
Description of the CUDF Format
Deliverable 5.1

Nature: Deliverable
Due date: 01.11.2008
Start date of project: 01.01.2008
Duration: 36 months

November 20, 2009

Specific Targeted Research Project
Contract no.214898
Seventh Framework Programme: FP7-ICT-2007-1

A list of the authors and reviewers

Project acronym MANCOOSI
Project full title Managing the Complexity of the Open Source Infrastructure
Project number 214898
Authors list Ralf Treinen <Ralf.Treinen@pps.jussieu.fr>

Stefano Zacchiroli <zack@pps.jussieu.fr>
Internal review Pietro Abate, Sophie Cousin, Olivier Lhomme, Claude Michel,

Jean Charles Régin, Michel Rueher
Workpackage number WP5
Deliverable number 1
Document type Deliverable
Version 1
Due date 01/11/2008
Actual submission date 01/11/2008
Distribution Public
Project coordinator Roberto Di Cosmo <roberto@dicosmo.org>

Deliverable D5.1 Version 1.0 page 2 of 59

mailto:Ralf.Treinen@pps.jussieu.fr
mailto:zack@pps.jussieu.fr
mailto:roberto@dicosmo.org

November 20, 2009

Abstract

This document contains several related specifications, together they describe the document
formats related to the solver competition which will be organized by Mancoosi.

In particular, this document describes:

DUDF (Distribution Upgradeability Description Format), the document format to be used to
submit upgrade problem instances from user machines to a (distribution-specific) database
of upgrade problems;

CUDF (Common Upgradeability Description Format), the document format used to encode
upgrade problems, abstracting over distribution-specific details. Solvers taking part in the
competition will be fed with input in CUDF format.

Conformance

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL
NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OP-
TIONAL” in this document are to be interpreted as described in RFC 2119 [Bra97].

Deliverable D5.1 Version 1.0 page 3 of 59

November 20, 2009

Deliverable D5.1 Version 1.0 page 4 of 59

Contents

1 Introduction 9

1.1 Two different upgrade description formats . 9

1.2 Problem data flow and submission architecture 11

1.3 Glossary . 12

2 Distribution Upgradeability Description Formats 15

2.1 Upgrade problems . 15

2.2 Content . 16

2.3 Extensional vs intensional sections . 19

2.4 Serialization . 20

3 Common Upgradeability Description Format 23

3.1 Overview of CUDF (non-normative) 25

3.2 Content . 27

3.2.1 Generalities . 28

3.2.2 Types . 29

CUDF type library . 30

3.2.3 Property schemata . 35

Package description . 35

Problem description . 37

3.2.4 Document structure . 38

Global constraints . 38

3.3 Formal semantics . 39

3.3.1 Abstract syntax and semantic domains . 39

3.3.2 Installations . 40

3.3.3 Consistent package descriptions . 41

3.3.4 Semantics of requests . 42

5

November 20, 2009

3.3.5 Comments on the semantics (non-normative) 43

3.4 Integrating optimization criteria . 43

3.5 Serialization . 45

3.5.1 Overall CUDF file syntax . 45

3.5.2 Information item serialization . 46

3.5.3 CUDF file parsing . 46

3.6 Generating CUDF (non-normative) 48

4 Conclusion 49

A DUDF skeleton serialization example 51

B RELAX NG schema for DUDF 53

C CUDF serialization example 55

Deliverable D5.1 Version 1.0 page 6 of 59

List of Figures

1.1 Problem submission data flow . 11

2.1 DUDF detailed structure . 18

3.1 CUDF overall structure . 27

3.2 CUDF types and their relationships. 31

3.3 CUDF detailed structure . 38

A.1 XML serialization of DUDF . 52

B.1 RELAX NG schema for DUDF . 54

7

November 20, 2009

Deliverable D5.1 Version 1.0 page 8 of 59

Chapter 1

Introduction

The aim of work package 5 (WP5) of the Mancoosi project is to organize a solver competition
to attract the attention of researchers and practitioners to the upgrade problem as it is faced
by users of F/OSS distributions [DC08]. The competition will be run by executing solvers
submitted by the participants on upgrade problem descriptions (or “problems”, for short) stored
in upgradeability problem data bases (UPDBs). A substantial part of the problems forming
UPDBs, if not all of them, will be real problems harvested on user machines; users will be given
tools to submit on a voluntary basis problems to help Mancoosi assemble UPDBs.

In such a scenario, problem descriptions need to be saved on filesystems (for long term storage)
and transmitted over the network (to let them flow from user machines to UPDBs). This
document gives the specifications of document formats used to represent problem instances in
the various stages of their lives.

1.1 Two different upgrade description formats

Upgrade description formats serve at least two different purposes:

Problem submission problems will be created on distant user machines and need to flow to
more centralized UPDBs. Both the user machine itself and the network connection may
have only limited resources.

Problem description problems will be stored by Mancoosi to form a corpus of problems on
which the solvers taking part in the competition will be run.

In the Mancoosi Description of Work we announced the definition of a so-called Common Up-
gradeability Description Format, abbreviated CUDF, that would serve these two purposes. It
turned out that having one single format for both purposes is not practical since both pur-
poses come with contradicting constraints: problem submissions should take as few resources
as possible on a user’s machine, and they may contain references that are meaningful only in
the context of a particular distribution. On the other hand, problem descriptions as used for
the competition are not subject to strong resource limitations but must be self-contained and
must have a formally defined semantics that is independent from any particular distribution.

As a consequence, we decided to define two different formats, one for each of the main purpose:

9

November 20, 2009

DUDF (Distribution Upgradeability Description Format) This is the format used to
submit a single problem from user machines to a UPDB. DUDF is specialized for the
purpose of problem submission.

DUDF instances (or “DUDFs” for short) need to be as compact as possible in order to
avoid inhibiting submissions due to excessive bandwidth requirements. To this end, the
DUDF specification exploits distribution-specific information, such as the knowledge of
where distribution-wide metadata are stored and where metadata about old packages can
be retrieved from mirrors that may or may not be specific to Mancoosi.

Since a DUDF is by its very nature distribution dependent there cannot be a a single com-
plete DUDF specification. We rather present in Chapter 2 a generic specification of DUDF
documents, the DUDF skeleton, which has to be instantiated to a full specification by all
participating distributions. Documents to be published separately, one per distribution,
will describe how the general scheme is instantiated by the various distributions.

All in all we have a family of DUDF specification instances: Debian-DUDF, RPM-DUDF,
etc.; one for each possible way of filling the holes of the generic DUDF specification. How
many instances should be part of the DUDF family? We recommend to have one instance
for each distribution taking part in the competition. While different distributions may
share a common packaging format, they may also allow for different means of compact
representations, for example due to the different availability of mirrors with historical
information. Furthermore, there are sometimes subtle semantic differences from distri-
bution to distribution, hidden behind a shared syntax. To discriminate among different
distributions, an appropriate distribution information item is provided. Of course, noth-
ing prohibits different distributions to agree upon the same DUDF specification instance
in case they find that this is feasible.

CUDF (Common Upgradeability Description Format) This is the common format used
to abstract over distribution-specific details, so that solvers can be fed with upgradeabil-
ity problems coming from any supported distribution. The CUDF format is specifically
designed for the purpose of self-contained problem description.

The conversion from a given DUDF to CUDF expands the compact representations that
have been performed for the purpose of submission, exploiting distribution-specific knowl-
edge. At the end of such a conversion, a problem described in CUDF is self-contained,
only relying on the defined semantics of an upgradeability problem, which includes the
starting state, the user query, and probably non-functional quality criteria.

Structure of this document This document is structured as follows: Chapter 1 gives intro-
ductory information about the various kinds of documents involved in the organization of the
competition and about the problem submission infrastructure. Chapter 2 contains the actual
specification of the DUDF skeleton, while Chapter 3 contains the specification of both syntax
and semantics of CUDF; both those chapters are normative and define what it takes for a
document to be valid with respect to its specification. Appendixes to this document contain
various non-normative information, which may be helpful to implementors of DUDF or CUDF.
Documents to be made available separately will describe how each distribution is instantiating
the DUDF skeleton.

Deliverable D5.1 Version 1.0 page 10 of 59

November 20, 2009

Figure 1.1: Data flow of UPDB submissions, from users to the corpus of problems for the
competition

1.2 Problem data flow and submission architecture

Figure 1.1 gives an overview of the data flow of upgrade problems from user machines to the
actual solver competition; several stages of transmission and filtering, as well as several different
formats are involved.

Problems originate on user machines and are serialized in DUDF format (i.e. distribution-
specific DUDF instances) using some client software. DUDF documents created that way will
then be submitted to distribution-specific repositories using some other client software. All
involved client software will be provided by distributions, such software will constitute imple-
mentations of the DUDF specification.

Distributions need to set up their own repositories to collect DUDF submissions coming from
their users. Submissions that do not match the minimal quality requirements of DUDF will be
rejected during a validation phase; this mainly boils down to rejecting problems that are not
reproducible, see Chapter 2 for more details. All submissions that survive the validation phase
are stored by the distribution editor in a distribution-specific UPDB.

Periodically, problems collected by distributions will be injected into a common (i.e. distribution-
independent) UPDB, hosted on an infrastructure provided by Mancoosi as a project resource.
The injection happens in CUDF format since distribution-specific details are not useful for the
purpose of running the competition. Distributions are in charge of performing the conversion
from DUDF to CUDF as they are the authoritative entities for the semantics of their proper
DUDF instance and for resolving distribution-specific references. When exactly the conversion
is performed is not relevant as long as CUDFs are ready to be injected when the periodic
injections take place.

Deliverable D5.1 Version 1.0 page 11 of 59

November 20, 2009

Among all the problems collected in the common UPDB, a subset of “interesting” problems
will then be selected to form a corpus of problems on which the competition will be run. The
act of selecting problems will not change the document format: the resulting corpus will still
be a set of CUDF documents, chosen as a subset of the common UPDB.

1.3 Glossary

This section contains a glossary of essential terms which are used throughout this specification.

Distribution A collection of software packages that are designed to be installed on a common
software platform. Distributions may come in different flavors, and the set of available
software packages generally varies over time. Examples of distributions are Mandriva,
Caixa Mágica, Pixart, Fedora or Debian, which all provide software packages for the the
GNU/Linux platform (and probably others). The term distribution is used to denote both
a collection of software packages, such as the lenny distribution of Debian, and the entity
that produces and publishes such a collection, such as Mandriva, Caixa Mágica or Pixart.
The latter are sometimes also referred to as distribution editors.

Still, the notion of distribution is not necessarily bound to FOSS package distributions,
other platforms (e.g. Eclipse plugins, LaTeX packages, Perl packages, etc.) have similar
distributions, similar problems, and can have their upgrade problems encoded in CUDF.

Installer The software tool actually responsible for physically installing (or de-installing) a
package on a machine. This task particularly consists in unpacking files that come as
an archive bundle, installing them on the user machine in persistent memory, probably
executing configuration programs specific to that package, and updating the global sys-
tem information on the user machine. Downloading packages and resolving dependencies
between packages are in general beyond the scope of the installer. For instance, the in-
staller of the Debian distribution is dpkg, while the installer used in the RPM family of
distributions is rpm.

Meta-installer The software tool responsible for organizing a user request to modify the col-
lection of installed packages. This particularly involves determining the secondary actions
that are necessary to satisfy a user request to install or de-install packages. To this
end, a package system allows to declare relations between packages such as dependencies
or conflicts. The meta-installer is also responsible for downloading necessary packages.
Examples of meta-installers are apt-get, aptitude and URPMi.

Package A bundle of software artifacts that may be installed on a machine as an atomic unit,
i.e. packages define the granularity at which software can be added to or removed from
machines. A package typically contains an archive of files to be installed on a machine,
programs to be executed at various stages of the installation or de-installation of a package,
and metadata.

