
Extension of an existing package manager to
produce traces of ugradeability problems in
CUDF format
Deliverable 5.2

Nature : Deliverable
Due date : 31.07.2010
Start date of project : 01.02.2008
Duration : 40 months

August 19, 2010

Specific Targeted Research Project
Contract no.214898
Seventh Framework Programme: FP7-ICT-2007-1

A list of the authors and reviewers

Project acronym Mancoosi
Project full title Managing the Complexity of the Open Source Infrastructure
Project number 214898
Authors list Pietro Abate

André Guerreiro
Stéphane Laurière
Ralf Treinen
Stefano Zacchiroli

Internal review Gustavo Gutierrez
Workpackage number WP5
Deliverable number 2
Document type Deliverable
Version 1
Due date 31/07/2010
Actual submission date 02/08/2010
Distribution Public
Project coordinator Roberto Di Cosmo

Deliverable D2.2 Version 1.0 page 2 of 45

August 19, 2010

Abstract

One of the objectives of the Mancoosi project is to resolve some of the problems that users
of Free and Open Source Software distributions experience when trying to install, remove, or
upgrade packages installed on their machines. The specific goal of Workpackage 5 is to to build
a data base of problem reports generated from such user requests to a meta-installer, which
then will be used by the Mancoosi project, and the research community in general, to develop
better algorithms to compute upgrade paths.

The design of the languages used to produce these error reports have been described in an
earlier deliverable. The format of the report produced on a user machine is specific to the
software distribution used, but follows a general project-wide scheme called DUDF (Distribution
Upgradeability Description Format). Problem reports are uploaded to a server specific to the
software distribution and translated by the distribution editor into a common format called
CUDF. The Common Upgradeability Description Format (CUDF) is a format for describing
upgrade problems independently of a specific FOSS distribution. Reports in CUDF format are
then transferred from the distribution editor’s server to a central server of the Mancoosi project,
where they will be used in the construction of a project-wide problem database.

This document summarizes the work done by three different GNU/Linux distributions Debian,
Mandriva and Caixa Mágica to generate problem reports on user machines in DUDF, transfer
them to the distribution editors, and to convert them there into the common format CUDF.

Deliverable D2.2 Version 1.0 page 3 of 45

August 19, 2010

Deliverable D2.2 Version 1.0 page 4 of 45

Contents

1 Introduction 9

1.1 Anonymity of Submissions . 10

1.2 Overview of the DUDF format . 11

1.3 Overview of the CUDF format . 13

1.4 Structure of this document . 14

2 RPM-based distributions 15

2.1 The DUDF format for RPM-based distributions 15

2.1.1 The RPM-DUDF format . 15

Package universe . 15

Package status . 17

2.1.2 The Mandriva DUDF format . 18

Requested action . 18

Examples of requested actions . 18

Desiderata . 18

Outcome . 18

2.1.3 Caixa Mágica DUDF format . 20

Requested action . 20

Desiderata . 20

Outcome . 20

2.2 Instrumenting RPM meta-installers . 21

2.2.1 apt-rpm (Caixa Mágica) . 21

2.2.2 urpmi (Mandriva) . 21

2.3 Transmitting problem reports for RPM-based distributions 21

2.3.1 Caixa Mágica . 21

2.3.2 Mandriva . 23

2.4 Translating RPM-DUDF to CUDF . 23

5

August 19, 2010

2.4.1 RPM universe conversion . 23

RPM comparison function . 23

Version expansion . 25

CUDF version mapping . 25

Dependency mapping . 26

Extra properties . 27

2.4.2 Caixa Mágica request translation . 27

2.4.3 Mandriva request translation . 27

3 Debian-based distributions 29

3.1 The Debian-DUDF format . 29

3.2 Instrumenting apt-get to produce traces . 32

3.3 Transmitting reports to UPD . 35

3.4 Debian DUDF to CUDF translation . 36

3.4.1 The Debian apt pinning mechanism . 36

Pinning algorithm . 37

3.4.2 Translating a Debian DUDF universe into a CUDF universe 37

3.4.3 Translating a Debian DUDF request to a CUDF request 41

Mapping apt requests . 41

3.5 Concluding remarks on Debian . 42

3.5.1 Measures . 42

3.5.2 Towards a better representation of apt pinning 42

A Urpmi lookup algorithm pseudo-code 43

Deliverable D2.2 Version 1.0 page 6 of 45

List of Figures

1.1 Reporting infrastructure . 10

1.2 DUDF detailed structure . 12

2.1 Fragment of a synthesis file . 16

2.2 Intensional reference to a remote synthesis file . 16

2.3 Fragment of the RPM installer status encoding 17

2.4 Urpmi Requests . 19

2.5 DUDF generation and upload permission request 21

2.6 dudf.caixamagica.pt website: a DUDF instance 22

2.7 dudf.caixamagica.pt website: a report grouped by package 22

2.8 Mandriva DUDF Web site: list of DUDF documents uploaded by users 23

2.9 Rpm Bug . 26

2.10 Cudf translation of Figure 2.4.1 . 27

3.1 Debian archive coverage on snapshot.debian.org 32

3.2 Dudf-save command line options . 33

3.3 Dudf-save example session . 34

3.4 The Debian-dudf list page . 35

3.5 apt pinning stanzas. 36

7

August 19, 2010

Deliverable D2.2 Version 1.0 page 8 of 45

Chapter 1

Introduction

Modern software systems are deployed in the form of a collection of components from which
users may chose the software packages that they wish to install on a machine. This choice is
not permanent and is subject to modification when a user applies updates, installs additional
software in order to satisfy new requirements, removes unwanted software, or replaces one
software component by an alternative component that provides the same functionality. In Free
and Open Source Software (FOSS) collections, the set of available software components itself
is rapidly changing, which adds further dynamics to the scenario.

In the FOSS world, software components are commonly called packages, and a collection of
packages is called a distribution. It is the job of the distribution editor to create and maintain
a coherent distribution. Each distribution editor chooses his format of metadata that describes
some abstract properties of the packages in the distribution. The most important pieces of
information in the package metadata are the name and version number of a package, its re-
quirements, what it conflicts with, and the features it provides. In the GNU/Linux world, two
families of metadata formats are most commonly used: the RPM format which stems from the
Redhat distribution, and the Debian format defined by the distribution editor of the same name.
There are some important differences not only between these two families of metadata formats,
but also between different instances of these as defined by different distribution editors. Even
when syntactic similarities might lead to the impression that the formats are more or less the
same there still might be an essential difference in the semantics of the metadata.

One of the objectives of the Mancoosi project is to resolve some of the problems that users
experience when trying to modify the installation status of packages on their machine. A
request to change that installation status may come in the form of an installation, upgrade,
or removal request, or as a combination of these. In the remainder of this document we will
refer to any of these requests commonly as upgrade requests. In particular, Workpackage 4 of
the Mancoosi project aims at developing better algorithms for finding solutions (in terms of
versions of packages to install and remove) of such a user request. In Workpackage 5, we will
build a database of problem reports regarding failed attempts to modify the installation status
of the packages that where produced with instrumented versions of currently popular tools.
This database will then be available as data set to to researchers working on better algorithms,
both in Workpackage 4 of the Mancoosi project, and researchers who do not participate in
Mancoosi.

A user wishing to change the installation of packages on his machine issues an upgrade request
to a tool that knows about the currently installed and available software packages. Based on

9

August 19, 2010

this information the tool decides on a set of packages (as precise versions) to install, upgrade or
remove. We call such a tool a meta-installer in order to distinguish it from low-level installers.
Meta-installers invoke the low-level installers in order to remove a certain package, or to install
a certain package on the machine. Examples of meta-installers common in the GNU/Linux
universe are apt-get, aptitude, URPMI, apt-rpm, smart, and cupt, while examples low-level
installers are rpm and dpkg.

The overall architecture of the infrastructure is described in Figure 1.1 and defined in Deliverable
5.1 [TZ08]:

1. The meta-installer available on user machines will be instrumented so that they can gen-
erate a report of a failed package upgrade attempt. The format of the report is specific
to the software distribution used, but follows a general project-wide scheme called DUDF
(Distribution Upgradeability Description Format, see Section 1.2).

2. Problem reports are uploaded to a server specific to the software distribution.

3. Collected reports are translated by the distribution editor into a common format called
CUDF (Common Upgradeability Description Format, see Section 1.3).

4. Translated reports in CUDF format are transferred from the distribution editor’s server
to a central server of the Mancoosi project, where they will be used in the construction of
a project-wide problem database.

Figure 1.1: Reporting infrastructure

The current deliverable describes this process up to the point where CUDF documents are
obtained by the distributor editors by translation of DUDF problem reports submitted by their
respective users. The subsequent stages of transferring CUDF documents to the project-wide
server and the establishment of the problem data base will be subject of Deliverable 5.3 [511].

