win32) (o s g i . os=macosx)
(&(o s g i . arch=x86) (o s g i . os=win32) (o s g i . ws=win32))
(&(o s g i . os=macosx) (o s g i . ws=cocoa) (| (o s g i . arch=ppc) (o s g i . arch=x86)))
e t c . . .

5.1 Basic metadata

5.1.1 Identifier and version

The conversion of an identifier is quite easy. We just let the same identifier in the right property
which is package (the package name).

Like P2 the key name/version (not source version here) is unique.

5.1.2 Capabilities / Provides

A package can provides zero or more features. Installable Units advertise their features via eclipse
capabilities. Capabilities are converted to CUDF as a list of pairs (name, version), where name is
the encoding of the original namespace and identifier and version is the mapping of eclipse versions
to CUDF versions.

For example capabilities like:

namespace=capns name=capn v e r s i o n =0.0.0
namespace=capns name=capn v e r s i o n =1.0.0

is converted into:

prov ide s : capns capn = 1 , capns capn = 2

Deliverable TR5.3 Version 1 page 7 of ??

November 23, 2010

5.2 Special metadata items

5.2.1 Uniqueness flag

IUs with the same identifier and with the singleton value set to false can be installed simultaneously.
If the singleton flag is set to true, then only one IU with the same identifier can be installed.

This kind of constraint can be encoded in CUDF using the so called self conflicts. Then each
time we will see a singleton flag set to true, we will add a self conflict.

Self conflict consist of adding the same package in its conflicts field. Indeed thanks to that,
the package is in self conflict.

As this field indicates which packages cannot be co-installed, in any given installation, together
with a given package, we will not install packages with the same identifier except himself. Hence
we will have just one package with the same identifier.

Let’s take an example:
package: p

version: 1

depends: q ≥ 2, r ≤ 2

conflicts: p

This is how we encode the self conflict.

Filter As explained above, each different filter F found in an Eclipse P2 repository is treated
like:

• a suite is [here] eclipse

• a release is the name of different eclipse version. For example, you can have ganymede,
galileo, helios, etc.

• an architecture is the same as in Debian. For example you have x86, s390, ppc, etc.

We produce a different CUDF document DF for each suite/release/architecture.
Hence, when we find a requirement R with a filter F , we add the requirement to the metadata

for the document DF , and we ignore it for all other documents.
For example, if the following requirement is found for an IU u,
(os=linux) → req

the encoding of req will be added to the translation of u only in the document corresponding
to the architecture os=linux.

Greedy It is a very different concept compared to what already exist in CUDF. It was added
to control the addition of IUs as part of the potential IUs to install in order to satisfy a request.
In other term, if greedy is set to true for a given IU, then we added all IUs in a pool of potential
candidats which can satisfy the dependency of this IU. Else we just wait that other dependencies
(its dependencies or others) bring in what is necessary for its satisfaction.

For more detailed please see the document written by Pascal Rapicault and Daniel Le Berre:
“Dependency Management for the Eclipse Ecosystem: An Update” [3].

To convert these non greedy requirements, we have three cases:

• First case regroup actually two cases: when optional value is set to false (it does not matter
of the value of greedy). In this case this is a strong requirement (dependency). Then we use
the depends field.

• Then when optional value and greedy value are both set to true, this is an optional case.
Then we use the recommends 5.4 field.

Deliverable TR5.3 Version 1 page 8 of ??

November 23, 2010

• Finaly when the optional value is set to true and greedy value is set to false. This is the
weakest requirement. Then we use the suggests 5.4 field.

5.3 P2 comparison function and CUDF version mapping

As we said previously, a version identifiers have four components:

• a major version

• a minor version

• a micro version

• a qualifier (optional)

Let’s see some examples:
O.O.O < O.O.1 < 0.1.0 < 1.0.0 < 2.1.0.qualifier < 3.0.0.azerty

We can see the comparison function in org.osgi.framework.Version [2]:
public int compareTo(Version v)

According to java documention, a version A is less than a version B if the major component
of A is less than B major version or if both of major components’ are equals, then we do the same
thing with the minor and the micro version and if the three are equals then we compare the qual-
ifier component with the String.compareTo() [1] function. See documention for more information
[2].

We produce a mapping from versions in Eclipse P2 metadata to CUDF in the standard way
suggested for CUDF: we just order all the version of a component according to the Eclipse com-
parison function, and then we replace each version by its position in this ordering.