Package status A set of metadata maintained by the installer about packages currently in-
stalled on a machine. The package status is used by the installer as a model of the software
installed on a machine and kept up to date upon package installation and removal. The
kind of metadata stored for each package varies from distribution to distribution, but
typically comprises package identifiers (usually name and version), human-oriented infor-
mation such as a description of what the package contains and a formal declaration of

Deliverable D5.1 Version 1.0 page 12 of 59

November 20, 2009

the inter-package relationships of a package. Inter-package relationships can usually state
package requirements (which packages are needed for a given one to work properly) and
conflicts (which packages cannot coexist with a given one).

Package universe The collection of packages known to the meta-installer in addition to those
already known to the installer, which are stored in the package status. Packages belonging
to the package universe are not necessarily available on the local machine—while those
belonging to the package status usually are—but are accessible in some way, for example
via download from remote package repositories.

Upgrade request A request to alter the package status issued by a user (typically the system
administrator) using a meta-installer. The expressiveness of the request language varies
with the meta-installer, but typically enables requiring the installation of packages which
were not previously installed, the removal of currently installed packages, and the upgrade
to newer version of packages currently installed.

Upgrade problem The situation in which a user submits an upgrade request, or any abstract
representation of such a situation. The representation includes all the information needed
to recreate the situation elsewhere, at the very minimum they are: package status, package
universe and upgrade request. Note that, in spite of its name, an upgrade problem is not
necessarily related to a request to “upgrade” one or more packages to newer versions, but
may also be a request to install or remove packages. Both DUDF and CUDF documents
are meant to encode upgrade problems for different purposes.

Deliverable D5.1 Version 1.0 page 13 of 59

November 20, 2009

Deliverable D5.1 Version 1.0 page 14 of 59

Chapter 2

Distribution Upgradeability
Description Formats

This chapter contains the specification of the Distribution Upgradeability Description Formats
(DUDFs). Their purpose is to encode upgrade problems as faced by users, so that they can be
submitted as candidate problems for the solver competition organized by the Mancoosi project.

Additionally, DUDF can also be used as a format to store information about the execution
of a meta-installer on a user machine. A possible use case for this is to trace information for
the purpose of composing problem reports against meta-installers. This is an added benefit for
distribution editors which is, however, beyond the scope of the Mancoosi project itself.

Technically, the DUDF specification is not complete, in the sense that some parts of DUDF
documents are under-specified and called “holes”. How to fill in those holes is a distribution-
specific decision to be taken by each distribution implementing DUDF. The overall structure of
DUDF documents is defined by the current document and is called the DUDF skeleton.

2.1 Upgrade problems

Upgrade problems manifest themselves at each attempt to change the package status of a given
machine using a meta-installer. One of the aims of WP5 for the solver competition is to
collect upgrade problem descriptions which faithfully describe the upgrade problems faced by
users when invoking a meta-installer on their machine. Informally, “faithfully” means that the
descriptions should contain all information needed to reproduce the problem reported by the
user, and possibly to find better solutions if they exist.

As discussed in Chapter 1, problem descriptions will be encoded as DUDFs and submitted to
distribution-specific repositories. Two kinds of submissions are supported by DUDF:

(a) Sole problem descriptions.

(b) Pairs 〈problem description, problem outcome〉 where the outcome is a representation of
the actual result of the originating meta-installer which has been used to generate the
problem.

Pairs problem/outcome are the kind of submissions to be used for the competition. Their
validity as submissions can be checked by attempting to reproduce them upon receipt (see

15

November 20, 2009

below), and the outcome of competing solvers can be compared not only among each other, but
also with respect to the originating meta-installers in order to check whether they are doing
better or worse than the contenders.

Sole problem descriptions cannot be checked for reproducibility. As such they are not interesting
for the competition since they can not be “trusted”. Still they can be useful for purposes other
than the competition. In particular they can be used—as well as pairs problem/outcome—
by users to submit bug reports related to installers, meta-installers, and also incoherences in
package repositories [EDO06]. This intended use is the main reason for supporting them in this
specification.

2.2 Content

A DUDF document consists of a set of information items. Each item describes a part of the
upgrade problem faced by the user. In this section we list the information items (or sections)
that constitute the different kinds of DUDF submissions.

The actual format and content of each information item can either be fully described by this
specification, or be specific to some of its instances (and hence not described here). In the
latter case, we distinguish among parts which are specific to the installer and parts which are
specific to the meta-installer. Installer-specific parts have content and format determined by
the installer (e.g. rpm, dpkg, etc.) in use; similarly, parts specific to the meta-installer are
determined by the meta-installer (e.g. apt-get, URPMi, etc.) in use.

Unless otherwise stated, all information items are required parts of DUDF documents.

The submission of a sole upgrade problem description consists of the following information items:

Package status (i.e. installer status) the status of packages currently installed on the user
machine.

This item is installer-specific, but can also contain data specific to the meta-installer in
case the meta-installers save some extended information about local packages. A concrete
example of such extended information is the manual/automatic flag on package installation
used by aptitude on Debian to implement “garbage collection” of removed packages.

Package universe the set of all packages which are known to the meta-installer, and are hence
available for installation. This item is specific to the meta-installer.

The package universe is composed of one or more package lists; a number of well-known
formats do exist to encode package lists. The package universe can generally be composed
of several package lists, each encoded in a different format. Each package list must be
annotated with a unique identifier describing which format has been used to encode the
package list. A separate document will be published to list the set of well-known package
list formats, as well as their unique identifiers.

Requested action the modification to the local package status requested by the user (e.g.
“install X”, “upgrade Y”, “remove Z”). This item is specific to the meta-installer.

Desiderata user preferences to discriminate among possible alternative solutions (e.g. “mini-
mize download side”, or “do not install experimental packages”). The exact list of possible
user preferences depends on the distribution, and on the capabilities of the meta-installer
(for instance, for Debian’s apt these may be defined in the file /etc/apt/preferences).

Deliverable D5.1 Version 1.0 page 16 of 59

November 20, 2009

This information item is optional.

Tool identifiers two pairs 〈name, version〉 uniquely identifying the installer and meta-installer
which are in use, in the context of a given distribution. One pair identifies the installer
used, the other the meta-installer used.

Distribution identifier a string uniquely identifying the distribution run by the user (e.g.
debian, mandriva, pixart, . . .), among all the implementations of DUDF.

As far as GNU/Linux distributions are concerned, a hint about what to use as a distribu-
tion identifier comes from the file /etc/issue. Its content should be used as distribution
identifier where possible.

Timestamp a timestamp (containing the same information encoded by dates in RFC822 [Cro82]
format, i.e. the same as used in emails) to record when the upgrade problem has been
generated.

Problem identifier (i.e. uid) a string used to identify this problem submission univocally,
among other submissions sent to the same distribution.

The intended usage of this information item is to let CUDF documents cross-reference
the DUDF documents which were used to generate them.

In addition to what is stated above, the submission of a pair problem/outcome also contains
the following information items:

Outcome either the new local package status as seen by the used meta-installers (in case of
success) or an error message (in case of failure, i.e. the meta-installer was not able to
fulfill the user request). The error message format is specific of the used meta-installer, it
can range from a free-text error message to a structured error description (e.g. to point
out that the requested action cannot be satisfied since a given package is not available in
the package universe).

It is worth noting that Mancoosi is not interested in all kinds of errors, and that not all errors
reported to the end user mean a failure that is interesting for the competition. Mancoosi is in-
terested only in errors stemming from the resolution of package relations, which is the case when
the meta-installer is not able to solve the various constraints expressed in the summary infor-
mation about the packages. Mancoosi Workpackage 5 is not interested in runtime errors such as
installation failures due to disks running out of space or execution errors of maintainer scripts.
These errors, however, may still be relevant for submitting problem reports to a distribution
vendor using the DUDF format.

Note that tool identifiers are part of the problem description since the requested action depends
on the tools the user is using. Since available actions, as well as their semantics, can change
from version to version, tool versions are also part of the problem description.

The distribution identifier is needed to avoid bloating the number of specified DUDFs too much.
We observe that similar distributions (e.g. Debian and Ubuntu) can submit upgrade problems
using the very same submission format (say Debian-DUDF). However, even though extensional
data (see Section 2.3) are independent of which of the similar distributions were used, intensional
data are not. Indeed, there is no guarantee that package p at version v is the same on Debian
and Ubuntu; similarly there is no guarantee that an intensional package universe reference
originated on Debian is resolvable using Ubuntu historical mirrors and vice-versa. Using the

Deliverable D5.1 Version 1.0 page 17 of 59

November 20, 2009

- dudf:

- version: 1.0
- timestamp: timestamp
- uid: unique problem identifier
- distribution: distribution identifier
- installer:

- name: installer name
- version: installer version

- meta-installer:
- name: meta-installer name
- version: meta-installer version

- problem:
- package-status:

- installer: installer package status

- meta-installer: meta-installer package status
- package-universe:

- package-list1 (format: format identifier ; filename: path): package list
- . . .
- package-listn (format: format identifier ; filename: path): package list

- action: requested meta-installer action

- desiderata: meta-installer desiderata
- outcome (result: one of ”success”, ”failure”):

- error: error description (only if result is “failure”)
- package-status: (only if result is “success”)

- installer: new installer package status

- meta-installer: new meta-installer package status

Figure 2.1: The DUDF skeleton: information items and holes corresponding to problem/out-
come submissions.

distribution identifier we can reuse the same DUDF instance for a set of similar distributions
since the distribution identifier allows us to resolve the ambiguity.

A required property for each submission of problem/outcome pairs is reproducibility : an unre-
producible submission is useless and a waste of user bandwidth. When submissions of prob-
lem/outcome pairs are received they have to be validated for reproducibility. This can be
achieved by keeping (possibly stripped down) copies of commonly used tools on the server side
and by running them on the received problem description to check that the outcome matches
the reported one. Given that we are not taking into account runtime upgrade errors, an er-
ror should manifest itself on the server side if and only if it has manifested itself on the user
machine.

Together, the information items supported for submissions of problem/outcome pairs denote
an outline called DUDF skeleton. In the skeleton, the following information items are holes:
package status, package universe, requested action, desiderata and outcome. Fully determined
DUDF instances are made of this specification, together with distribution-specific documents

Deliverable D5.1 Version 1.0 page 18 of 59

November 20, 2009

describing how those holes are filled. A sketch of the DUDF skeleton is reported in Figure 2.1.

Installer- or meta-installer-specific holes are denoted by framed text. Additional information
(annotations or attributes) of information items are reported in parentheses. The names used
for information items are for presentational purposes, yet actually normative (see Section 2.4).

Note that in the skeleton, the package universe is sketched in its full generality: it is made of
several package lists, each of which is annotated with its package list format. It is possible,
though not granted, that to each package list corresponds a single file on the filesystem; in
that case it is possible to annotate package lists with a filename containing the absolute paths
corresponding to them.

2.3 Extensional vs intensional sections

We have to minimize space consumption (in terms of bytes) in order not to discourage sub-
missions by wasting the user’s resources. In general, all the information items required for
submissions are locally available on the user machine; in principle they are all to be sent as
part of a submission. However, while some of the information items are only available on the
user machine (e.g. current local package status and requested action) some other items can be
grouped into parts stored elsewhere (e.g. package lists forming the current package universe)
which have possibly been replicated on the user machine in a local cache.

We distinguish two alternative ways of sending submission information items (or sections):
a section can either be sent intentionally or extensionally. An extensional section is a self-
contained encoding of some information available on the user machine, for example a dump of
the current local package database, or a dump of the current package universe.

An intentional section is a non self-contained encoding of some information available on the
user machine, consisting of a reference pointing to some external resource. De-referencing the
pointer, i.e. substituting the contents of the external resource for it, leads to the corresponding
extensional section. For instance, several distributions have package repositories available on
the Internet which are regularly updated. The current package universe for a given user machine
may correspond to package indexes downloaded from one or several such repositories. A set of
checksums of such indexes is an example of an intensional package universe section. Provided
that a historical mirror of the distribution repositories is available somewhere, a corresponding
extensional package universe can be built by looking up and then expanding the checksums in
the historical mirror.