1.1 Anonymity of Submissions

The objective is to collect specific upgrade attempts to make them available to Mancoosi and the
community. DUDF generators are available in the distributions Debian, Mandriva and Caixa

Deliverable D2.2 Version 1.0 page 10 of 45

August 19, 2010

Mágica but are not installed by default. Their installation and activation is a deliberate decision
of the system administrator. Data is collected anonymously; no user information is embedded
in the generated DUDF documents. However, in order to track requests per machine, a host
identifier key (hostid) might be embedded in the DUDF document. The hostid is a random
string which is generated once during the installation of the utility and stored on the system.
This key, together with a unique document identifier which is generated randomly each time a
new document is generated, ensures uniqueness of the submission, anonymity of the sender and
traceability of the DUDF document.

1.2 Overview of the DUDF format

The Distribution Upgradeability Description Format (DUDF) was defined in [TZ08, TZ09c].
The overall structure of a DUDF document that is used to report a problem is as follows (see
also Figure 1.2). Note that some parts of the specification are specific to the distribution and
hence are not defined in the generic DUDF format.

Timestamp a timestamp to record when the upgrade problem was generated.

Problem identifier (i.e. uid) a string used to identify this problem submission uniquely
among all submissions sent to the same distribution editor.

Package status (i.e. installer status) the status of packages currently installed on the user
machine. This item is installer-specific, but may also contain data specific to the meta-
installer in case the meta-installers maintain some additional information (for instance,
the reason why a certain package was installed).

Package universe the set of all packages which are known to the meta-installer, and are hence
available for installation. This item is specific to the meta-installer, system architecture
and distribution.

Requested action the modification to the local package status requested by the user. This
item is specific to the meta-installer. An example of a requested action is “install package
ocaml in any version which is at least 3.10, and remove the package acroread”, which
would be expressed in the concrete syntax of the specific meta-installer.

Desiderata user preferences to discriminate among possible alternative solutions (e.g. “mini-
mize download size”, or “do not install experimental packages”). The exact list of possible
user preferences depends on the distribution, and on the capabilities of the meta-installer
(for instance, for Debian’s apt these may be defined in the file /etc/apt/preferences).

This information item is optional.

Tool identifiers two pairs 〈name, version〉 uniquely identifying the installer and meta-installer
which are in use, in the context of a given distribution. One pair identifies the installer
used, the other the meta-installer used.

Distribution identifier a string uniquely identifying the distribution run by the user (e.g.
debian, mandriva, pixart, . . .), among all the implementations of DUDF.

Outcome either the new local package status as seen by the used meta-installers (in case of
success) or an error message (in case of failure, i.e. the meta-installer was not able to

Deliverable D2.2 Version 1.0 page 11 of 45

August 19, 2010

- dudf:

- version: 2.0
- timestamp: timestamp
- uid: unique problem identifier
- distribution: distribution identifier
- installer:

- name: installer name
- version: installer version

- meta-installer:
- name: meta-installer name
- version: meta-installer version

- problem:
- package-status:

- installer: installer package status

- meta-installer: meta-installer package status
- package-universe:

- package-list1 (format: format id.; filename: path; url: url): package list
- . . .
- package-listn (format: format identifier ; filename: path): package list

- action: requested meta-installer action

- desiderata: meta-installer desiderata
- outcome (result: one of ”success”, ”failure”):

- error: error description (only if result is “failure”)
- package-status: (only if result is “success”)

- installer: new installer package status

- meta-installer: new meta-installer package status

- comment: additional, user-provided information (optional)

Figure 1.2: The DUDF skeleton: information items and containers corresponding to prob-
lem/outcome submissions.

fulfill the user request). The error message format is specific of the used meta-installer, it
can range from a free-text error message to a structured error description (e.g. to point
out that the requested action cannot be satisfied since a given package is not available in
the package universe).

Note that we are only interested in meta-installer failures, that is failures that occur before
the meta-installer could call the package installer. Hence, when the meta-installer signals
an error, the actual installation status of the packages on the system or their configuration
has not changed yet.

The instantiation of these generic parts will be described in the sections on the RPM-specific
DUDF format (Section 2.1) and the Debian-specific DUDF format (Section 3.1).

Deliverable D2.2 Version 1.0 page 12 of 45

August 19, 2010

1.3 Overview of the CUDF format

The Common Upgradeability Description Format (CUDF) is a format for describing upgrade
problems independently of a specific FOSS distribution. It was first defined in [TZ08], and
later updated in [TZ09a].

A CUDF document describes a package universe (comprising both the available and the installed
packages), and an upgrade request. It consists of three parts

1. a preamble which in particular serves to define extra information fields that can be used
in the package stanzas;

2. a list of package stanzas, each of them consisting of a list of properties. Among these
properties, the name (a string) and the version (an integer) together uniquely identify
a package within an upgrade problem description. The depends fields describes the re-
quirements of the package, it is a negation-free propositional formula of package names
that may be qualified with a constraint on their version number, like ocaml > 17. The
conflicts property specifies a list of packages, possibly qualified by a constraint on their
version number, that must not be installed together with that package. The provides
property gives a list of so-called virtual packages or features realized by that package.
These may be used to satisfy dependencies of other packages, and must be taken into
account in the conflicts of other packages. Packages listed in the provides possibly come
in a specific version. The installed property specifies whether the package is currently
installed, or merely available for installation. Finally, the keep property of a package is
only relevant when the package is already installed, it specifies whether that package must
remain installed in exactly that version, or in any version, or whether it may be replaced
by another package providing it, or if there is no such requirement.

3. an upgrade request, which consists of an installation, a removal, and an upgrade (in the
specific sense) request. Each of them is a list of package names, possibly qualified by a
constraint on their version number, that must be installed, resp. removed, in any claimed
solution to the request. An upgrade request behaves almost like an install request except
that in a solution there must be only one version of the package installed, and that it
must not be smaller than any of the originally installed versions.

The complete and precise syntax and semantics of CUDF is defined in [TZ09a]. Two points
concerning the semantics deserve mention here since they will be important for the translation
of the different DUDF formats to CUDF:

• The model allows the installation of several versions of packages concurrently with the
same name. This feature was taken over from the semantics of the RPM model, but is
in opposition to the Debian model which allows at most one version of a package to be
installed at a time.

• The conflicts of a package do not apply to virtual packages provided by the same package.
This was taken over from the Debian package model; in fact this feature allows us to
translate the Debian-DUDF format to CUDF while preserving the Debian uniqueness
requirement of installed versions of a package (see Section 3.4).

Deliverable D2.2 Version 1.0 page 13 of 45

August 19, 2010

1.4 Structure of this document

In the rest of the document we will describe the work done both for FOSSdistributions that
are based on the RPM-format (Chapter 2), and for distributions that are based on the Debian
package model (Chapter 3). For each of these two families of distributions we will describe

1. how the generic DUDF format has been instantiated for that specific family of distribu-
tions;

2. the instrumentation of the distribution-specific package installation tools to generate a
problem report on the user machine;

3. the server infrastructure that was created in order to collect problem reports that are
submitted by users;

4. the translation from DUDF reports into the common CUDF format.

The RPM-family of distributions is represented in Mancoosi by two commercial GNU/Linux
distributions: Caixa Mágica and Mandriva. We will indicate the cases in which there are
differences between the specific solutions employed by these distribution editors. The Debian
family is represented in form of the Debian FOSS distribution by some individual members of
the Mancoosi project who are committed users or project members.

Deliverable D2.2 Version 1.0 page 14 of 45

Chapter 2

RPM-based distributions

2.1 The DUDF format for RPM-based distributions

In this section we describe the DUDF encoding adopted by RPM-based distribution. To avoid
duplication of code and effort, Mandriva and Caixa Mágica share a common format to encode
the package status and universe. However, because of differences between urpmi and apt-rpm,
DUDF files embed distribution-specific information such as meta-installer configuration files.

2.1.1 The RPM-DUDF format

In this section we describe the parts of the DUDF that are common to each RPM-based distri-
bution and that are not specific for Caixa Mágica or Mandriva. Meta-installer specific details
are described in Sections 2.1.3 and 2.1.2.

Package universe

Synthesis file format. The synthesis format is used to encode meta-data information [Man08].
A synthesis file is a compressed textual file used by librpm to build its internal database that
generated from RPM binary packages. A synthesis file contains a list of stanzas (see Figure 2.1).
Each stanza is composed by a sequence of non-empty lines; each line is a @-separated list of
elements with the first element of the line being the type of the line. Lines are always in the
same order with the @info@ chosen as stanza marker delimiting the entry. A stanza has five
entries with the following types:

provides : list of functionalities provided by this package
requires : list of packages that must be installed for this package to be installed
obsoletes : used as hint to the solver to upgrade a package
conflict : list of packages that are in conflict with this package
summary : package description
info : information about this package

The four first types (provides, requires, obsoletes, and conflict), are a list of pack-
age names, possibly with a constraint on the version of the package which is of the form
package [flag version] where flags are <=, >=, <,> or ==.