For example, consider the following metadata:
id: mancoosiIu version: 0.0.1

Capabilities:
namespace=a name=A version=0.0.0

namespace=a name=A version=1.0.0

namespace=b name=B version=2.3.4

Requirements:
namespace=b name=B range=[1.0.0, 3.0.0)

namespace=c name=C range=[1.0.0.azerty, 2.6.0]

namespace=c name=C range=[2.0.0, 4.0.0) optional=true

Then the version mapping to CUDF is as follows:

A

{
0.0.0 → 1

1.0.0 → 2
B

1.0.0 → 1

2.3.4 → 2

3.0.0 → 3

C

1.0.0.azerty → 1

2.0.0 → 2

2.6.0 → 3

4.0.0 → 4

Deliverable TR5.3 Version 1 page 9 of ??

November 23, 2010

After the conversion, we have:

package: mancoosiIu

version: 1

provides: aA = 1, aA = 2, bB = 2

depends: bB ≥ 1, bB < 3, cC ≥ 1, cC ≤ 3

recommends: cC ≥ 2, cC < 4

conflicts: mancoosiIu only if singleton flag is set to true

eclipselastversion: true

eclipsesourceversion: 0.0.1

5.4 Extra properties

We also add to the CUDF document a set of extra properties, that are useful for maintaining
some additional information about the Eclipse P2 components in the CUDF translation.

eclipsesourceversion In order to maintain a mapping between P2 and CUDF versions, for
each CUDF package we add an extra property named eclipsesourceversion of type string that
contains the original P2 source version of the IU.

recommends Dependencies which are optional. The solver will do the best to consider this
field. This property’s type is vpkgformula [4].

suggests When the optional flag is set to true and the greedy flag to false, the dependency is
add to the suggests field. This property’s type is vpkgformula [4].

eclipsegreedydeps Only greedy 5.2.1 dependencies are in this field. This property’s type is
vpkgformula [4].

eclipselastversion This property’s type is boolean. For an IU with differents versions, this flag
allows to know which one is the last version of the set.

eclipsecategory For each IU we add an extra property named eclipsecategory of type boolean
that contains the category status of an IU. If an IU is a category then this field is set to true.

eclipsegroup For each IU we add an extra property named eclipsegroup of type boolean. If
an IU is a group then this field is set to true.

eclipsefragment For each IU we add an extra property named eclipsefragment of type
boolean. If an IU is a fragment then this field is set to true.

eclipsepatch For each IU we add an extra property named eclipsepatch of type boolean. If an
IU is a patch then this field is set to true.

6 Using the converter

6.1 Configuration file

To start converting some IUs, you will need to write a configuration file. The concrete syntax of
the file is the ini format [?]. Here are the differents sections of this configuration file.

Deliverable TR5.3 Version 1 page 10 of ??

November 23, 2010

Comments: same as ini files (’;’ and ’#’)

Release: it is a string identifier of the release like galileo, ganymede, helios, ...

Context: the key/value ’s have to be like n= property1:value1, ..., propertyN:valueN where
n is a integer and N ≥ 1

Baseline: the key/value ’s have to be like baseline= repos1, ..., repoN where x is an ID
and N ≥ 1

Main: the only key/value has to be exactly like main= main repository

Options contains all optional property describe below.

Checkonly: the key/value ’s have to be like checkonly= package1, ..., packageN where x is
an integer and N ≥ 1

Outdir: the path to the output directory. This field is optional.

Format: this is the output files’ format. The value is deb and cudf.

Distcheck: this is the path to distcheck launcher.

Example:

This i s a comment :−)
[context]
b a s e l i n e=http :// download . e c l i p s e . org / r e l e a s e s / h e l i o s /
main=http :// download . e c l i p s e . org / r e l e a s e s / h e l i o s /
r e l e a s e=h e l i o s
1=o s g i . os : win32 , o s g i . ws : win32 , o s g i . arch : x86
2=o s g i . os : l inux , o s g i . ws : gtk

[opt ions]
checkout=no
outd i r=/path/ to /my/ outputd i r e c to ry /
format=deb

6.2 Filtering

As we said above, we filtered each document per context. The most used filters are illustrated in
the figure below 2.

os : linux win32 macosx hpux solaris aix etc.
arch: x86 x86 64 ppc ppc64 sparc etc.

ws: gtk win32 carbon cocoa motif etc.

Figure 2: Most common filters in p2 metadata

6.3 Translation algorithm

The translation algorithm is as follows.

First before starting the translation, we create a context and the document that will be create,
will contain only the package which are on the context. Thanks to that there is no need to do
something special to deal with filters. Then we continue in converting the Preamble stanza. In
this first step we add all new properties like eclipsesourceversion,recommends, suggests, etc. with
the right types (boolean, vpkgformula, etc.).

Deliverable TR5.3 Version 1 page 11 of ??