The use of intensional sections instead of extensional ones is the most straightforward space
optimization we recommend to implement in collecting problem submissions. Here are some
use cases for similar optimization:

• Most likely intentionality has to be used for the current package universe, though it will
require setting up historical mirrors (the package metadata is sufficient for that, it will
not be necessary to mirror the packages themselves).

• Even though the local package status appears to be a section that should forcibly be sent
extensionally (as the information are not stored elsewhere), some partial intension can be
designed for it.

For example, assuming that the pair 〈pkg name, pkg version〉 is a key univocally deter-

Deliverable D5.1 Version 1.0 page 19 of 59

November 20, 2009

mining a given package (version uniqueness assumption1), one can imagine sending as
the local package status a set of entries 〈〈pkg name, pkg version〉, pkg status〉, letting
the server expand further package metadata (e.g. dependency information) on reception
of the submission. In those rare cases where the version uniqueness assumption is not
verified, the check for reproducibility is sufficient to spot non-reproducible submissions
and discard them.

• The upgrade problem outcome has to be sent extensionally as to check for its reproducibil-
ity upon reception. Of course, the same optimizations as proposed in the previous point
are applicable to outcomes in case of success.

Any section of a submission can be sent intentionally or extensionally, independently from the
other sections; different choices can be applied to different submissions. In fact, the choices
of how to submit the various sections are driven by the need of fulfilling the reproducibility
requirement. For instance, if a given package universe is composed like the union of several
remote package repositories, we will need to know all the involved packages, potentially coming
from any repository in order to reproduce a submission. While a suitable intention might be
available for some repositories, this may not be the case for some others (e.g. we might be
lacking the needed historical mirror). In such a situation the proper solution is to send some
repository reference intentionally, and the whole package listing of others extensionally.

It is up to the DUDF submission tool to know which parts of the package universe can be sent
intentionally and which cannot.

2.4 Serialization

In this section we describe how to serialize any given instance of DUDF to a stream of bytes
so that it can be serialized on disk (e.g. to create a local archive of problem descriptions to be
submitted as a single batch) or over the network (for the actual submission to a distribution-
specific problem repository).

The serialization of DUDF is achieved by describing a mapping from the DUDF skeleton to an
XML [BPSM+06] tree. The actual serialization to bytes can then be done following the usual
XML serialization rules.

To obtain the XML tree of a DUDF problem/outcome submission, one only needs to start from
the corresponding outline (see Figure 2.1) and do the following:

1. Create a root element node called dudf, put it in the (default) namespace identified by
http://www.mancoosi.org/2008/cudf/dudf.

2. Add an attribute dudf:version2 to the root node, the value of which value is the value
of the subsection version of the dudf section in the DUDF outline.

3. Starting from the DUDF outline root (and excluding the already processed version sec-
tion), traverse the outline tree, adding child elements the general identifier of which is
the section name used in the DUDF outline and the content of which is the result of
recursively processing its content in the DUDF outline.

1This is assumption is not necessarily well-founded: users can rebuild packages locally, obtaining different
dependency information, while retaining 〈pkg name, pkg version〉

2The namespace prefix dudf: is bound to http://www.mancoosi.org/2008/cudf/dudf

Deliverable D5.1 Version 1.0 page 20 of 59

November 20, 2009

4. For annotated outline elements (e.g. package lists composing the package universe, which
are annotated with format identifiers), map annotations to XML attributes of the relevant
XML elements (note that the attributes should be explicitly prefixed with dudf:, as in
XML attributes do not inherit the default namespace).

The same procedure is applied to obtain the XML tree of a DUDF sole problem submission,
except that the outcome section (which should be missing anyhow in the starting DUDF outline)
has to be skipped.

A non-normative example of serialization from the DUDF skeleton of Figure 2.1 to XML can
be found in Appendix A, Figure A.1.

Deliverable D5.1 Version 1.0 page 21 of 59

November 20, 2009

Deliverable D5.1 Version 1.0 page 22 of 59

Chapter 3

Common Upgradeability
Description Format

This chapter contains the specification of the Common Upgradeability Description Format
(CUDF). The purpose of such a format is to encode real upgrade problems, abstracting over de-
tails specific to a user distribution or a package manager, so that problems coming from different
environments can be compared and treated uniformly. For the specific purposes of Mancoosi,
upgrade problems encoded in CUDF format will be used to form a corpus of problems to be
used in a solver competition.

The specification of CUDF is guided by the following general design principles:

Be agnostic towards distribution details The main purpose of CUDF, as reflected by
its name, is to be a common format to be used to encode upgrade problems coming from
heterogeneous environments. The main environments we are considering are FOSS distributions,
but other software deployment platforms face similar upgrade needs. As a consequence, the key
design principle of CUDF is to be agnostic with respect to distribution specific details such as
the used package system, the used installer and meta-installer, etc. The final goal is to be able
to compare problems coming from different platforms in a uniform settings upgrade, including
at the very minimum all platforms for which a DUDF implementation (see Chapter 2) has been
provided.

Stay close to the original problem There are several encodings that can be considered
after removing all distribution-specific details [MBC+06]. Since CUDF aims to be as close as
possible to the original problem we choose to avoid an encoding where the characteristic features
of the original problem are abstracted away and are no longer distinguishable. There are various
reasons backing this choice:

• Preserve the ability for humans to inspect problems encoded in CUDF.

Ideally, users having submitted a problem (via submission of a DUDF document) should
be able to look at their CUDF encoding and recognize the upgrade situation.

• Avoid bias towards specific upgrade planning techniques and implementations.

Specific encodings (e.g. using a representation in propositional logic, or geared to con-
straint programming) bear the risk of giving an advantage or disadvantage to certain

23

November 20, 2009

resolution techniques. Since one of our goals is to provide a set of problems to stimu-
late the advancement in upgrade planning, CUDF strives to stay independent of specific
techniques and implementation details.

• Make life easy to legacy tools (installers and meta-installers) to interact with CUDF.

Ideally, we want legacy tools to be able to take part in the solver competition we are
organizing. That would be easy to achieve as long as the CUDF encoding still resembles
something with which installers and meta-installers are familiar. Conversely, using an
encoding that is too abstract would constitute an obstacle for the state-of-the-art tools.

Extensibility CUDF has no explicit support (yet) for specifying optimization criteria to
the end of choosing the “best” possible solution among all possible solutions of a given upgrade
problem. The reason is that until the end of the competition, criteria will not need to be specified
as part of the submitted problems. It would be enough to have criteria fixed externally (e.g.
the competition can have several “tracks”, each of which evaluates solution quality according
to a single optimization criterion), as long as all the information needed to evaluate the quality
of a solution are encoded in CUDF.

This leads to the need of having an extensible format to encode upgrade problems and in partic-
ular package metadata. Indeed, since we cannot anticipate all possible interesting optimization
criteria we can neither anticipate all the metadata that shall be stored in CUDF documents.
Hence the CUDF specification establishes a type system to be used for typing package metadata
(see Section 3.2.2) and a set of core set of package metadata (see Section 3.2.3). Additional
metadata can be added in the future by providing their schemata, in terms of the available
types.

For example, to run a competition track in which the installed size of all packages on the
system should be minimized, the track organizers can state that, in addition to the core package
metadata, each package must be equipped with an Installed-Size property, the type of which
is posint. The track rules will then describe how to determine the best solution, on top of the
semantics of positive integers.

Transactional semantics Problems are encoded in CUDF according to the point of view of
the meta-installer, rather than to the point of view of an installer. This means that our notion
of solution correctness (see Section 3.3) considers the resulting package status and not how
that status is obtained on the target machine. In particular, the order of package installations
and removals or even the various phases of package deployment and installation (downloading,
unpacking, etc.) are beyond the scope of the CUDF encoding.

In a sense, CUDF assumes that it is possible to pass from the package status as described in a
CUDF document to any (correct) status found by a meta-installer in a transactional way. As an
example of a practical implication of this design principle, CUDF does not distinguish between
Debian’s Depends and Pre-Depends; note that this is coherent with the semantic encoding
of [MBC+06], from which the CUDF semantics takes its inspiration.

Use plain text format On a more technical side, CUDF aims to be a simple to parse (read)
and simple to generate (write) format. The reason is as simple as our interest in providing a
tool to reason about future better upgrade planners, ignoring distracting details such as parsing
or pretty printing. Plain text is the universal encoding for information interchange formats in

Deliverable D5.1 Version 1.0 page 24 of 59

November 20, 2009

the Free Software community [Ray03], using a plain text format makes it easy for contenders
to adapt tools to our format. Moreover, it is an implicit need if we want users to be able to
“look” at CUDF problems and understand them, without the need of specific tools. Similarly,
this principle also implies that standard serialization formats should be preferred for CUDF.
In fact, the CUDF specification describes the informative content of a CUDF document and
its semantics on one hand, and how to serialize that content to disk (using already existing
standards and technologies) on the other hand.

3.1 Overview of CUDF (non-normative)

This section gives an overview of the syntax and semantics of CUDF. A precise definition of
the CUDF format will be given in Section 3.2, while a mathematical definition of its semantics
will be given in Section 3.3. The current section is not normative, please refer to Sections 3.2
and 3.3 for precise definitions.

A CUDF document consists of a list of package description items, and a user request. It
is recommended that the user request be listed at the end of the CUDF document. In the
concrete representation (see Section 3.5) each item is a stanza consisting of one or several lines
of text. It is recommended that successive stanzas be separated by empty lines even though
this is not mandatory.

Every line in a stanza starts with the word denoting the first property of that stanza, followed
by the ":" separator and then the value of the property, the only exception to this rule is the
line “Problem:” which starts the stanza describing the query, and which does not necessarily
have a meaningful value. Other properties of the same stanza come next, following the same
serialization conventions.

A package description stanza starts with the property Package the value of which is the name
of the package. Package names are strings of length at least two, starting on a lowercase ASCII
letter, and containing only lower or uppercase ASCII letters (case is significant), numerals,
dashes "-" and dots ".". The order of all other properties in a package description stanza is
not specified.

The only other mandatory property, besides Package, in a package description stanza is Version,
the value of which is a positive (non-null) integer value. There may be at most one package
description stanza for any given pair of package name and version.

Then there are a number of properties that are relevant for the formal semantics but that are
only optional:

• The Installed property (the values of which are of type bool, with default value false)
indicates whether a package is installed or not. It is a priori allowed to have several
versions of the same package installed. The setting of this field in the stanzas of a CUDF
document describe the “initial” configuration of a machine, i.e., the configuration in which
the user request is evaluated.

• The Keep property has as possible values version, package, feature (being optional,
it can also be omitted, in that case its value is None, a value shared by all omitted
optional properties). This value is only relevant in case the Installed property is true.
Package installations may evolve by changing the Installed property associated to pairs
of package name and package version. The Keep property defines constraints on possible
evolutions of the installation:

Deliverable D5.1 Version 1.0 page 25 of 59

November 20, 2009

version means that this particular version of a package must not be removed,

package means that at least one version of that package must remained installed,

feature means that all features (see below) provided by this version of the package must
continue to be provided,

None puts no constraint on possible evolutions of the installation.

Then there are three properties which define relations between packages:

• The Provides property is a possibly empty list of names of so-called features, also called
virtual packages. In this list, features may be declared either by giving an exact version,
or without mentioning a version. Features are frequently used in RPM-like packaging
system to declare the fact that a package installs a particular file on disk, and also both
in RPM and Debian-like packaging systems to declare that a package provides a certain
abstract functionality, like for instance mail-transport-agent or postscript-reader. A list of
several features is interpreted as that package realizing all the features in the list, with
the version as given in the list, or of all possible versions when no particular version is
mentioned in the list.