The entry of type info has the following format:

15

August 19, 2010

@info@name-version-release.arch@epoch@size@group@

where the name-version-release.arch and epoch identifies the package while size is the size
of the binary package and group is the category to which the package belongs (i.e. kde-games).

@provides@openldap1[== 1.2.12-4mdk]
@requires@libldap1[==1.2.12-4mdk]@rpm-helper[*]@/bin/sh[*]@/bin/sh[*]@
bash@libc.so.6@libc.so.6(GLIBC_2.0)@libc.so.6(GLIBC_2.1)@
libc.so.6(GLIBC_2.3)@libcrypt.so.1@libcrypt.so.1(GLIBC_2.0)@
libnsl.so.1@libpthread.so.0@libpthread.so.0(GLIBC_2.0)@
libpthread.so.0(GLIBC_2.1)@libpthread.so.0(GLIBC_2.3.2)@
libresolv.so.2@libtermcap.so.2

@summary@LDAP servers and sample clients.
@info@openldap1-1.2.12-4mdk.i586@0@2054148@System/Servers

Figure 2.1: Fragment of a synthesis file

Meta-data information embedded in a DUDF document are either encoded extensionally in the
synthesis format or intentionally. In the former case, the entire synthesis file (uncompressed)
is added as a CDATA section in the DUDF document. In the latter case, we add a new element
embedding a remote reference to the synthesis file using the following rnc schema:

package_list =
element package-list {

attribute dudf:format { text }?,
attribute dudf:filename { text }?, # must be an # absolute path
attribute dudf:url { xsd:anyURI }?,
attribute dudf:include { xsd:anyURI }?,
any*

}

This XML relax-ng fragment is an extension of the normative relax-ng DUDF specification (see
[TZ09c]) where we add the include attribute in order to specify a remote URL where to fetch
the synthesis package.

<package-universe>
<package-list

format="synthesis_hdlist"
include="http://dudf.caixamagica.pt/lists/5fb9db2a60b38707fbd1de33825e3790"/>

[...]

Figure 2.2: Intensional reference to a remote synthesis file

Both Mandriva and Caixa Mágica have deployed a website containing all published official
synthesis files. Caixa Mágica stores all synthesis files from June 2009 on, they can be re-
trieved from the Caixa Mágica website using the URL schema http://dudf.caixamagica.pt/
lists/MD5SUM where the MD5SUM variable is the md5sum digest of the synthesis file package.
Mandriva synthesis files are listed from the following address: http://doc4.mandriva.org:
8087/synthesis/, and individual synthesis files can be accessed using their MD5 signature from
the following URL pattern: http://doc4.mandriva.org:8087/synthesis/MD5SUM/download.
The synthesis files are uploaded to the Mandriva DUDF server by using an incremental process
that is described in Section 2.2.

Deliverable D2.2 Version 1.0 page 16 of 45

http://dudf.caixamagica.pt/lists/MD5SUM
http://dudf.caixamagica.pt/lists/MD5SUM
http://doc4.mandriva.org:8087/synthesis/
http://doc4.mandriva.org:8087/synthesis/
http://doc4.mandriva.org:8087/synthesis/MD5SUM/download

August 19, 2010

Package status

This section of a DUDF document contains a snapshot of the current state of the installer. The
RPM database, stored in /var/lib/rpm, uses the Berkeley data base as its back-end. It consists
of a single file containing all of the meta-information of the installed packages. The database is
used to keep track of all files that are changed and created when a user installs a package, thus
enabling the user to reverse the changes and remove the package later. Mandriva and Caixa
Mágica adopted the same encoding of the package universe and the internal representation of
the RPM database used by apt-rpm and URPMI.

<package-status>
<installer>
<status filename="/var/lib/rpm/Packages"><![CDATA[[
[
"x11-font-bh-75dpi",null,"1.0.0","7mdv2009.1",
["mkfontdir","mkfontscale","/bin/sh"],
["x11-font-bh-75dpi = 1.0.0-7mdv2009.1"],
["xorg-x11-75dpi-fonts <= 6.9.0"],
[],
1252461522,
true
],
[
"lib64speech_tools1", null,"1.2.96","11mdv2009.1",
[...]

Figure 2.3: Fragment of the RPM installer status encoding

The installer status is encoded in DUDF by serializing the following data structure using the
json format [Cro06]. The json format has been chosen as a compromise between an xml-based
encoding and a binary encoding. Each package in the database is represented by an array of
stanzas in DUDF. Each stanza is an array of 10 elements as follows:

name : string
epoch : integer
version : string
release : string
requires : array
provides : array
conflict : array
obsoletes : array
size : integer
isEssential : boolean

where dependencies (requires,provides,conflicts,obsoletes) are arrays of triples as follows:

name : string
constraint : string
version : string

Empty elements are represented as null while empty dependencies are written [].

Deliverable D2.2 Version 1.0 page 17 of 45

August 19, 2010

2.1.2 The Mandriva DUDF format

Requested action

The meta-installer used by default on Mandriva systems is urpmi. The requested action in the
Mandriva DUDF format is the copy of the command-line arguments used in the invocation of
urpmi. Given a list packages to be installed or upgraded, urpmi will never downgrade a package.
Any attempt to do so will result in an abort.

The most common requests to the urpmi meta-installer and to the urpme removal tool are
summarized in Figure 2.1.2.

Examples of requested actions

urpmi python or urpmi /usr/bin/python on a Mandriva Linux 2010.1 system configured with
the official Mandriva repositories will both install the latest version of the python package, i.e.
python in version 2.6.5, release 2mdv2010.1.

urpmi /usr/bin/python3.1, urpmi python3, urpmi python3-3, urpmi python3-3.1.2, or
urpmi python3-3.1.2-1 will all launch the installation of the python3 package (named so
for not conflicting with the python package, which actually refers to python-2x version series)
in version 3.1.2, release 1mdv2010.1. However urpmi /usr/bin/python3 will abort since the
argument does not match partially a package name nor exactly an entry provided by a package.

urpme python or urpme python-2.6.5 will both remove all the package python-2.6.5-2mdv2010.1
(if previously installed) and all the installed packages having a require dependency provided only
by python-2.6.5-2mdv2010.1. But urpme /usr/bin/python will abort since “/usr/bin/python”
is not part of a package name.

Desiderata

The user preferences related to the upgrade process can be set by the system administrator in
the following files, or through urpmi command line options:

/etc/urpmi/skip.list (or urpmi option --skip) contains a list of packages that should not be
automatically updated when upgrading the complete distribution (using the command line
--auto-select). It contains one package expression per line - either a package name, or a
regular expression (if enclosed in slashes) to match the name of packages against, using the full
name of the package, which has the form name-version-release.arch.

/etc/urpmi/prefer.list (or urpmi option --prefer) contains a list of packages that should be
preferred when a choice occurs for resolving dependencies. When several dependencies satisfy a
given constraint required by the current installation, urpmi gives preference to the ones listed
in the prefer.list file. The file contains one package expression per line; either a package name,
or a regular expression (if enclosed in slashes) to match the name of packages against.

Outcome

The outcome consists of an error message stored in a CDATA field when the installation or
uninstallation process failed.

Deliverable D2.2 Version 1.0 page 18 of 45

August 19, 2010

request semantics
urpmi NAME looks up the package(s) to be installed or upgraded fol-

lowing the algorithm described in pseudo code in Ap-
pendix A. Urpmi first tests whether the input matches
a package name, then whether it matches exactly the
name of a provide dependency. In case of multiple
candidates, urpmi uses the contents of the prefer-
ence files /etc/urpmi/prefer.list and /etc/urpmi/pre-
fer.vendor.list for discriminating between the results.
In case several versions of a package selected for in-
stallation or upgrade are installed on the system and
if a more recent one is available on the repositories, all
previous versions are not installed and the new one is
installed.

urpmi NAME-VERSION(-RELEASE) looks up the package(s) to be installed or upgraded
following the algorithm described in pseudo code in
Appendix A.

urpme NAME identifies the package to be removed by applying the
same procedure as in the case of the command ”urpmi
NAME”, except the lookup is made only against pack-
age names, not on the dependencies provided by pack-
ages, then removes the currently installed version of
the package found, if any, and all the packages re-
quiring a dependency that was provided only by this
package. The look up algorithm is described in Ap-
pendix A.

urpme NAME-VERSION(-RELEASE) identifies the package to be removed by applying the
same procedure as in the case of the command ”urpmi
NAME-VERSION(-RELEASE)” except the lookup is
made only against package names, not on the depen-
dencies provided by packages, then removes the cur-
rently installed version of the package found, if any,
and all the packages requiring a dependency that was
provided only by this package. The look up algorithm
is described in Appendix A.

urpmi –auto-select upgrade all the packages that are currently installed
and for which a newer version is available, except
the packages matching an entry present in the file
/etc/urpmi/skip.list, described below. The packages
that are obsoleted by new ones are automatically re-
moved.