November 23, 2010

Secondly we convert all packages (IUs). Before doing this, we check if the IU is really in the
context created above. If the filter pass then we start the real conversion, i.e. conversion of the
package name, the integer version, the source version, the self-conflict case, etc. We fill all the
optional and not optional properties described above. Each IU and requirements have filters, so
we use the same function which checks if the IUs or the requirements are on the context. If they
are not, we just ignore them. Otherwise we start the translation. To deal with the integer versio,
we have a special case. Before starting the conversion we scan all the IUs and we associate the
right integer to each IU by ordering them with the comparison function 5.3.

As last step we finish by converting the request stanza if needed.

7 Weather report

One application we have wanted to use was the weather report. Indeed we inspired that application
from debian weather report (http://edos.debian.net/weather/).

The ”weather” of a given Debian-based distribution is an indication of how safe it is on a given
day to attempt some package installation/upgrade. A ”bad day” is a day in which a sensible
percentage of that distribution repository is not installable due to unsatisfiable inter-package
dependencies.

Then Eclipse weather is intended to indicate the state of plugins for every version of Eclipse.
Indeed, we differentiate these different contexts for the different version of eclipse:

• Operating System (os)

• Window Screeners (ws)

• Architecture (arch)

First we use the cudf converter to generate a cudf document. Then we use the mancoosi tools:
“distcheck”.

After distcheck finished, a Yaml document is generate. This document contains all the nec-
essary information to check the state of plugins for a version of eclipse. This document is then
entered into the sqlite database that we use for the weather report. In fact the database contains
the list of documents and the list of packages with the reasons for non installability. This step can
be performed automatically using a cron.

Figure 3: General view of weather report

Once the database completed, the pages are written with Django and are generated automat-
ically. We will allow the search for os and/or ws and/or arch. We also will allow the ability to

Deliverable TR5.3 Version 1 page 12 of ??

November 23, 2010

search by date. Indeed, as each document is unique it will be easy to identify and retrieve each
document by date. Here is an example of Eclipse helios:

Figure 4: Example for Helios

Deliverable TR5.3 Version 1 page 13 of ??

November 23, 2010

the list of different architecture:

Figure 5: Detailed view of a document

Deliverable TR5.3 Version 1 page 14 of ??

November 23, 2010

and overview of detailed view of a document:

Figure 6: Detailed view of a document

Furthermore with Pydot, we suggest where possible, a png image of the path which is the
cause of non installability of the package(Figure 4). It will be easier to visualize the path that can
be sometimes quite long.

Figure 7: Detailed view of a package (dot file)

8 Conclusion

To conclude this project has been a great experience. We could use Mancoosi tools in a different
context: Java world with Eclipse and its plugins.

One difficulty has been to limit the dependencies to Eclipse. Of course it always remain a
dependency necessary for the proper functioning of cudf converter.

Once the cudf document obtained, we could have interesting results for eclipse plugins. Indeed
it can be very interesting for Eclipse developers to check the states of plugins installability and at
each stage of their development.

Finally we hope that the weather report will be very useful to Eclipse developers, perhaps even
use in the Eclipse market.

Deliverable TR5.3 Version 1 page 15 of ??

November 23, 2010

9 Acknowledgements

Project coordinator

• Roberto Di Cosmo <roberto@dicosmo.org>

Mancoosi team

• Pietro Abate <pietro.abate@pps.jussieu.fr>

• Stefano Zacchiroli <zack@pps.jussieu.fr>

• Jérôme Vouillon <jerome.vouillon@pps.jussieu.fr>

• Ralf Treinen <ralf.treinen@pps.jussieu.fr>

• Jaap Boender <jaap.boender@pps.jussieu.fr>

Eclipse P2 team

• Pascal Rapicault <pascal@sonatype.com>

Deliverable TR5.3 Version 1 page 16 of ??

November 23, 2010

References

[1] Oracle. Class String. http://download.oracle.com/javase/1.4.2/docs/api/java/lang/String.html.

[2] OSGi Service Platform. Class Version. http://www.osgi.org/javadoc/r4v42/org/osgi/framework/Version.html.

[3] P. Rapicault and D. L. Berre. Dependency management for the eclipse ecosystem: An update.
Technical report.

[4] R. Treinen and S. Zacchiroli. Common upgradeability description format (cudf) 2.0. Technical
report, 2009.

Deliverable TR5.3 Version 1 page 17 of ??

	Introduction
	Eclipse p2
	Eclipse plugins
	Eclipse Terminology
	Metadata of an Installable Unit for Eclipse

	Common Upgradeability Description Format (CUDF)
	P2 metadata translation
	Basic metadata
	Identifier and version
	Capabilities / Provides

	Special metadata items
	Uniqueness flag

	P2 comparison function and CUDF version mapping
	Extra properties

	Using the converter
	Configuration file
	Filtering
	Translation algorithm

	Weather report
	Conclusion
	Acknowledgements