The default value of that property is the empty list (that is, no feature is provided).

• The Depends property has a complex dependency on the existence of packages or on fea-
tures for value. Simple dependencies are given as the name of the package or feature, and
may carry in addition a constraint on the version number. Version constraints can be of
any of the form = v, != v, > v, < v, <= v or >= v where v is a version number. Com-
plex dependencies are obtained by combining dependencies with conjunctions (denoted
by ",") and disjunctions (denoted "|"). However, dependencies are limited to so-called
conjunctive normal forms, that is conjunctions of disjunctions.

The default value of this property is the formula True (that is no particular dependency
constraint).

• The Conflicts property has a list of packages (or features), possibly equipped with
package-specific version constraints for value; version constraints are the same as for the
Depends property. Such a conflict list describes a list of packages that must not be
installed. For instance, if package p of version 5 conflicts with package q >= 7 then we
are not allowed to install version 5 of p together with any of the versions 7 or greater of q.
However, it would be allowed to install version 5 of p together with version 6 of q.

There is a special treatment for so-called self-conflicts: any conflicts stemming from a pair
of package p and version v are ignored when checking the conflicts of this pair (p, v). For
instance, when package p of version 5 indicates that it conflicts with package p (without
version constraint) this means that version 5 of package p cannot be installed together
with any other version of p. A conflict of package p in version 5 with package p in version
5 is allowed as a special case but does not have any effect.

Self-conflicts of this kind are often used by packaging systems in order to express that only
one (version of a) package implementing a certain feature may be installed at any given
time. For instance, both the package sendmail and the package postfix (of any version)
may provide the feature mail-transport-agent and also conflict with mail-transport-agent.
The effect of this is that it is not possible to install sendmail and postfix together (or
any of them together with any other package providing mail-transport-agent), but it does

Deliverable D5.1 Version 1.0 page 26 of 59

November 20, 2009

package description1

package description2

· · ·
package descriptionn
problem description

Figure 3.1: Overall structure of a CUDF document; information items are represented according
to the canonical CUDF ordering.

allow to install sendmail or postfix since the conflict stemming from the package itself is
ignored.

The default value of this property is the empty list (that is, no conflict declared here).

Finally, the CUDF document contains a stanza representing the user request. This stanza starts
with the line Problem:, and it may contain an Install property, a Remove property, and a
Upgrade property. Each of these properties is optional, their value is a list of packages (or
features) possibly equipped with version constraints; the default value of these three properties
is the empty list. The Install property gives packages that are demanded to be installed, while
the Remove gives packages that must be removed. The Upgrade property has a similar meaning
as Install, the difference being that the former requires that for every package in that list only
one version be installed, and that this version be greater or equal to any version of that package
previously installed.

3.2 Content

A CUDF document (or simply “CUDF”) is composed of a set of information items. Each item
represents a part of the original upgrade problem.

Each information item belongs exactly to one of the following two classes:

Package description items specify packages that have a role in the upgrade problem de-
scribed by a given CUDF.

A CUDF document contains several package description information items. In a typical
scenario there is one such item for each package known to the package manager, including
both locally installed packages (as part of the local status) and packages available from
remote repositories known to the meta-installer (as part of the package universe).

Problem description items describe other information items that contribute to create the
upgrade problem, but which are not specific to any particular package. A CUDF document
must contain exactly one problem description item.

Intuitively, the item contains global information about the upgrade problem. At the very
minimum, that information contains the request submitted by the user to the package
manager.

CUDF documents consist of a single problem description item and several package description

Deliverable D5.1 Version 1.0 page 27 of 59

November 20, 2009

items.1 While there is no strict imposition on the relative order of information items in actual
CUDFs, this specification assumes the canonical ordering of having first all package descriptions
and then the single problem description, for uniformity of presentation. A schematic represen-
tation of a typical CUDF and its canonical ordering is given in Figure 3.1. A similar, yet more
detailed, pictorial representation of CUDFs is given later on in Figure 3.3.

CUDF implementations should implement the canonical ordering whenever possible.

3.2.1 Generalities

Each information item consists of a set of properties. Each property has a name and a value
(i.e. each property consists of a name-value pair).

A property name is a string of Unicode [Con06] characters matching the additional constraint of
being an identifier. An identifier is a non-empty string composed only of characters belonging
to the following character classes:

Lowercase Latin letters from “a” (Unicode code point U+0061) to “z” (U+007A), in the or-
dering induced by Unicode code points.

Uppercase Latin letters from “A” (U+0041) to “Z” (U+005A).

Arabic numeral digits from “0” (U+0030) to “9” (U+0039).

Separators the character “-” (U+002D)

Additionally, identifiers must start with one of the lowercase or uppercase Latin letters defined
above.

A property value is a typed value, belonging to some set. We call this set the set of values or
the type domain of the type associated to a property. The type is fixed for each property: any
given property can only assume values having the very same type and coming from the very
same set of values; the description of each supported property in this specification states what
is the type of its values.

A property can be either optional or required. A property is optional if its value is indicated as
optional in the property description, otherwise it is required. Required properties must always
be present as part of the information items they belongs to, while optional properties may not
be present. Optional properties that are present in CUDFs must assume a value belonging to
its type domain. Optional properties can have a default value; it must be a value belonging to
its type domain.

Optional properties that are not present in CUDFs and have a default value v are treated as
properties assuming value v. It is indistinguishable whether the value was actually specified in
the CUDF serialization or not. Optional properties that are not present in CUDFs and do not
have an optional value are treated as properties assuming the distinguished value None. The
value None does not belong to any set of values which can be written in CUDF serializations;
this feature allows us to distinguish whether an optional property has been specified in actual
CUDFs or not.

1There is no constraint on the number of package description items, but problems represented as CUDFs with
no package description items are uninteresting. CUDFs are expected to include at least one package description
item, and usually many more than just one.

Deliverable D5.1 Version 1.0 page 28 of 59

November 20, 2009

Each property supported by CUDF can be fully specified using a property schema. Such a
schema consists of:

• the name of the property;

• the type of property values;

• the information item the property belongs to;

• the optionality of the property (i.e. whether the described property is required in each
instances of the information item it belongs to), optionality is either “required” or “op-
tional”;

• for optional properties only, an optional default value. It is possible to give a default value
for an optional property, but is not mandatory to do so.

Actual CUDF documents must contain all required properties for each information item. For
both required and optional properties, the type of property values must match the type pre-
scribed by property schemata.

Section 3.2.3 gives the schemata of the core property set supported by CUDF. Nevertheless
the set of properties which can be given to build information items is open-ended (open-world
assumption), and not restricted to the core set. Information items can contain extra properties
not prescribed by this specification as long as their names do not clash with names of properties
in the core set. It is up to implementations to make use of such extra properties, to define
their names and the type of their values. Of course all extra properties are optional as far as
conformance to this specification is concerned.

3.2.2 Types

As discussed above, each property value has a type which is fixed for any given property. A
type is a set of values, which is also called value space or domain of a given type. Let t be a
type, we denote with V(t) its value space. Moreover,a lexical space L(t) is associated to each
type, and it denotes the set of possible representations of all values belonging to the value space
as strings of Unicode characters. The relationships between the value spaces and lexical spaces
are as follows:

• For each l ∈ L(t) there is a unique corresponding value parset(l) ∈ V(t). The function
parset(·) is the parsing (partial) function used to parse syntactic values into semantic
values.

• For each v ∈ V(t) there can be several l ∈ L(t) such that v = parset(l), i.e. the parsing
function is not necessarily one-to-one.

Subtyping Interesting relationships also exist between types, in particular subtyping. A type
t2 is said to be a subtype of a supertype t1 (written t2<:t1) if V(t2) ⊆ V(t1), that is, when the
domain of the subtype is contained in the domain of its supertype. Given t2<:t1, the lexical
space of t2 can be obtained by restricting the lexical space of t1 to all elements which can
be parsed to elements of the value space of t2, i.e. L(t2) = {l ∈ L(t1) | parset1(l) ∈ V(t2)}.
Therefore the parsing function for a given subtype can be obtained by simply reusing the parsing

Deliverable D5.1 Version 1.0 page 29 of 59

November 20, 2009

function of the supertype treating as parsing errors all values not belonging to the domain of
the subtype.

As a consequence of the above definitions and properties, each type can be defined by describing
its value and lexical spaces, as well as the semantics of its parsing functions. Subtypes can be
defined by simply giving restrictions on the value space of supertypes. The section further gives
the definitions for all types used by CUDF.

Conventions In this specification abstract values belonging to the value space are denoted
using mathematical notation.

Lexical values are denoted by double-quoted strings typeset in monospace font and encoded in
UTF-8. The double-quotes are used for presentational purposes of this specification and are not
part of the actual lexical value. Such a value can be found by considering the Unicode string
corresponding to the given UTF-8 string, after having removed double quotes. For example,
the lexical value "foo" denotes the Unicode string of length 3, composed of the three lowercase
letters “f” (Unicode code point U+0066), “o” (U+006F), and “o” again.

Functions can either be described intentionally or extensionally. In the former case, types are
specified via natural language explanation of their semantics, or reference to functions described
elsewhere. In the latter case they are defined by enumerating argument/result pairs using the
following notation: {input1 → output1, . . . , inputn → outputn}.

For the sake of brevity, several details about lexical values and parsing functions are deferred
to external specifications, most notably to “XML Schema Part 2: Datatypes” [BM04], which
specify a set of simple datatypes, providing for each of them notions similar to the one introduced
above: value space, lexical space and parsing functions. When deferring a definition to the
definition of the corresponding XML Schema datatype, we will write xs : fooXML Schema, where
“xs:foo” is the XML Schema datatype name.

Complex lexical spaces are sometimes described by the means of EBNF grammars [EBN96]
which use SmallCaps for non terminal symbols and double-quoted string as described above
for terminals. Grammars are always given with the productions of their start symbol first.
In order to avoid duplications, grammars appearing later on in this specification can reuse
symbols defined in previous grammars. When EBNF grammars are used, the definition of
parsing functions can be omitted and delegated to parsers built using the given grammar. For
the completeness of this specification it is enough to state how the values associated to non
terminals have to be translated to elements in the value space (i.e. to give the “semantic
actions” associated to grammar productions).

CUDF type library

In the presentation of the available CUDF types that follows, we first introduce all primitive
types, i.e. all those types that are not obtained via subtyping; then we describe derived types,
i.e. those that are obtained as subtypes of other (primitive or derived) types. As discussed
above, each derived type can be described by simply giving a restriction of the value space of
its supertype.

Figure 3.2 shows a diagram giving an overview of CUDF types and their relationships. In the
figure, directed straight arrows denote subtyping relationships, with the type pointed at being
the supertype; directed dashed arrows denote acquaintenance, i.e. the fact that the values of
one type contain values of other types, the latter being pointed at by the arrow. Transitive

Deliverable D5.1 Version 1.0 page 30 of 59

November 20, 2009

Figure 3.2: CUDF types and their relationships.

relationships are omitted from the figure.

Name bool
Description Boolean values
Value space The set of distinguished values {true, false}
Lexical space The set of strings { "true", "false", }
Parsing {"true"→ true, "false"→ false}

Name int
Description Integer numbers
Value space The set of integer numbers Z = {. . . ,−2,−1, 0, 1, 2, . . .} (Note that this

set is infinite, unlike legacy integers available in most programming lan-
guages.)

Lexical space The same lexical representation as the one used by the
xs : integerXML Schema, i.e. finite-length sequences of decimal dig-
its (U+0030–U+0039) with an optional leading sign (defaulting to "+").
For example: "-1", "0," "12678967543233", "+100000".

Parsing The same parsing function as the one used for xs : integerXML Schema

Name string
Description Unicode strings
Value space The set of—possibly empty—strings of arbitrary Unicode characters.
Lexical space Some (specified) character encoding supported by Unicode. For the

purpose of CUDF serialization the character encoding of choice is UTF-
8 (see Section 3.5).