Figure 2.4: Urpmi Requests

Deliverable D2.2 Version 1.0 page 19 of 45

August 19, 2010

2.1.3 Caixa Mágica DUDF format

Requested action

Caixa Mágica uses apt-rpm as meta installer which is a fork of apt-get. Hence, the user request
is expressed in the same format as for Debian (see Section 3.1).

Desiderata

Debian’s apt-preferences file is not used on Caixa Mágica’s systems. This information is
hence not included in the DUDF file, and no priority field is computed for Caixa Mágica’s
related CUDF files.

Outcome

This section includes the free-form error message as reported by apt-rpm and a list of packages
the meta-installer found to be non-installable while trying to satisfy the user request.

Deliverable D2.2 Version 1.0 page 20 of 45

August 19, 2010

2.2 Instrumenting RPM meta-installers

2.2.1 apt-rpm (Caixa Mágica)

The DUDF generation for Caixa Mágica is done through a modification of apt-rpm which is
the default installer for this distribution. To enable generation of DUDF documents the user
has to set a configuration variable: if APT::Dudf::Store-Report is set to true in any of the
apt-rpm configuration files or in a -o command-line flag then apt-rpm will save all the in-
formation about the user request, status of installed packages and package universe in Caixa
Mágica’s instantiation of the DUDF format (see Section 2.1.3). In addition, if the option
APT::Dudf::Store-Report-Success is set to true then a trivial report will be generated in-
forming about the successful installation. This kind of report is not specifically related to the
goals of Mancoosi WP5 but rather is aiming to gather additional data for Caixa Mágica’s quality
assurance processes.

In a recent development related to Caixa Mágica version 15 due for release in July 2010 there
is a new “user-friendly” process to enable DUDF reporting.

2.2.2 urpmi (Mandriva)

A problem occurred. You can contribute to the improvement of the Mandriva upgrade
process by uploading an automatically generated report to a Mandriva server.
No personal information will be transmitted. More information is available at
http://doc4.mandriva.org/bin/dudf/.
Do you want to generate and upload a report? (Y/n)

Figure 2.5: DUDF generation and upload permission request

The DUDF generator for Mandriva is developed as an extension of the meta-installer urpmi.
This extension, named urpmi-dudf is provided as a package that can be optionally installed
by users to report upgrade requests. Once the package is installed, urpmi will display the
information and ask the question shown in Figure 2.2.2 when an error occurs. If the user accepts
then the meta-installer will generate a DUDF that will be then uploaded to the Mandriva DUDF
server, using the procedure described in Section 2.3. The user can also force the generation of
DUDF files, upon any request to urpmi, by using the command-line option --force-dudf.

DUDF documents are generated using a C++ library developed by Caixa Mágica to read
and encode the rpm database status and a Perl module which adds the Mandriva specific
information.

2.3 Transmitting problem reports for RPM-based distributions

2.3.1 Caixa Mágica

The DUDF documents generated by Caixa Mágica users are uploaded periodically to the Caixa
Mágica DUDF repository. Each individual report for failed installations is publicly available
at the webpage http://dudf.caixamagica.pt/problems. There is no information, neither in
the DUDF files nor the web interface, that discloses personal information from users’ systems.
The website gives aggregate monthly accounts for failed installations and affected packages.

Deliverable D2.2 Version 1.0 page 21 of 45

http://dudf.caixamagica.pt/problems

August 19, 2010

Figure 2.6: dudf.caixamagica.pt website: a DUDF instance

Figure 2.7: dudf.caixamagica.pt website: a report grouped by package

Deliverable D2.2 Version 1.0 page 22 of 45

August 19, 2010

2.3.2 Mandriva

The DUDF reports generated by Mandriva users are uploaded synchronously to the Mandriva
DUDF server at the following URL: http://doc4.mandriva.org/bin/dudf/. Figure 2.8 shows
a list of uploaded DUDF reports.

The urpmi-dudf extension currently does not support asynchronous uploads of DUDF docu-
ments. The feature will however be added before the end of the project.

Figure 2.8: Mandriva DUDF Web site: list of DUDF documents uploaded by users

The package universe descriptions encoded in the synthesis format are uploaded incrementally
to the Mandriva DUDF server. In order to reduce the DUDF size, just before the generation
of a DUDF on a user machine, the urpmi-dudf extension checks whether the synthesis files
used locally are already stored on the Mandriva DUDF server. In case they are not, they are
uploaded to the Mandriva server, so that future reports related to the same synthesis data will
simply refer intentionally to the file using its MD5 signature.

2.4 Translating RPM-DUDF to CUDF

2.4.1 RPM universe conversion

This section describes the translation from a RPM package archive to CUDF. The RPM seman-
tics is not formally described, but it is supposed to be consistent with the latest implementation
of the RPM utilities. In this document we refer to the implementation of librpm version 4.4.2.2.

RPM comparison function

RPM versions as defined above are compared using four functions: vercmp, epochcmp, relcmp
and rpmvercmp. The function vercmp compares two RPM triples (epoch, version, release).

Deliverable D2.2 Version 1.0 page 23 of 45

http://doc4.mandriva.org/bin/dudf/

August 19, 2010

First we compare the epoch using epochcmp. If these are equal then we compare the versions
using rpmvercmp, and if these are equal again we compare the releases using relcmp.

vercmp

Require: (e1, v1, r1)
Require: (e2, v2, r2)

re← epochcmp(e1, e2)
if re = 0 then

rv ← rpmvercmp(v1, v2)
if rv = 0 then

return relcmp(r1, r2)
else

return rv
end if

else
return re

end if

rpmvercmp is the RPM comparison function as implemented in the RPM library. Since the
RPM comparison function has no normative specification, we do not describe its algorithm
here.

The epochcmp function compares the two epoch if they are present, and returns 1 or −1 if only
one is present, 0 otherwise. The function cmp is the canonical comparison function between
integers.

epochcmp

Require: (e1, e2)
if (e1, e2) = NULL, V AL then

return −1
else if (e1, e2) = V AL, NULL then

return 1
else if (e1, e2) = V AL, V AL then

return cmp(e1, r2)
else

return 0
end if

Similarly, the relcmp function compares the two releases if they are both present, and return 1
or −1 if only one is present, 0 otherwise.

Deliverable D2.2 Version 1.0 page 24 of 45

August 19, 2010

relcmp

Require: (r1, r2)
if (r1, r2) = NULL, V AL then

return −1
else if (r1, r2) = V AL, NULL then

return 1
else if (r1, r2) = V AL, V AL then

return rpmvercmp(r1, r2)
else

return 0
end if

Version expansion

RPM versions are triples of the form epoch, version, release. The epoch term is an integer
and it is used to allow to replace new RPM packages where RPM considers the new package
version number to be lower than the installed package. The default epoch is zero and it is
usually not specified. The version term is a sequence of alpha-numeric characters identifying
the upstream version of the package. The release term is a sequence of alpha-numeric charac-
ters commonly identifying a distribution-specific release code. RPM versions identify concrete
packages as a triple, while it is written as a string of the form epoch:version-release when
used in dependency information items. In order to normalize RPM versions into a common
format, we rewrite all RPM versions as strings.

Consider the following representation of a RPM package:

package: bash
version: 1.3
epoch: 1
release: ex2010

We associate to this package the canonical version string 1:1.3-ex2010. If the epoch is not
specified then it defaults to 0.

CUDF version mapping

CUDF versions are strictly positive integers [TZ09a]. RPM versions, which are strings, must
hence be mapped from string to integer. However, the näıve approach of having a bijective
mapping does not work since the RPM comparison function above does not provide a total
order of RPM versions. The problem is highlighted by the example in Figure 2.4.1. Accordingly
to the RPM implementation the package p4 is in conflict with p3 and p1 but not with package
p2. If we map RPM versions to integer versions, and then use the standard integer comparison
function, it will be impossible to express this with a simple dis-equality with p4. This is actually
a bug in the implementation of RPM acknowledged by its upstream authors and fixed in the
new version of RPM [rpm10, Pro10a].

Deliverable D2.2 Version 1.0 page 25 of 45

August 19, 2010

package: p0
provides: x (= 1.25)

package: p00
provides: x (= 1.24)

package: p1
provides: x (= 1.26)

package: p2
provides: x (= 1.27)

package: p3
provides: x (= 1.27-2)

package: p4
conflicts: x (< 1.27-3)

Figure 2.9: Rpm Bug

One possible solution would be to translate RPM versions to integers and then handle explicitly
problematic constraints. For example we could build the following map:

1.24 -> 1
1.25 -> 2
1.26 -> 3
1.27 -> 4
1.27-2 -> 5

Note that 1.27-3 does not show up in this table. The reason is that version constraints have
to be translated differently from concrete versions, taking into account the correspondence
table above, and the distinction between version and release part. In the above example, a
version constraint < 1.27-3 of p4 would translate into < 4 or = 5. This solution, despite being
potentially correct, was discarded as error-prone and difficult to implement. For this reason the
version mapping is performed during the translation phase.