Parsing The same parsing functions as the ones used for xs : stringXML Schema,
i.e. simply decoding from the used character encoding to Unicode char-
acter strings.

We assume the notion of the function length for Unicode strings, which is defined by counting
the number of Unicode characters (not bytes) forming a Unicode string in a given encoding. As
a consequence, the empty string "" has length 0.

Deliverable D5.1 Version 1.0 page 31 of 59

November 20, 2009

Name vpkg
Description Versioned package names
Value space The set of pairs 〈vpred , p〉 where p is a value of type pkgname (see

below) and vpred is either > (denoting that no version constraint has
been imposed on package name p) or a pair 〈relop, v〉 (denoting that a
specific version constraint is in effect on package name p). In the latter
case relop is one of {=, 6=,≥, >,≤, <} and v is a value of type posint
(see below).

Lexical space The set of strings matching the grammar:

VPkg ::= PkgName Sp + VConstr?
VConstr ::= Sp ∗ RelOp Sp + Ver Sp∗

RelOp ::= "=" | "!=" | ">=" | ">" | "<=" | "<"
Sp ::= " " (i.e. U+0020)

Ver ::= PosInt

where the nonterminal PkgName matches lexical values of pkgname (see
below) and PosInt those of posint (see below). The values resulting
from parsing VConstr, which match RelOp and Version respectively,
are used to form the internal pair 〈relop, v〉; similarly, the values result-
ing from parsing VPkg are used to form the external pair 〈vpred , p〉.

Parsing Induced by the grammar.
RelOp is parsed by the function: {"=" → =, "!=" → 6=, ">=" →
≥, ">"→ >, "<="→ ≤, "<"→ <}.

The semantics of versioned package names depend on the context where they appear. Generally,
package names without version constraints are to be intended as package predicates matching all
packages with a given name. Package names with a version constraint will additionally satisfy
the given version requirement.

Name vpkgformula
Description Formulae over versioned package names
Value space The smallest set F such that:

true ∈ F (truth)
V(vpkg) ⊆ F (atoms)∨
i=1,...,n ai ∈ F a1, . . . , an atoms ∈ F (disjunctions)∧
i=i,...,n di ∈ F d1, . . . , dn disjunctions ∈ F (conjunctions)

Lexical space The set of strings matching the following grammar:

Fla ::= AndFla

AndFla ::= OrFla (Sp ∗ "," Sp ∗ OrFla)∗
OrFla ::= AtomFla (Sp ∗ "|" Sp ∗ AtomFla)

AtomFla ::= VPkg

Parsing Induced by the grammar.
AtomFla nonterminals are parsed as atoms, OrFla as disjunctions of
the atoms returned by their AtomFlas, AndFla as conjunctions of the
disjunctions returned by their OrFlas.

Deliverable D5.1 Version 1.0 page 32 of 59

November 20, 2009

Note that formulae over versioned package names are always in conjunctive normal form (CNF),
i.e. they always have the shape of “conjunctions of disjunctions of atomic formulae”.

Name vpkglist
Description Lists of versioned package names
Value space The smallest set L such that:

[] ∈ L (empty lists)
p::l ∈ L p ∈ V(vpkg), l ∈ L (package concatenations)

Lexical space The set of strings matching the grammar:

VPkgs ::= "" | VPkg (Sp ∗ "," Sp ∗ VPkg)∗

Parsing Induced by the grammar.
"" is parsed as [], while an instance of VPkg followed by a list of ver-
sioned package names is parsed as package concatenation.

Name enum(s1, . . . , sn)
Description Enumerations
Value space Rather than a single type, enum is a type scheme defining infinite pos-

sible actual types. All those types are indexed by the set of symbols
{s1, . . . , sn}, for any such set a single type (an enumeration) is defined.
Each enumeration is a type, its values can be one of the symbols
s1, . . . , sn. Symbols must match the constraints of identifiers. For conve-
nience, in this specification symbols are written as strings, but without
the external double quotes, and prefixed by a single quote ’.

Lexical space {s ∈ L(string) | s is an identifier}
Parsing {"s"→ ’s | s is an identifier}

The parsing function is defined point-wise on each Unicode string match-
ing the constraints of identifiers. For each of them, the parsing function
returns a symbol, the name of which is that very same identifier.

For example, given the enumeration E = enum(′foo, ′bar, ′baz), we have the following: ′foo ∈
V(E), ′bar ∈ V(E), and ′baz ∈ V(E). Note that None is not part of any enumeration, but
optional properties having enumeration types can assume the None value as usual.

Name oneliner
Description One-liner Unicode strings
Value space oneliner is a subtype of string.

The set of, possibly empty, strings of Unicode characters not containing
any of the following “newline” characters: line feed (U+000A), carriage
return (U+000D).
Note that, in spite of xs : stringXML Schema not being a type available
for use in CUDF, CUDF oneliner is conceptually a subtype also of
xs : stringXML Schema obtained by removing newline characters from its
value space.

Lexical space As per subtyping.
Parsing As per subtyping.

Deliverable D5.1 Version 1.0 page 33 of 59

November 20, 2009

Name pkgname
Description Package names
Value space pkgname is a subtype of oneliner.

It is obtained allowing only strings that satisfy the following condition
in the value space:

• the string starts with a lowercase Latin letter

• the string only consists of: lowercase Latin letters, Arabic numeral
digits, dashes (U+002D), dots (U+002E)

• the string has length 2 or greater

Lexical space As per subtyping.
Parsing As per subtyping.

Name nat
Description Natural numbers
Value space nat is a subtype of int.

It is obtained by allowing only non-negative integers in the value space.
Lexical space As per subtyping.
Parsing As per subtyping.

Name posint
Description Positive natural numbers
Value space posint is a subtype of nat.

It is obtained by removing the number 0 from the value space of nat.
Lexical space As per subtyping.
Parsing As per subtyping.

Name veqpkg
Description Version-specific package names
Value space veqpkg is a subtype of vpkg.

It is obtained by removing all packages with version constraints other
than =, more formally: V(veqpkg) = {〈vpred , p〉 | 〈vpred , p〉 ∈
V(vpkg), vpred = > ∨ vpred = 〈=, v〉 for some v} from the value space
of vpkg.

Lexical space As per subtyping.
Parsing As per subtyping.

Deliverable D5.1 Version 1.0 page 34 of 59

November 20, 2009

Name veqpkglist
Description Lists of version-specific package names
Value space veqpkglist is a subtype of vpkglist.

It is obtained by using as value space only the smallest set L′ ⊆
V(vpkglist) such that:

[] ∈ L′ (empty lists)
p::l ∈ L′ p ∈ V(veqpkg), l ∈ L′ (package concatenations)

Lexical space As per subtyping.
Parsing As per subtyping.

3.2.3 Property schemata

Each of the information items supported by CUDF (either package or problem description items,
see Section 3.2) is composed of several properties. In this section we give the schemata for all
properties that can be part of package description items and problem description items.

Package description

A package description item describes several facets of a package.

Name Package
Type pkgname
Optionality required
Description Name of the package being described.

Name Version
Type posint
Optionality required
Description Version of the package being described.

Name Depends
Type vpkgformula
Optionality optional
Default true
Description Intentional representation of the dependencies of the package being de-

scribed.

Dependencies indicate which packages need to be installed to make a given package installable.
Dependencies are indicated as boolean CNF formulae over possibly versioned package names.
Dependencies are the most expressive relationships which can be stated among packages using
CUDF properties.

Deliverable D5.1 Version 1.0 page 35 of 59

November 20, 2009

Name Conflicts
Type vpkglist
Optionality optional
Default []
Description Intentional representation of packages which conflict with the package

being described.

Conflicts indicate which packages cannot be co-installed, in any given installation, together with
a given package. Note that the language to express conflicts is more limited than that used to
express dependencies: it consists of plain lists of possibly versioned package names, rather than
CNF formulae.

Also note that as far as CUDF is concerned there are no implicit conflicts assumed between
different versions of the same package, if they are intended they need to be explicitly specified
using the Conflicts property. According to the CUDF semantics this can be achieved by
declaring, for a package p, a conflict with p itself; see Section 3.3 for more information.

Name Provides
Type veqpkglist
Optionality optional
Default []
Description Features provided by the package being described.

A package can declare zero or more features that it provides. To abstract over package names,
other packages may declare relationships with such features. Packages can provide a specific
version of a given feature, or provide a feature without mentioning a version (meaning that all
possible versions of a given feature are provided by that package).

Name Installed
Type bool
Optionality optional
Default false
Description Flag stating whether or not the package being described is installed.

Two kinds of packages play a role in the upgrade process: currently installed packages consti-
tuting the local package status and (locally or remotely) available packages which are known to
the meta-installer and constitute the package universe. Installed distinguishes among these
two cases, it is true for packages which are part of the local status and false for those which
are part of the package universe. Other kinds of packages that do not play a role in the package
upgrade problem are not represented in CUDF.

Deliverable D5.1 Version 1.0 page 36 of 59

November 20, 2009

Name Keep
Type enum(′version, ′package, ′feature)
Optionality optional
Description Indication of which aspects of the package being described the user

wants to preserve across upgrades.

• ’version means preserving the current version, as recorded in the
package status.

• ’package means preserving at least one version of the package in
the resulting package status.

• ’feature means preserving all the provided features.

Note that it is not specified how the requirements of the Keep feature have to be fulfilled; in
the particular case of ’feature it is possible that the requirement gets fulfilled by replacing a
package by some other packages, which, together, provide the same features. See Section 3.3
for the formal specification of the meaning of the Keep property.

Problem description

Name Install
Type vpkglist
Optionality optional
Default []
Description List of packages the user wants to be installed.

Name Remove
Type vpkglist
Optionality optional
Default []
Description List of packages the user wants to be removed.

Name Upgrade
Type vpkglist
Optionality optional
Default []
Description List of packages the user wants to be upgraded to newer versions.

The properties Install, Remove and Upgrade provide the same mechanism for specifying the
target packages: lists of package names with optional version specifications. A properly com-
pleted Install action ensures that the requested packages are installed in the resulting package
status, on the contrary Remove ensures that they are not. Since CUDF supports multiple in-
stalled versions of the same package in principle there is no implicit need of removing other
packages due to homonym upon Install. Upgrade is similar to Install, but additionally en-
sures that only one version of each of the target packages is preserved in the resulting packages
status; it also ensures that newer versions of them get installed. See Section 3.3 for a formal
specification of the semantics of actions.

Deliverable D5.1 Version 1.0 page 37 of 59

November 20, 2009

package description1

- Package: package name (core properties)
- Version: package version
- Depends: package formula denoting dependencies
- Conflicts: list of conflicting packages
- Provides: list of provided features
- Installed: whether the package is installed or not
- Keep: optional preservation requirement
- Property name: property value (extra properties)
- . . .

· · ·
package descriptionn

- Package: package name (core properties)
- Version: package version
- . . .
- . . . (extra properties)

problem description

- Install: package installation request
- Remove: package removal request
- Upgrade: package upgrade request
- . . .

Figure 3.3: Detailed structure of a CUDF document with highlight of core properties.

3.2.4 Document structure

Putting it all together, the detailed structure of CUDF document is as depicted in Figure 3.3;
the figure has to be interpreted as a refined version of Figure 3.1, which we are now able to fill
with the properties described in the previous section. Note that all core properties are shown
in the figure, in spite of their optionality.

Global constraints

In addition to the per-property constraints reported in the previous section, CUDF documents
must respect extra constraints which are not specific to sole information items or properties.

Package/version uniqueness among all package description items forming a given CUDF,
there must not exist two package descriptions p1 and p2 such that they have the same
value of the property name and the same value of the property version, i.e. the pair of
property values 〈name, version〉 can be used as a “key” to look up package descriptions
in a given CUDF.

There is no strict imposition neither in specifying at least one of the Install/Remove/Upgrade
properties, nor in specifying non empty-lists as their values. Nevertheless, CUDFs representing
problems with empty queries are mostly uninteresting.

Deliverable D5.1 Version 1.0 page 38 of 59

November 20, 2009

3.3 Formal semantics

The semantics is defined in a style similar to [MBC+06], however, we now have to deal with an
abstract semantics that is closer to “real” problem descriptions, and that contains artifacts like
features. This induces some complications for the definition of the semantics. In [MBC+06] this
and similar problems were avoided by a pre-processing step that expands many of the notions
that we wish to keep in the CUDF format.

3.3.1 Abstract syntax and semantic domains

The abstract syntax and the semantics is defined using the value domains defined in Sec-
tion 3.2.2. In addition, we give the following definitions:

Definition 1 • Constraints is the set of version constraints, consisting of the value >
and all pairs (relop, v) where relop is one of =, 6=, <,>,≤,≥ and v ∈ V(posint).

• Keepvalues is the set of the possible values of the Keep property of package information
items, that is: {’version, ’package, ’feature, None}

The abstract syntax of a CUDF document is a pair consisting of a package description (as
defined in Definition 2) and a request (see Definition 4).

Definition 2 (Package description) A package description is a partial function

V(pkgname)× V(posint)
V(bool)×Keepvalues× V(vpkgformula)× V(vpkglist)× V(vepkglist)

The set of all package descriptions is noted Descr. If φ is a package description then we write
Dom(φ) for its domain. If φ(p, n) = (i, k, d, c, p) then we also write

• φ(p, n).installed = i

• φ(p, n).keep = k

• φ(p, n).depends = d

• φ(p, n).conflicts = c

• φ(p, n).provides = p

It is natural to define a package description as a function since we can have at most one package
description for a given pair of package name and version in a CUDF document. The function
is generally only partial since we clearly do not require to have a package description for any
possible pair of package name and version.

We define the removal operation of a particular versioned package from a package description.
This operation will be needed later in Definition 13 to define the semantics of package conflicts
in case a package conflicts with itself or a feature provided by the same package.

Deliverable D5.1 Version 1.0 page 39 of 59

November 20, 2009

Definition 3 (Package removal) Let φ be a package description, p ∈ V(pkgname) and n ∈
V(posint). The package description φ− (p, n) is defined by

Dom(φ− (p, n)) = Dom(φ)− {(p, n)}
(φ− (p, n))(q,m) = φ(q,m) for all (q,m) ∈ Dom(φ− (p, n))

Definition 4 (Request) A request is a triple (li, lu, ld) with li, lu, ld ∈ V(vpkglist).

In a triple (li, lu, ld), li is the list of packages to be installed, lu the list of packages to be updated,
and ld the list of packages to be deleted.

3.3.2 Installations

Definition 5 (Installation) An installation is a function from V(pkgname) to P (V(posint)).

The idea behind this definition is that the function describing an installation associates the set
of versions that are installed to any possible package name. This set is empty when no version
of the package is installed.

We can extract an installation from any package description as follows:

Definition 6 (Current installation) Let φ be a package description, the current package
installation of φ

iφ:V(pkgname)→ P (V(posint))

is defined by

iφ(p) := {n ∈ V(posint) | (p, n) ∈ Dom(φ) and φ(p, n).installed = true}

A package can declare zero or more features that it provides. We can also extract the features
provided by a package description:

Definition 7 (Current features) Let φ be a package description, the current features of φ

fφ:V(pkgname)→ P (V(posint))

is defined by

fφ(p) :=
⋃

p∈Dom(iφ)

(
⋃

n∈iφ(p)

expand-features(φ(p, n).provides))

where we define

expand-features((=, n), f) = {(f, n)}
expand-features(>, f) = {(f, n) | n ∈ V(posint)}

The second clause in the definition of expand-features mentioned above expresses the fact that
providing a feature without a version number means providing that feature at any possible
version.

In order to define the semantics of a CUDF document, we will frequently need to merge two in-
stallations. This will mainly be used for merging an installation of packages with an installation
of provided features. The merging operation is formalized as follows:

Deliverable D5.1 Version 1.0 page 40 of 59

November 20, 2009

Definition 8 (Merging) Let f, g:V(pkgname) → P (V(posint)) be two installations. Their
merge f ∪ g:V(pkgname)→ P (V(posint)) is defined as

(f ∪ g)(p) = f(p) ∪ f(p) for any p ∈ V(pkgname)

3.3.3 Consistent package descriptions

We define what it means for an installation to satisfy a constraint:

Definition 9 (Constraint satisfaction) The satisfaction relation between a natural number
n and a constraint c ∈ Constraints, noted n |= c, is defined as follows:

n |= > for any n n |= (<, v) iff n < v
n |= (=, v) iff n = v n |= (>, v) iff n > v
n |= (6=, v) iff n 6= v n |= (≤, v) iff n ≤ v

n |= (≥, v) iff n ≥ v

Now we can define what it implies for a package installation to satisfy some formula:

Definition 10 (Formula satisfaction) The satisfaction relation between an installation I
and a formula p, noted I |= p, is defined by induction on the structure of p:

• I |= (c, p) where, c ∈ Constraints and p ∈ V(pkgname), iff there exists an n ∈ I(p) such
that n |= c.

• I |= φ1 ∧ . . . ∧ φn iff I |= φi for all 1 ≤ i ≤ n.

• I |= φ1 ∨ . . . ∨ φn iff there is an i with 1 ≤ i ≤ n and I |= φi.

We can now lift the satisfaction relation to sets of packages:

Definition 11 Let I be an installation, and l ∈ V(vpkglist). Then I |= l if for any (c, p) ∈ l
there exists n ∈ I(p) with n |= c.

Note that, given that V(vepkglist) ⊆ V(vpkglist), this also defines the satisfaction relation
for elements of V(vepkglist). Also note that one could transform any l ∈ V(vpkglist) into
a formula l∧ ∈ V(vpkgformula), by constructing the conjunction of all the elements of l. The
semantics of l is the same as the semantics of the formula l∧.

Definition 12 (Disjointness) The disjointness relation between an installation I and a set
l ∈ V(vpkglist) of packages possibly with version constraints, is defined as: I ‖ l if for any
(c, p) ∈ l and all n ∈ I(p) we have that n 6|= c.

Definition 13 A package description φ is consistent if for every package p ∈ V(pkgname) and
n ∈ iφ(p) we have that

1. iφ ∪ fφ |= φ(p, n).depends

2. iφ−(p,n) ∪ fφ−(p,n) ‖ φ(p, n).conflicts

Deliverable D5.1 Version 1.0 page 41 of 59

November 20, 2009

In the above definition, the first clause corresponds to the Abundance property of [MBC+06]:
all the dependency relations of all installed packages must be satisfied. The second clause
corresponds to the Peace property of [MBC+06]. In addition, we now have to take special care
of packages that conflict with themselves, or that provide a feature and at the same time conflict
with that feature: we only require that there be no conflict with any other installed package
and with any feature provided by some other package (see also Section 3.3.5).

3.3.4 Semantics of requests

The semantics of a request is defined as a relation between package descriptions. The idea is
that two package descriptions φ1 and φ2 are in the relation defined by the request r if there
exists a transformation from φ1 to φ2 that satisfies r. Integration of optimization criteria is
discussed in Section 3.4 and is ouside the scope of the current section.

First we define the notion of a successor of a package description:

Definition 14 (Successor relation) A package description φ2 is called a successor of a pack-
age description φ1, noted φ1 � φ2, if

1. Dom(φ1) = Dom(φ2)

2. For all p ∈ V(pkgname) and n ∈ V(posint): if φ1(p, n) = (i1, k1, d1, c1, p1) and φ2(p, n) =
(i2, k2, d2, c2, p2) then k1 = k2, d1 = d2, c1 = c2, and p1 = p2.

3. For all p ∈ V(pkgname)

• for all n ∈ iφ1(p): if φ1(p, n).keep = ’version then n ∈ iφ2(p).

• if there is an n ∈ iφ1(p) with φ1(p, n).keep = ’package then iφ2(p) 6= ∅
• for all n ∈ iφ1(p): if φ1(p, n).keep = ’feature then iφ2 ∪ fφ2 |= φ1(p, n).provides

The first and the second item of the above definitions indicate that a successor of a package
description φ may differ from φ only in the status of packages. The third item refines this even
further depending on keep values:

• If we have a keep status of version for an installed package p and version n then we have
to keep that package and version.

• If we have a keep status of package for some installed version of a package p then the
successor must have at least one version of that package installed.

• If we have a keep status of feature for some installed version n of a package p then the
successor must provide all the features that where provided by version n of package p.

Definition 15 (Request semantics) Let r = (li, lu, ld) be a request. The semantics of r is a
relation

ry⊆ Descr×Descr defined by φ1
ry φ2 if

1. φ1 � φ2

2. φ2 is consistent

3. iφ2 ∪ fφ2 |= li

Deliverable D5.1 Version 1.0 page 42 of 59

November 20, 2009

4. iφ2 ∪ fφ2 ‖ ld

5. iφ2∪fφ2 |= lu, and for all p ∈ lu and all (p, n) ∈ lu we have that iφ2(p) = {n} is a singleton
set with n ≥ n′ for all n′ ∈ iφ1(p).

3.3.5 Comments on the semantics (non-normative)

Installing multiple versions of the same package The semantics allows a priori to install
multiple versions of the same package. This coincides with the semantics found in RPM-like
F/OSS distributions (which a priori do not forbid to install multiple versions of the same
package), but is in opposition to the semantics found in Debian-like F/OSS distributions (which
allow for one version of any package to be installed at most).

In many practical cases the distinction between a priori allowing or not for multiple versions of
a package makes little difference. In the RPM world multiple versions of the same package are
very often in a conflict by their features or shipped files. If both versions of the same package
provide the same feature and also conflict with that feature then the RPM semantics, as the
CUDF semantics, does not allow to install both at the same time. Only packages that have
been designed to have distinct versions provide distinct features (in particular, files with distinct
paths) can in practice be installed in the RPM world in several different versions at a time. This
typically applies to operating system packages. In order to have a meta-installer with Debian
semantics work correctly on such a package description, it is sufficient to rename the packages,
and to create a new package, say p− n, for a package p and version n when p can be installed
in several versions.

On the other hand, a meta-installer with RPM semantics will produce solutions on a package
description that would not be found by a meta-installer with Debian semantics since it is free
to install several version of the same package. The uniqueness restriction of Debian can easily
be made explicit in the package description by adding say a serialized property “Conflicts:
p”to any stanza in the package description, say of package p,.

3.4 Integrating optimization criteria

The semantics given in Section 3.3 is designed to define when passing from one installation to
another installation satisfies a user request. It does not discriminate among different resulting
installations, which is in most cases too coarse to express the requirements a good meta-installer
should satisfy. For instance, one might expect from a meta-installer that it does not call for
the installation of unnecessary packages, or that it installs the latest version of packages when
possible.

All single criteria of this kind can easily be expressed as optimization criteria that are in fact
orthogonal to the semantics defined in Section 3.3. In order to express optimization criteria we
use an optional property of package descriptions, called Cost, for instance, with value space int
and default 0. Using this new property we can extend the definition of a package description
to also yield the value of the Cost property in addition to the five properties already required
in Definition 2. We will write φ(p, v).cost for the value of the property Cost of the package
description with package name p and version n.

Deliverable D5.1 Version 1.0 page 43 of 59

November 20, 2009

Definition 16 (Installation cost) The cost cost(φ) of a package description φ is defined as

cost(φ) =
∑

p∈V(pkgname)

(
∑

v∈iφ(p)

φ(p, v).cost)

We say that φ1 is as most as expensive as φ2, written φ1 . φ2, if cost(φ1) ≤ cost(φ2).