The adopted solution is to change the nature of the problem, therefore loosing the information
that package p4 is in conflict with x < 1.27-3, adding an explicit conflict with packages p1
and p3. This means that the constraint expansion is performed during the translation itself and
that in the resulting document all conflicts and requires will be expressed using explicit version
numbers. As a consequence, the generated CUDF documents are bigger since relevant version
numbers are explicitly enumerated.

The function we use to expand RPM constraints is RpmdsCompare as implemented in librpm.
It takes as input two dependencies constraints of the form (name, flag version) and returns
true if the dependencies overlap, false otherwise. The fragment in Figure 2.4.1 will be then
simply translated as in Figure 2.4.1.

Dependency mapping

Since all version constraints are fully expanded in the CUDF document, the dependencies
translation is straightforward. There are two minor points to notice. The first point is that
we remove dependencies on files provided by the same package, as well as dependencies on
the package itself and dependencies on packages provided by the same package. This reduces
the size of the resulting CUDF document and removes redundant information. The second
point concerns relations to non-existing packages. In order to remain faithful to the CUDF
mission, hence to retain all information contained in the source format, versions are numbered

Deliverable D2.2 Version 1.0 page 26 of 45

August 19, 2010

package: p0
provides: x = 2

package: p00
provides: x = 1

package: p1
provides: x = 3

package: p2
provides: x = 4

package: p3
provides: x = 5

package: p4
conflicts: x = 3, x = 5

Figure 2.10: Cudf translation of Figure 2.4.1

starting from 2 while non-existing packages are numbered 1. This information is available at
the conversion stage because of the constraint expansion in Section 2.4.1.

The mapping algorithm works in two stages. In the first stage, we build a table called unit table
which maps package names to arrays of constraints. The indices of the array will be used as
CUDF versions.

In the second stage, for each dependency expansion, a constraint of the form (name,flag,version)
will be matched against the list of constraints in the units table. If the constraint overlaps the
constraint in the units table then the associated index is added to the dependency list in the
form (name,"=",cudf version). Otherwise it is ignored.

Extra properties

Number. In order to maintain a mapping between RPM and CUDF versions, for each CUDF
package we add an extra property named number of type string that contains the original
RPM version of the package. Since RPM dependencies are mainly expressed by provides, this
information allows only to maintain a partial mapping.

Essential. In RPM, similarly to other distributions, packages are categorized according to
their importance or their functionality. Essential packages are those that must always be in-
stalled on the system. Essential packages can be upgraded, but cannot be removed. To preserve
this property, for each essential packages we add a value package to the CUDF property keep.

2.4.2 Caixa Mágica request translation

The user request in apt-rpm follows Debian apt syntax and semantics hence the translation
follows the rules described in Section 3.4.3

2.4.3 Mandriva request translation

The table below describes the action corresponding to the main urpmi upgrade commands.

Deliverable D2.2 Version 1.0 page 27 of 45

August 19, 2010

request action
urpmi name The name of the package to be installed is found by

using the procedure described in 2.1.2. The request is
then translated to the “Install” property

urpmi name-version(-release) The package to be installed is found by using the pro-
cedure described in 2.1.2. The request is then trans-
lated to the “Install” property with a strict (i.e., ”=”)
version (and release) requirement

urpme package It is trivially translated to the “Remove” property,
with no version requirements

urpmi –auto-select It is translated by listing all installed packages to
the “Upgrade” property and additionally adding “Re-
move: package” for the packages that are obsoleted by
newly installed ones.

Deliverable D2.2 Version 1.0 page 28 of 45

Chapter 3

Debian-based distributions

3.1 The Debian-DUDF format

In this section we describe the instantiation of DUDF for the Debian distribution, that is the
Debian-DUDF format. We focus on the meta-installers apt and, to a lesser extent, aptitude
which are the two meta-installers most commonly used in Debian.

In general, a DUDF document consists of a set of information items (see Section 1.2). Each
item describes a part of the upgrade problem faced by the user. In this section we describe
the information items that are not part of the generic DUDF scheme but that are specific to
Debian.

Installer package status. This item consists of a snapshot of the current state of the in-
staller. On a Debian system, this information is available in the file /var/lib/dpkg/status
which is encoded in RFC 822 format with one stanza for each package known to the installer.
For installed packages a complete stanza with all meta-information about this packages is given,
while for not installed packages essentially only the name and the installation status are given.
The pertaining information field in a Debian-DUDF document contains in the simplest case a
verbatim copy of that file, thus leading to an extensional representation of the installer status.

A simple optimization consists in filtering out all package properties from the stanzas that are
not used in the translation to CUDF, most notably the Description property which accounts
for most of the file total size.

A more interesting possible optimization consists in listing for each installed package only their
name and version, and relying for the translation to CUDF on the availability of an external
archive that contains all the necessary properties of all packages (in all versions). This is an
example of intensional representation, which is of course only possible when a package is globally
uniquely identified by its name and its version. This assumption is satisfied when only packages
coming from the official distribution are installed. The assumption would be not satisfied in
particular when one has installed locally re-compiled packages without changing their version
number since some of the meta-information of a package is generated during the compilation
of a package, and might hence differ from the meta-information in packages coming from the
official distribution (see Section 3.2).

29

August 19, 2010

Meta-installer package status. Specific meta-installers may maintain extra information as
part of their local package status view. For example aptitude uses /var/lib/aptitude/pkgstates
to store, among others, information about “leaf packages” that should be automatically removed
when no other packages depend on them.

Package universe is the set of all packages known to the meta-installer. The universe
for an upgrade problem is available on a machine as the lists of packages known to apt (or
aptitude). They are stored in the directory /var/lib/apt/lists/ and match the filename
pattern * Packages. These files are downloaded when the apt update action is invoked, and
constitute a local cache of package listings coming from the Debian archive or its mirrors around
the world.

For each repository listed in /etc/apt/sources.list there are several package lists stored on
the local file system, one for each section (e.g: main, contrib, non-free) of that archive which
is listed in sources.list. Only lists corresponding to repositories which were active at the
time of the last update are kept on disk; lists for repositories which have been removed from
sources.list are removed upon the next update run.

A verbatim copy of all these lists as an extensional section would provide a suitable package
universe item in a DUDF document. The size of that document, which would be in the order
of magnitude of the size of files downloaded when performing a single apt-get update action,
could still be considered too large for users who run low on local storage space, or network
bandwidth.

Moreover, the list of all release files are also embedded in the DUDF document. These files are
stored in the directory /var/lib/apt/lists/ and match the file name pattern * Releases.
The release files contain additional information associated to the package universe (* Packages
files) that are used to correctly resolve an APT request when used in conjunction with a target
release identifier. Most notably release files also contain information about the architecture of
the user machine.

For a given set of “well-known” repositories an alternative is to use an intensional representation,
i.e. send as an intension just the checksum (for instance, SHA1) of the corresponding lists.
As the lists are byte-to-byte identical copies of the remote repositories one may trust them
to retrieve later in the translation to CUDF the complete lists from some archive site. The
package lists are the same among different (synchronized) mirrors; this is guaranteed by the
apt-secure machinery, as differences would invalidate the Release file signed with the GPG keys
of the master Debian archive. To avoid having to search on the server the checksum among all
stored checksums one may add the date of the last modification of the file lists on disk together
with the architecture specification, to be used as a hint where the exact checksums has to be
searched.

Requested meta-installer action. This is a textual encoding of the request issued by the
user. In case of apt-get, for example it is the verbatim copy of the command-line arguments
in the invocation of apt-get. Interactive meta-installers might need a different encoding. In
this document we do not consider all Debian meta-installers, but we focus on apt. The most
common requests to the apt meta-installer are summarized in the following table :

Deliverable D2.2 Version 1.0 page 30 of 45

August 19, 2010

request semantics
apt-get install PACKAGE install the most recent version of a package
apt-get install PACKAGE=VERSION install a specific version of a package.
apt-get install PACKAGE/RELEASE install the version of a package coming from a specific

release; it is applicable when more than one package
repositories are listed in /etc/apt/sources.list.

apt-get remove PACKAGE remove the currently installed version of a package.
apt-get upgrade Packages currently installed with new versions avail-

able are retrieved and upgraded; under no circum-
stances are currently installed packages removed, or
packages not already installed retrieved and installed.
New versions of currently installed packages that can-
not be upgraded without changing the install status of
another package will be left at their current version.

apt-get dist-upgrade dist-upgrade in addition to performing the function
of upgrade, also intelligently handles changing depen-
dencies with new versions of packages. dist-upgrade
command may remove some packages in order to sat-
isfy the upgrade request.

Additionally, apt also supports the option -t RELEASE which can be passed to all the requests
above to override the preferences of apt (see Section 3.4.1) and to force the preference to a
certain release.

Meta-installer desiderata Contains relevant user preferences that can be used by the in-
staller to discriminate among different possible solutions. This item is specific to the meta-
installer. In the case of apt the file /etc/apt/preferences lists the user preferences used by
the apt pinning algorithm (see Section 3.4.1).

Outcome Contains the outcome of the meta-installer. If the meta installer was successful,
then it contains the new local package status. If the meta-installer was unable to satisfy the
user request, then it contains the error message either in free-text format or a structured error
description. In the case of apt and aptitude, the error is in free-text format stored in a CDATA
section.

Deliverable D2.2 Version 1.0 page 31 of 45

August 19, 2010

backports.org from January 2009
debian from Mars 2005

debian-ports from October 2008
debian-security from Mars 2005
debian-volatile from Mars 2005

Figure 3.1: Debian archive coverage on snapshot.debian.org

3.2 Instrumenting apt-get to produce traces

Dudf-save is a command-line wrapper for apt-get and aptitude. It collects all package meta-
data that concerns a user request, as well as the request itself and the output of the meta-
installer, and creates from this a problem description in Debian-DUDF format (Section 3.1),
which may then be optionally uploaded to a server (see Section 3.3).

A simple invocation of dudf-save (e.g. dudf-save apt-get -s install firefox) by default
creates a compressed DUDF file in the local directory. As a fully extensional Debian-DUDF
document might occupy several tens of megabytes, dudf-save implements an intensional opti-
mization relying on the snapshot.debian.org service. Such a service hosts snapshots of the
Debian archive since 2005 (see Table 3.2 for the covered archives) and offers a query interface
that permits to check whether specific files have been stored as snapshots or not. Among the
files that need to be stored in a Debian-DUDF document, snapshot.debian.org can store
release files (*Release pattern) and packages files (*Packages pattern).

By default, each time dudf-save needs to store a package or release file, it queries snapshot.
debian.org,1 using the SHA1 checksum of the given file as a key. If the file is stored on
snapshot.debian.org then only its SHA1 checksum is stored in the Debian-DUDF, wrapped
into a <include href="..."> element, otherwise the whole file is stored.

The above “interaction protocol” between dudf-save and snapshot.debian.org requires net-
work connectivity during DUDF generation. While we do not consider this to be a relevant
constraint—network connectivity is usually available at package installation time, in order to be
able to retrieve packages from the network—an option --self-contained is offered to disable
all intensional optimizations.

As a consequence of the above, the size of a Debian-DUDF document might vary, mainly
in accordance with the usage (or not) of intensions to represents packages and release files.
According to our observations it may vary between a few hundred kilobytes to five megabytes
(of bzip2-compressed data).

The upload to the Mancoosi servers may be done immediately after the creation of the Debian-
DUDF document (using the --upload command line option) or as a batch using a simple
script.

The complete list of options supported by Debian-DUDF is reported in Figure 3.2, whereas an
example session of using dudf-save is given in Figure 3.3.

1using the JSON-based interface described at http://git.debian.org/?p=mirror/snapshot.debian.org.

git;a=blob_plain;f=API;hb=HEAD

Deliverable D2.2 Version 1.0 page 32 of 45

snapshot.debian.org
snapshot.debian.org
snapshot.debian.org
snapshot.debian.org
http://git.debian.org/?p=mirror/snapshot.debian.org.git;a=blob_plain;f=API;hb=HEAD
http://git.debian.org/?p=mirror/snapshot.debian.org.git;a=blob_plain;f=API;hb=HEAD

August 19, 2010

dudf-save [OPTION]. . . PKGMANAGER [ARG] . . .

ARGs will be passed to PKGMANAGER unmodified

-b, --backend=TEXT
force a specific (supported) package manager (default: guess
package manager from the command line)

-c, --comment=TEXT
store additional comments (default: no comment)

-C, --self-contained
store information extensively; in particular, store APT lists
verbatim rather than as snapshot.debian.org URLs. -C will
avoid several network lookups, but dramatically increase DUDF
size. (default: use snapshot.debian.org)

-i, --uid=ID
set a specific unique identifier (default: generate one)

-n, --nocompress
do not compress DUDF (default: compress using bzip2)

-p, --upload
upload DUDF to the Mancoosi contest server (default: no upload)

-s, --hostid=ID
choose a specific host id; passing the empty string disable
host id usage (default: read from configuration, if any, or
ignore it)

-t, --tags=TAGS
set a list of comma-separated tag to tag the DUDF (default: no tags)

-u, --url=URL
set URL for DUDF upload (default: http://mancoosi.debian.net/dudf/upload)

-h, --help
show this help text

--version
provide version information about dudf-save

Figure 3.2: Dudf-save command line options

Deliverable D2.2 Version 1.0 page 33 of 45

August 19, 2010

$dudf-save apt-get -s install firefox

INFO:root:dudf: adding /var/lib/dpkg/status
INFO:root:dudf: adding /etc/apt/preferences

INFO:root:dudf: found Packages.bz2 SHA1 for
/var/lib/apt/lists/ftp.debian.org_debian_dists_unstable_main_binary-amd64_Packages:
f96af220886939dfc0e03f0cd378d4d417209fb3

INFO:root:snapshot.d.o hit for f96af220886939dfc0e03f0cd378d4d417209fb3
INFO:root:dudf: storing APT list

ftp.debian.org_debian_dists_unstable_main_binary-amd64_Packages as SHA1

INFO:root:dudf: found Packages.bz2 SHA1 for
/var/lib/apt/lists/mancoosi.debian.net_debian_unstable_Packages:
e2550072ebf06cfb25c2a69267666e3da0eaadc5

INFO:root:dudf: storing APT list
mancoosi.debian.net_debian_unstable_Packages verbatim

INFO:root:snapshot.d.o hit for 8b70448d65fbb6082625b77eea79b352dec9379b
INFO:root:dudf: storing APT Release

ftp.debian.org_debian_dists_unstable_Release as SHA1

INFO:root:dudf: storing APT Release mancoosi.debian.net_debian_unstable_Release verbatim

Reading package lists...
Building dependency tree...
Reading state information...
Package firefox is not available, but is referred to by another package.
This may mean that the package is missing, has been obsoleted, or
is only available from another source
E: Package firefox has no installation candidate

INFO:root:Saving DUDF report to dudf-20100630-114702.xml.bz2 (can take a while ...)
INFO:root:DUDF report stored in: dudf-20100630-114702.xml.bz2

Figure 3.3: An example session with dudf-save. Empty lines and line breaks have been inserted
for readability. The tool uses an intensional representation of package listings and release files
when the checksums hits an entry in snapshot.debian.org, otherwise it falls back on an
extensional (verbatim) representation.

Deliverable D2.2 Version 1.0 page 34 of 45

August 19, 2010

Figure 3.4: The Debian-dudf list page

3.3 Transmitting reports to UPD

Dudf documents generated by dudf-save can be optionally uploaded to the UPD servers. These
documents, collected in anonymous form, will be then used to build a database of installation
problems and train specialized solvers.

Dudf can be uploaded either upon creation using the --upload command line option, or in batch
mode using a simple upload script (available in the dudf-save package). Dudf are transferred
via http to the UDP servers parsed and stored in a database. The list, in Figure 3.4, of the
submitted dudf is available at the url http://mancoosi.debian.net/dudf/list.

Deliverable D2.2 Version 1.0 page 35 of 45

http://mancoosi.debian.net/dudf/list

August 19, 2010

3.4 Debian DUDF to CUDF translation

In this section we explain the details of the Debian DUDF to CUDF translation. The purpose
of the conversion is to preserve the semantics of the Debian archive format in the resulting
CUDF document. First we explain how to translate the universe, coping with syntactic and —
more importantly — semantic differences between CUDF and the Debian native formats that
are embedded in Debian-DUDF. Then we discuss how we translate the meta-installer request
into a CUDF request. The latter part is specific to the particular meta-installer used. Here we
focus on the meta-installer apt.

3.4.1 The Debian apt pinning mechanism

In order to correctly translate Debian installation requests one must understand the so-called
pinning mechanism of apt.

Several versions of the same package can be available at the same time when considering packages
lists from multiple distributions (for example, stable and testing). In order to give a priority
ordering to all available versions, apt assigns a numerical value to each package called pin-
priority. Subject to dependency constraints, apt then selects the version with the highest
priority for installation. The apt preferences file can be used to override the priorities that apt
assigns to package versions by default, thus giving the user control over which one is selected
for installation. The action of changing the default priority for a package is called pinning. The
pin-priority is, a priori, not related to version numbers: when choosing among different available
versions, apt will choose the version with the highest pin-priority, not the most recent package
according to version.