In other words, the cost of a package description is simply the sum of the Cost values of all
installed versions of packages. Mathematically, the relation . is a so-called quasi-order, that
is we have that . is reflexive (φ . φ for all φ) and transitive (φ1 . φ2 and φ2 . φ3 imply
φ1 . φ3), but not necessarily anti-symmetric (it may be the case that φ . ψ and also ψ . φ
for different package descriptions φ and ψ).

Lemma 1 Let φ be a package description such that Dom(φ) is finite, and r a request. If there
exists an ψ such that φ

ry ψ then there exists an installation ψ0 such that ψ0 . ψ for all ψ with
φ

ry ψ.

This means that if a request has a solution at all then an optimal solution exists, even though
this optimal solution may not be unique.

The proof of Lemma 1 is obvious from the fact that the smallest possible value of cost(ψ) is
limited by ∑

(p,n)∈Dom(φ)

min{0, φ(p, n).cost}

Alternatively, one might argue that for any given finite package installation there is only a finite
number of possible successors.

Let us now see how various frequent optimization criteria can be translated into appropriate
choices of the Cost property.

• Optimization of the disk space occupied by the installation may be indicated by putting
the size taken by the installation of a package as value of the Cost property in the package
description.

• Optimization of the download size required to pass to the new installation may be indicated
by putting the download size of the package as the value of the Cost property if that
version of the package is not installed, and 0 if that version of the package is already
installed. Note that this amounts to expressing an optimization criterion for all newly
installed packages even though the general optimization mechanism is defined on the set
of all packages that are installed in the end.

• Preference of installation of most recent available versions of packages can be expressed
by putting the value 0 as the value of the Cost property of package p and version v if
n is the latest version of p, and 1 otherwise. This can easily be extended to taking into
account “how outdated” a package is, either by putting the value of Cost of package p
and version v to be the number of versions of p that are greater or equal to v and strictly
smaller than the latest version of p, or by using some other metric.

• The requirement of installing a minimal number of auxiliary packages (i.e. packages that
are not mentioned in the request) can be implemented by putting the value of Cost
property to 0 if version v of package p is already installed or if its installation is explicitly
required, and 1 otherwise.

Deliverable D5.1 Version 1.0 page 44 of 59

November 20, 2009

• The requirement that a minimal number of packages should be removed is implemented by
putting the value of the Cost property to −1 if a package is installed, and to 0 otherwise.

Note that all these optimization criteria are single criteria. A user might have a vague notion
of wanting to optimize several of these criteria at the same time (such as “upgrade as many
packages as possible to their latest version, and at the same time remove as few packages as
possible”). However, it is at the moment absolutely not clear what the exact semantics of this
might be. In order to define the semantics of such a request one would have to define, for any
two solutions, which of the two is the preferred solution.

Also note that while we have used a single Cost property throughout this section to discuss
optimization possibilities, implementations are not required to do so. In fact, it is recommended
that implementations define meaningful properties (e.g. Installed-Size, Download-Size, etc.)
and that cost functions to be optimized get defined over the semantic values assumed by those
extra properties.

3.5 Serialization

This section describes how to serialize CUDF documents as stream of bytes and, symmetrically,
how to parse streams of bytes as CUDF documents. We refer generically to one or the other
action as CUDF serialization.

Serialization is meant to make the storage of CUDF documents as files possible and to transfer
them over the network. A stream of bytes which can be parsed as a CUDF document respecting
this specification is called a CUDF file.

3.5.1 Overall CUDF file syntax

A CUDF file is a plain-text file containing several file stanzas. The bytes composing the file
should be interpreted as Unicode characters encoded in UTF-8.

The overall organization of a CUDF file in stanzas reflects the schematic structure of CUDF
content (see Section 3.2). Each file stanza is the serialization of a CUDF information item.
Blank lines (i.e. empty lines, or lines composed only by white space characters: U+0020, U+000D,
U+000A, U+0009) occurring between file stanzas are ignored.

Serialization should—where possible—follow the canonical ordering of information items given
in Section 3.2, that is first contain the list of stanzas corresponding to package descriptions
(package description stanzas) and then the sole stanza corresponding to problem description
(problem description stanza).

To recognize the beginning of file stanzas, each of them starts with a postmark, which is specific
to information item classes. Postmarks denote the beginning of a new file stanza only when
occurring either at the beginning of the file or just after a newline (Unicode code point U+000A).

• For package description items, the postmark is the string "Package: ".

• For problem description items, the postmark is the string "Problem: ".

In both cases, the postmark can be followed by some characters other than a newline, and end
with a single newline.

Deliverable D5.1 Version 1.0 page 45 of 59

November 20, 2009

3.5.2 Information item serialization

Each information item, whatever its class, is serialized as a stream of bytes serializing all of its
properties in an arbitrary order. A single property is serialized as a stream of bytes performing
the following steps in order:

1. serialize the property name as the string corresponding to the Name given in its property
schema;

2. output the string ": ", i.e. a double colon followed by a space (U+0020);

3. serialize the property value;

4. output a single newline.

Let t be the type of a property whose value v has to be serialized as a stream of bytes. The
value is serialized by choosing a value from v′ ∈ L(t) such that parset(v′) = v. That is, all
possible values that will be parsed back as the value to be serialized are valid serializations of
it.

Since parsing is not one-to-one in general for CUDF types, it is possible that different imple-
mentations of this specifications make different choices in terms of how to serialize a given value.
Hence it should not be taken for granted that two serializations of CUDF values which are not
byte-to-byte identical do not denote the same CUDF value.

An important distinction exists between the serialization of different classes of information items.
For package descriptions, the postmark is part of the serialization of properties, i.e. the line
starting with "Package: " is the serialization of the Package property (i.e. the package name).
As a consequence, and in amendment of the general rule above on the property serialization
order, the Package must be the first property serialized in each file stanza, because it is used to
recognize the beginning of package description file stanzas.

On the contrary, for problem descriptions the postmark is used to recognize the beginning of
the corresponding file stanza, but does not represent the serialization of any particular property.
Instead of leaving an empty line after the problem description postmark, implementations should
output a problem identifier, possibly cross-referencing the source from which a given CUDF is
being generated from (e.g. a DUDF unique identifier).

An example of CUDF file is given in Appendix C.

3.5.3 CUDF file parsing

How to parse CUDF files to obtain CUDF documents is almost straightforward and follows
from an analysis of the serialization rules given above.

Parsing errors can be encountered while parsing CUDF serializations which do not match the
rules provided by this specification. Parsing errors can be localized at specific positions of the
CUDF serialization. When the position of a parsing error belongs to a specific file stanza (i.e.
it is in between two postmarks, or between a postmark and the end of file), that error is said to
be recoverable. The recovery strategy is to ignore the file stanza the error belongs to and act
as if that stanza was not there.

The actual parsing procedure is as follows:

Deliverable D5.1 Version 1.0 page 46 of 59

November 20, 2009

1. Given a CUDF file, split it at occurrences of postmarks. The result of this operation is a
list of file stanzas. Each of them can be recognized as the serialization of either a package
description (if the postmark is "Package: ") or a problem description (if the postmark
is "Problem: ").

Afterwards, problem description postmarks are useless and can be ignored for further
processing. On the contrary, problem description postmarks should be integrated again
as part of the following package description file stanza.

2. Parse each file stanza as a list of property serializations by splitting at occurrences of
newlines.

3. Parse each property serialization as a pair of property name and value serializations by
splitting when the string ": " occurs.

4. Turn each property name serialization into a property name in a straightforward way, as
long as it matches the constraints on property names. Otherwise raise a parsing error;
the error must be located in the file stanza owning the affected property.

For each property name check whether that property is supported by the information
item serialization in which it appears. If this is the case then this specification permits to
assign all the information coming from its schema to that property, in particular a type
and possibly an optional value. If the property is not supported by this specification for a
given information item, it is either known, via some unspecified external mechanism, how
to associate a schema to that property or that property cannot be processed any further
and will be disregarded.

After this step all properties have an associated schema and a (yet to be parsed) value
serialization.

5. For each value serialization parse it using the parsing function of the associated property
type. If the function is not defined for the given serialization then a parsing error is raised;
the error is located in the file stanza owning the affected value.

After this step, each file stanza has been parsed into a list of properties as supported by
CUDF. That list can be turned into a set. If the same property name appears twice or
more in the set, a parsing error is raised; the error is located in the file stanza containing
the properties.

Once sets are formed, the CUDF file has been fully parsed into a list of information items;
together they already form a CUDF document.

6. The only missing step is handling of default values. For each information item check
whether some of the optional properties are missing according to the information item
kind (package or problem description). For each such missing optional property, add a
property of that name to the information item where it was missing. The corresponding
value is either None (for properties which do not specify a default value) or the default
value defined in the property schema.

Compatibility with RFC822 (non-normative)

Conforming implementation of CUDF serialization produces CUDF files which are blank-separated
sequences of messages conforming to RFC822 [Cro82].

Deliverable D5.1 Version 1.0 page 47 of 59

November 20, 2009

This aspect hints an alternative—yet correct—way of parsing CUDF files via exploitation of
existing RFC822 implementations. On top of them it is enough to perform the parsing steps
given above from 4 to 6, skipping steps 1–3 which are subsumed by RFC822 parsing.

3.6 Generating CUDF (non-normative)

While it is possible to generate CUDF documents directly, it is expected that the largest fraction
of the CUDF corpus to be used for the competition will be generated via conversion from DUDF
documents provided by users of F/OSS distributions.

Each distribution interested in providing upgrade problems for the UPDB (see Chapter 1) is
then required to provide specification and tools that implement the conversion. Ideally, the
description of how to convert from a specific DUDF instance and CUDF should be described
together with the specification of the specific DUDF instance. It is expected that each partner
interested in contributing problems to the UPDB publishes a document describing both aspects.

During the conversion, we expect three main tasks to be implemented.

Translation: package information −→ package information items Each DUDF instance
is expected to encode the information about all packages known to the meta-installer in
some way. The first required task to create the resulting CUDF is to convert such (meta-
installer-/distribution-specific) information to package information items as described in
this specification.

The implementation of this task should account not only for data conversions imposed
by the CUDF type system (e.g. translating from legacy versioning schemata—x.y.z—
to positive integers), but also for semantic differences between the origin distribution
and CUDF. Likely, the most common cause of semantic incompatibilities will be the
translation from Debian-like packaging systems to CUDF (see Section 3.3.5 for advice on
how to address this problem).

Translation: user request −→ problem description item Similarly, the request that the
user posed to its meta-installer needs to be translated to a problem description item.

The request language supported by CUDF is expected to be expressive enough to encode
the vast majority of user requests nowadays expressible in state of the art meta-installers.
Exceptions are of course possible, in which case no translation from DUDF to CUDF is
possible. Specifications of DUDF instances must clearly state such limitations.

Expansion of intentional sections DUDF encodings are expected to be more compact than
the corresponding CUDF encoding (see Section 2.3). To that end DUDF documents can
refer to external resources whereas CUDF documents are expected to be entirely self-
contained. Therefore, all references to external entities occurring in DUDF documents
must be expanded before being able to create the corresponding CUDF encoding.

Since in general only distributions are expected to be able to perform the expansions (e.g.
because the referred repositories are mirrors or databases hosted by them), the actual
translation from DUDF instances to CUDF should be performed by distributions before
injecting problems into the central UPDB.

Serialization Once all information items translated from DUDF to the CUDF model, they
need to be serialized to files (see Section 3.5).

Deliverable D5.1 Version 1.0 page 48 of 59

Chapter 4

Conclusion

The Mancoosi project will run a solver competition [DC08], in which each participant will
try to find the best possible solutions to upgrade problems as those faced by users of F/OSS
software distributions. This specification has defined two (classes of) document formats which
play important roles in the work-flow of the competition.