The apt preferences file /etc/apt/preferences can be used to control which versions of pack-
ages will be selected for installation. apt assigns a priority to each file in the package universe
according either to a default policy or to the directives contained in the preferences file. When
several versions of the same package are available to be installed then apt chooses the version
of the package with the highest priority.

The complete specification of the format of the apt preference file can be found in the man
page apt preferences (5). Here we give two examples. The rule on the right of Figure 3.5
specifies that all packages belonging to the release unstable have a priority of 50. The Pin line
specifying the keyword release has a number of optional arguments (i.e. version, origin,
etc) to refine the selection. The rule on the left side of Figure 3.5 specifies that the package
perl with versions matching the regular expression 5.8* has priority 1001.

Package: perl
Pin: version 5.8*
Pin-Priority: 1001

Package: *
Pin: release unstable
Pin-Priority: 50

Figure 3.5: apt pinning stanzas.

Note. Special cases exists to avoid gratuitous downgrades. The apt meta-installer, by default,
does not allow to downgrade a package. However this behavior can be overwritten by specifying
a priority that exceeds 1000.

Deliverable D2.2 Version 1.0 page 36 of 45

August 19, 2010

Pinning algorithm

The pinning algorithm considers two keys elements. The first, the target release is, if set, the
single distribution to be considered during the installation process. It can be specified in the
configuration file /etc/apt/apt.conf or directly from the command line request. By default
the target release is not set. The second, the pinning-priority (or priority) is a positive integer
associated to each package. The apt pinning algorithm computes the priority of each package
as follows:

If the target release is not specified, then apt simply assigns priority 100 to all installed packages
and priority 500 to all un-installed packages. Otherwise, the value of the priority for a package
is :

100 : to the version that is already installed (if any).

500 : to the versions that are not installed and do not belong to the target release.

990 : to the versions that are not installed and belong to the target release.

Priorities settings can be defined either by generically specifying the priority of a release or
a section which the package belongs to, or specifically by indicating the package name and a
version.

3.4.2 Translating a Debian DUDF universe into a CUDF universe

The translation from a Debian universe into a DUDF universe needs to address not only obvious
syntactic differences but also semantic differences. In particular, the conversion of the Debian
universe involves the following three steps:

1. Version and package name normalization,

2. Adding self conflicts, and

3. Virtual package normalization.

Version and name normalization The CUDF specification [TZ09a] requires version num-
bers to be integers. In order to normalize Debian versions, it is necessary to collect for each
package all versions mentioned in the document (including in conflicts and dependencies), and
to sort these versions in ascending order according to the Debian version comparison function
(see Section 5.6.12 of [Pro10b]). Then, the versions are mapped to integers 1, 2, . . ., so that the
order is preserved.

Furthermore, CUDF syntax also requires a normalization on package names by escaping char-
acters that are not permitted by the CUDF specification.

Self conflicts Debian semantics does not allow more than one version of the same package to
be installed at the same time. In order to make this constraint explicit in the CUDF document,
we add to each package a self conflict without a version.

This implies that we have to rename any virtual package that carries the same name as a concrete
package. Without this renaming, installation of a package providing some virtual package

Deliverable D2.2 Version 1.0 page 37 of 45

August 19, 2010

p together with a concrete package p would be artificially excluded by package p conflicting
with p.

For example, consider the following Debian packages:

Package: foo
Version: 1

Package: foo
Version: 2

Package: bar
Version: 42
Provides: foo

In Debian semantics, package foo (in either version 1 or 2) can be installed together with
package bar. Exactly the same file, but interpreted in CUDF semantics, would allow to install
versions 1 and 2 of foo at the same time, which is not possible in Debian. We hence have
both versions of foo conflict with foo in order to retrieve the mutual exclusion between both
versions of foo:

Package: foo
Version: 1
Conflicts: foo

Package: foo
Version: 2
Conflicst: foo

Package: bar
Version: 42
Provides: foo

This renaming has the unwanted side-effect that now foo and bar are in conflict. We hence
rename the virtual package provided by bar, and obtain finally:

Package: foo
Version: 1
Conflicts: foo

Package: foo
Version: 2
Conflicst: foo

Package: bar
Version: 42
Provides: foo--virtual

In the next paragraph we will see a second case where virtual packages must be renamed.

Deliverable D2.2 Version 1.0 page 38 of 45

August 19, 2010

Virtual package normalization In Debian, a package can be both a virtual package and
a concrete package. Dependencies and Conflicts on virtual packages possibly carry a version
constraint (Section 7.5 of [Pro10b]). If they do not carry a version constraint then both virtual
packages and concrete packages may be used to satisfy a dependency, and both are relevant for
conflicts. If a relation carries a version constraint then only concrete packages are relevant. On
the other hand, Provides in Debian do not carry a version, and can never satisfy a dependency
on a package that carries a version constraint. In CUDF, however, provides without a version
constraint are quantified universally over all available versions.

For example, consider the following Debian packages:

Package: foo
Version: 1
Depends: bar >= 2

Package: bar
Version: 2

Package: extra
Version: 2
Provides: bar

The package foo has a constrained dependency on bar which is in turn provided by the package
extra. In Debian, this dependency can only be satisfied by the concrete package bar and not
by the concrete package extra since the virtual package bar provided by extra cannot satisfy
a dependency with a version constraint. If we were to propose a näıve translation from the
fragment above to CUDF then there would be a mismatch between the Debian and the CUDF
semantics. In particular, in the latter case, the package extra would allow to satisfy foo’s
dependencies, while in Debian this is not the case.

In order to reconcile the two different semantics of Debian and CUDF we perform the following
translation:

• All package names p in some provides property for which there exists a concrete package
with the same name or a version constraint associated to it are replaced by a new package
name p--virtual.

• All relations without a version constraint to a package that exists in the DUDF document
as virtual package are expanded to an alternative consisting of all matching concrete or
(renamed) virtual packages.

• All relations without a version constraint that match only concrete packages in the DUDF
document are left untouched, since for concrete packages the Debian semantics and CUDF
semantics coincide.

• All relations carrying a version constraint are left untouched as they are not going to
match a virtual package anyway (since these have been renamed)

For instance, consider the following Debian package set - ignoring fields that are inessential here
- where the package bar is both a concrete package and a virtual package (provided by the
package foo).

Deliverable D2.2 Version 1.0 page 39 of 45

August 19, 2010

Package: foo
Provides: bar

Package: bar
Depends: foo

Package: baz
Depends: bar

The corresponding CUDF document is as follows, where the virtual package bar is replaced by
a new package name bar--virtual and the dependency of the package baz is replaced by a
disjunction as it is not constrained.

Package: foo
Provides: bar--virtual # it’s a concrete-virtual package
Conflicts: foo

Package: bar
Depends: foo
Conflicts: bar # self conflict !

Package: baz
Depends: bar | bar--virtual
Conflicts: baz

Note that in the example, using the Debian semantics, package foo and package bar can be
installed together. Without the renaming packages foo and bar could not be installed together
in CUDF because of the self conflict.

A concrete example of the conversion of a Debian package description to CUDF format is as
follows :

Package: 6tunnel
Priority: optional
Section: net
Installed-Size: 68
Maintainer: Thomas Seyrat <tomasera@debian.org>
Architecture: i386
Version: 0.11rc2-2
Depends: libc6 (>= 2.3.6-6)
Filename: pool/main/6/6tunnel/6tunnel_0.11rc2-2_i386.deb
Size: 12810
MD5sum: 5471e156d43755878763ec51a86ac1aa
SHA1: 8af63219150ad7079e5fb412c37b0b8e78904159
SHA256: 192db6cede7fc2794bccc6662b29f6935e84a59bb5cbf64b15989d114bc15c8a
Description: TCP proxy for non-IPv6 applications

The CUDF conversion results in the following stanza where additional fields not relevant to
CUDF have been omitted:

Deliverable D2.2 Version 1.0 page 40 of 45

August 19, 2010

Package: x6tunnel
Version: 0
Depends: libc6 >= 1
Conflicts: x6tunnel

3.4.3 Translating a Debian DUDF request to a CUDF request

The main semantic difference between the apt installation algorithm and the CUDF semantic is
related to the package selection mechanism specified in apt by the pin priority. The translation
of the apt pinning mechanism to CUDF can greatly restrict the space of possible solutions by
imposing a behavior that exactly mimics apt’s.

Mapping apt requests

The user request of the meta-installer apt is an invocation of the command apt-get. The
command line is embedded as-is in the DUDF document. We support the following options
considering the package priority computed as in Section 3.2 and expressed as an optimization
criterion. The option -t release and the / and = operators are just short-cuts to modify
the pin-priority of a specific package.

request action
apt-get install package is trivially translated to the “Install” request, with no

version requirements
apt-get install package=version is trivially translated to the “Install” request with a

strict (i.e., ”=”) version requirement
apt-get install package/release is translated to “Install” requests for a specific ver-

sion, just after having looked up the needed version
according to the requested release

apt-get remove package is trivially translated to the “Remove” request, with
no version requirements

apt-get upgrade is translated as for “upgrade” and additionally adding
“Keep: package” to all installed packages

apt-get dist-upgrade is translated by listing all installed packages to the
“Upgrade” request

apt-get pinning information is added as an additional property to each CUDF package (see
Section 3.2). For each CUDF package we add an extra field “Pin-Priority” of type integer. The
priority of each package is computed from the APT preferences file and command line options.

Deliverable D2.2 Version 1.0 page 41 of 45

August 19, 2010

3.5 Concluding remarks on Debian

3.5.1 Measures

In this section we provide some measures regarding the size of Debian archives. The numbers
were recorded on 18/04/2008, on a i386 Debian Sid machine. The numbers per se are basically
meaningless since they are affected by many factors, they are just there to provide a rough idea
of the order of magnitude of a potential submission. Also, they have been measured with du,
as such the sizes are disk blocks which overestimate the real byte count.

/etc/apt/sources.list contains all sections of both Debian Sid and Debian Testing, a well-
known repository for multimedia applications which for legal reasons cannot be distributed by
Debian, as well as the usual security repositories.

section plain compressed (gzip) notes
package status

/var/lib/dpkg/status 2.5 Mb 748 Kb 160 Kb / 24 Kb with
trimmed stanzas

package universe
/var/lib/apt/lists/* Packages 48 Mb 14 Mb reduces to 14 Kb for

just sending the list
md5sums together with
sources.list

requested action
resulting package status

3.5.2 Towards a better representation of apt pinning

At the moment, the use of pinning information is left to be encoded and used by a meta-installer.
A more generic solution would be to represent pinning information as a hard constraint in the
MooML language [TZ09b] which has been proposed as a supplement to CUDF.

However, by implementing precisely the same pinning algorithm of apt-get in MooML, all solvers
will behave exactly as apt-get instead of doing “better” than apt-get, even if a better solution
to the request exists. In particular, since the incompleteness of apt comes exactly from the fact
that it uses pin-priority strictly (i.e., it does not allow to install a package whose pin-priority
is not the highest, even if that would allow to fix a broken dependency), all solvers will be as
incomplete (w.r.t. the optimization criteria) as apt-get.

The strategy we have chosen for future work is therefore to map apt pinning information to an
optimization criterion to be maximized in order to mimic apt’s behavior, but without ruling out
the existence of other possible solutions. For each CUDF package we add an extra field “Pin-
Priority” of type integer. The priority of each package is computed from the apt preferences
file. Then the CUDF solver will try to maximize one of the following criteria expressed in
MooML [TZ09b]:

• maximize the number of installed packages whose “Pin-Priority” is highest

• minimize the (sum of) the differences between the “Pin-Priority” of installed packages
and their potential highest ”Pin-Priority”

Deliverable D2.2 Version 1.0 page 42 of 45

Part A

Urpmi lookup algorithm
pseudo-code

#looks up the packages to be installed or upgraded when
#the given input is submitted to urpmi
sub lookup_packages_for_installation(input) {

if (input matches exactly a package name) {
if ((option(--fuzzy) and (input matches partially other package names)) {
if ((option(-a)) {

return (all matching packages)
} else if (one matching package is present in /etc/urpmi/prefer(.vendor).list) {

return (preferred matching package)
} else {

return (error with match list)
}

}
return (matching package)

}

if (input matches exactly one provide name) {

if (several packages provide the matched provide) {
if (one matching package is present in /etc/urpmi/prefer(.vendor).list) {

return (preferred matching package)
} else {

print (choice prompt listing all the matching packages)
}

} else
return (package providing the matching provide)

}

if (input matches partially a package name) {
if (multiple results) {

if ((option(-a)) {

43

August 19, 2010

return (matching packages)
} else if (one matching package is present in /etc/urpmi/prefer(.vendor).list) {

return (preferred matching package)
} else {

return (error with match list)
}

}
return (matching package)

}
return (error not-found-message)

}

#looks up the packages to be uninstalled when the given
#input is submitted to urpme
sub lookup_packages_for_uninstallation(input) {
if (input matches exactly a package name) {

return (matching package)
}
if (input matches partially a package name) {

if (option(-a)) {
return (matching packages)

} else {
return (error with match list)

}
}
return (error not-found-message)

}

Deliverable D2.2 Version 1.0 page 44 of 45

Bibliography

[511] Mancoosi WorkPackage 5. UPDB infrastructure to collect traces of ugradeability
problems in CUDF format. Deliverable 5.3, The Mancoosi Project, February 2011.
To appear.

[Cro06] Douglas Crockford. The application/json media type for javascript object notation,
2006. http://www.ietf.org/rfc/rfc4627.txt.

[Man08] Mandriva. Synthesis format, 2008. http://wiki.mandriva.com/en/Format_of_
synthesis.hdlist.cz_index.

[Pro10a] Mancoosi Project. Knowledge and issues on rpm metadata, 2010. http://wiki.
mancoosi.org/bin/view/Project/RPMMetadata.

[Pro10b] The Debian Project. Debian policy manual, 2010. http://www.debian.org/doc/
debian-policy/.

[rpm10] rpm version comparaison pb, 2010. https://qa.mandriva.com/show_bug.cgi?id=
55810.

[TZ08] Ralf Treinen and Stefano Zacchiroli. Description of the CUDF format. Deliverable
5.1, The Mancoosi Project, November 2008. http://www.mancoosi.org/reports/
d5.1.pdf.

[TZ09a] Ralf Treinen and Stefano Zacchiroli. Common upgradeability description format
(CUDF) 2.0. Technical Report 3, The Mancoosi Project, November 2009. http:
//www.mancoosi.org/reports/tr3.pdf.

[TZ09b] Ralf Treinen and Stefano Zacchiroli. Expressing advanced user preferences in compo-
nent installation. In Roberto Di Cosmo and Paola Inverardi, editors, IWOCE 2009
- International Workshop on Open Component Ecosystem, affiliated with ESEC/FSE
2009, Amsterdam, The Netherlands, August 2009.

[TZ09c] Ralf Treinen and Stefano Zacchiroli. Upgrade description formats: generalities and
DUDF submission format. Technical Report 3, The Mancoosi Project, November
2009. http://www.mancoosi.org/reports/tr1.pdf.

45

http://www.ietf.org/rfc/rfc4627.txt
http://wiki.mandriva.com/en/Format_of_synthesis.hdlist.cz_index
http://wiki.mandriva.com/en/Format_of_synthesis.hdlist.cz_index
http://wiki.mancoosi.org/bin/view/Project/RPMMetadata
http://wiki.mancoosi.org/bin/view/Project/RPMMetadata
http://www.debian.org/doc/debian-policy/
http://www.debian.org/doc/debian-policy/
https://qa.mandriva.com/show_bug.cgi?id=55810
https://qa.mandriva.com/show_bug.cgi?id=55810
http://www.mancoosi.org/reports/d5.1.pdf
http://www.mancoosi.org/reports/d5.1.pdf
http://www.mancoosi.org/reports/tr3.pdf
http://www.mancoosi.org/reports/tr3.pdf
http://www.mancoosi.org/reports/tr1.pdf

	Introduction
	Anonymity of Submissions
	Overview of the DUDF format
	Overview of the CUDF format
	Structure of this document

	RPM-based distributions
	The DUDF format for RPM-based distributions
	The RPM-DUDF format
	Package universe
	Package status

	The Mandriva DUDF format
	Requested action
	Examples of requested actions
	Desiderata
	Outcome

	Caixa Mágica DUDF format
	Requested action
	Desiderata
	Outcome

	Instrumenting RPM meta-installers
	apt-rpm (Caixa Mágica)
	urpmi (Mandriva)

	Transmitting problem reports for RPM-based distributions
	Caixa Mágica
	Mandriva

	Translating RPM-DUDF to CUDF
	RPM universe conversion
	RPM comparison function
	Version expansion
	CUDF version mapping
	Dependency mapping
	Extra properties

	Caixa Mágica request translation
	Mandriva request translation

	Debian-based distributions
	The Debian-DUDF format
	Instrumenting apt-get to produce traces
	Transmitting reports to UPD
	Debian DUDF to CUDF translation
	The Debian apt pinning mechanism
	Pinning algorithm

	Translating a Debian DUDF universe into a CUDF universe
	Translating a Debian DUDF request to a CUDF request
	Mapping apt requests

	Concluding remarks on Debian
	Measures
	Towards a better representation of apt pinning

	Urpmi lookup algorithm pseudo-code