The first class of document formats is DUDF (Distribution Upgrade Description Format), de-
scribed in Chapter 2. Specific instances of DUDF will be used as document formats to encode
real life problems encountered by users of F/OSS software distributions. DUDF is meant to
be a compact representation of upgrade problems, suitable to be transferred over the network.
In addition to the purposes of the competition, DUDF documents might be useful to store
and transfer the state of package managers, for example for reporting bugs concerning package
managment tools.

Distributions that are interested in providing problems on which the competition will possibly
be run should have an interest in implementing DUDF for their own distributions. The current
document only describes the outline (or skeleton) of DUDF. Implementing DUDF actually
means standardizing a specific instance of it, by describing in a separate document how the holes
left open by this specification have to be filled in the context of a specific software distribution.
Equipped with this specification and the specification of a DUDF instance, implementors will
be able to produce and interpret DUDF corresponding to upgrade problems faced on final user
machines.

The second document format introduced by this specification if CUDF (Common Upgrade
Description Format), described in Chapter 3. The purpose of CUDF is to provide a model
in which upgrade problems can be encoded, by abstracting over distribution-specific details.
In the context of the competition, the interest of CUDF is to encode problems on which the
actual competition will be run. This way, participating solvers will not need to implement
distribution-specific semantics, and will only have to reason about a self-constained problem.

As far as CUDF is concerned, this specification has provided a formal model in which constraints
coming from popular packaging “worlds” (e.g. Debian and RPM) can be expressed. On top of
that model the semantics of typical upgrade action requests (e.g. install, remove, upgrade) has
been described; using that semantics it is possible to check whether a solution provided by a
solver properly implements a given user request.

In addition to the formal model, this specification has also provided a document structure in
which both the user request and the universe of all packages known to a package manager can
be encoded. Parsing and serialization rules for the document structure have been given as well,

49

November 20, 2009

so that CUDF documents can be dealt with in file form. Solvers taking part in the competition
are meant to parse CUDF files in order to obtain the upgrade problem they are asked to solve.

To complete the competition scenario two important aspects are missing, but have been left
beyond the scope of this document on purpose:

Optimization criteria It is expected that solvers taking part into the competition will not
simply be asked to solve a given upgrade problem. At least for some competition “tracks”,
there will be extra requirements to find the best possible solution among several alternative
solutions which are correct according to the CUDF model.

How to specify optimization criteria is beyond the scope of this document and, is also
outside the purpose of CUDF files. Each competition track will advertise the optimization
criteria to be implemented by participating solvers. Optimization criteria can be defined
on top of package properties which are already expressible in the present version of CUDF.
To this end, CUDF is extensible: additional properties not prescribed by this specification
can be added to package descriptions, by exploiting existing CUDF types.

Solver output format The output format of solvers taking part in the competition is beyond
the scope of this specification. Nevertheless it will be needed in order to have a common
way to understand the solutions found by solvers and to determine their quality according
to the optimization criteria.

Naively, the solver output can be encoded by serializing the new local package status as if
it were a CUDF document missing the problem description item. Practically though, such
a representation would encode a lot of information which is a duplication of the CUDF
input initially fed into the solver. Hence, a format which is more likely to be used for
solver output is a “patch” with respect to the initial local package status as encoded in
the CUDF input.

A separate document will be published, well in time for the competition, to describe the
required output format and how to interpret it to obtain the package status meant by the
solver.

Deliverable D5.1 Version 1.0 page 50 of 59

Part A

DUDF skeleton serialization example

This non-normative section contains an example of DUDF serialization to XML. The example is
given in Figure A.1, which is the serialization of the DUDF skeleton given in Figure A.1. In the
example, XML comments have been put in place of outline holes and other missing information.

51

November 20, 2009

<dudf version="1.0"
xmlns="http://www.mancoosi.org /2008/ cudf/dudf"
xmlns:dudf="http: //www.mancoosi.org /2008/ cudf/dudf">

<timestamp ><!-- timestamp in RFC822 format --></timestamp >
<uid><!-- unique problem identifier --></uid>
<distribution ><!-- distribution identifier --></distribution >
<installer >

<name><!-- installer name --></name>
<version ><!-- installer version --></version >

</installer >
<meta -installer >

<name><!-- meta -installer name --></name>
<version ><!-- meta -installer version --></version >

</meta -installer >
<problem >

<package -status >
<installer ><!-- installer status --></installer >
<meta -installer >

<!-- meta -installer status -->
</meta -installer >

</package -status >
<package -universe >

<package -list
dudf:format =<!-- package list format identifier -->
dudf:filename=<!-- package list absolute path --> >

<!-- package list -->
</package -list>
<!-- ... other package lists ... -->
<package -list

dudf:format =<!-- package list format identifier -->
dudf:filename=<!-- package list absolute path --> >

<!-- package list -->
</package -list>

</package -universe >
<action ><!-- requested meta -installer action --></action >
<desiderata ><!-- meta -installer desiderata --></desiderata >

</problem >
<outcome dudf:result =<!-- one of: "success", "failure"--> >

<error><!-- error description (result: "failure")--></error>
<package -status > <!-- result: "success" -->

<installer ><!-- new installer status --></installer >
<meta -installer >

<!-- new meta -installer status -->
</meta -installer >

</package -status >
</outcome >

</dudf>

Figure A.1: XML serialization skeleton of a DUDF problem/outcome submission

Deliverable D5.1 Version 1.0 page 52 of 59

Part B

RELAX NG schema for DUDF

This non-normative section contains a RELAX NG [CM01] schema which can be used to check
whether a given XML document represents a valid DUDF skeleton serialization. The schema
only ensures that the skeleton part of the XML document is valid with respect to this specifi-
cation, since the details about how holes are filled are distribution-specific.

Additional comments in the schema denote “side conditions”—e.g. the fact that dates should be
in RFC882 format—which are not expressed by the schema itself, and which should be checked
to ensure proper implementation of DUDF.

The RELAX NG schema is reported in Figure B.1.

53

November 20, 2009

default namespace dudf = "http://www.mancoosi.org /2008/ cudf/dudf"

any = (element * { any* } | attribute * { text }* | text)

tool_id = (
element name { text }, # must be a package name
element version { text } # must be a version number

)

package_status =
element package -status {

element installer { any* }, # installer -specific
element meta -installer { any* }? # meta -installer -specific

}

start = element dudf {
attribute dudf:version { "1.0" },
element timestamp { text }, # must be a date in RFC822 format
element uid { text },
element distribution { text },
element installer { tool_id },
element meta -installer { tool_id },
element problem {

package_status ,
element package -universe {

element package -list {
attribute dudf:format { text },
attribute dudf:filename { text }?, # must be an

absolute path
any*

}+
},
element action { text },
element desiderata { text }?

},
(element outcome {

attribute dudf:result { "success" },
package_status

}
| element outcome {

attribute dudf:result { "failure" },
element error { text }

})
}

Figure B.1: RELAX NG schema for the DUDF skeleton

Deliverable D5.1 Version 1.0 page 54 of 59

Part C

CUDF serialization example

This non-normative section contains an example of CUDF serialization to file. The example
below has been inspired by the EDOS car/glass example [EDO06].

Some remarks about the example follow.

• The example does not rely on any extended properties.

• Intuitively, the example comes from a packaging world where different versions of the same
package are implicitly conflicting with each other. To grasp this, all packages for which
multiple versions are available declare a non-versioned conflicts with themselves.

• The engine feature is mutually exclusive, only one (installed) package can provide it.
This is encoded using conflicts with the feature from each package providing it.

Package: car
Version: 1
Depends: engine , wheel , door , battery
Installed: true

Package: bicycle
Version: 7

Package: gasoline -engine
Version: 1
Depends: turbo
Provides: engine
Conflicts: engine , gasoline -engine
Installed: true

Package: gasoline -engine
Version: 2
Conflicts: engine , gasoline -engine

Package: electric -engine
Version: 1
Depends: solar -collector | huge -battery
Provides: engine
Conflicts: engine , electric -engine

55

November 20, 2009

Package: electric -engine
Version: 2
Depends: solar -collector | huge -battery
Provides: engine
Conflicts: engine , electric -engine

Package: solar -collector
Version: 1

Package: battery
Version: 3
Provides: huge -battery
Installed: true

Package: wheel
Version: 2
Conflicts: wheel
Installed: true

Package: wheel
Version: 3
Conflicts: wheel

Package: door
Version: 1
Conflicts: door
Installed: true

Package: door
Version: 2
Depends: window
Conflicts: door

Package: turbo
Version: 1
Installed: true

Package: tire
Version: 1
Conflicts: tire

Package: tire
Version: 2
Conflicts: tire

Package: window
Version: 1
Conflicts: window

Package: window
Version: 2
Depends: glass = 1
Conflicts: window

Package: window
Version: 3

Deliverable D5.1 Version 1.0 page 56 of 59

November 20, 2009

Depends: glass = 2
Conflicts: window

Package: glass
Version: 1
Conflicts: glass

Package: glass
Version: 2
Conflicts: glass , tire = 2

Problem: source: Debian/DUDF 733963 bab9fe1f78fd551ad20485b217
Install: bicycle , electric -engine = 1
Upgrade: door , wheel > 2

Deliverable D5.1 Version 1.0 page 57 of 59

November 20, 2009

Deliverable D5.1 Version 1.0 page 58 of 59

Bibliography

[BM04] Paul V. Biron and Ashok Malhotra. XML Schema Part 2: Datatypes Second
Edition. http://www.w3.org/TR/xmlschema-2, October 2004. W3C Recommen-
dation.

[BPSM+06] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and François Yergeau.
Extensible Markup Language (XML) 1.0 (Fourth Edition). http://www.w3.org/
TR/REC-xml, August 2006. W3C Recommendation.

[Bra97] S. Bradner. Key words for use in RFCs to indicate requirement levels. RFC 2119
(Best Current Practice), March 1997.

[CM01] James Clark and Makoto Murata. RELAX NG specification. OASIS specification,
2001.

[Con06] The Unicode Consortium. Unicode Standard, Version 5.0, The. Addison-Wesley
Professional, 5 edition, November 2006.

[Cro82] D. Crocker. Standard for the format of ARPA Internet text messages. RFC 822
(Standard), August 1982.

[DC08] Roberto Di Cosmo and Sophie Cousin. Project presentation. Deliverable D1.1,
The Mancoosi project, January 2008.

[EBN96] Extended BNF. ISO/IEC 14977 (International Standard), 1996.

[EDO06] EDOS Work Package 2 team. Report on formal management of software depen-
dencies. Deliverable WP2-D2.2, The EDOS project, March 2006.

[MBC+06] Fabio Mancinelli, Jaap Boender, Roberto Di Cosmo, Jérôme Vouillon, Berke Du-
rak, Xavier Leroy, and Ralf Treinen. Managing the complexity of large free and
open source package-based software distributions. In ASE 2006, pages 199–208,
Tokyo, Japan, September 2006. IEEE CS Press.

[Ray03] Eric S. Raymond. The Art of UNIX Programming. Addison-Wesley Professional,
1st edition, October 2003.

59

http://www.w3.org/TR/xmlschema-2
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml

	Introduction
	Two different upgrade description formats
	Problem data flow and submission architecture
	Glossary

	Distribution Upgradeability Description Formats
	Upgrade problems
	Content
	Extensional vs intensional sections
	Serialization

	Common Upgradeability Description Format
	Overview of CUDF (non-normative)
	Content
	Generalities
	Types
	CUDF type library

	Property schemata
	Package description
	Problem description

	Document structure
	Global constraints

	Formal semantics
	Abstract syntax and semantic domains
	Installations
	Consistent package descriptions
	Semantics of requests
	Comments on the semantics (non-normative)

	Integrating optimization criteria
	Serialization
	Overall CUDF file syntax
	Information item serialization
	CUDF file parsing

	Generating CUDF (non-normative)

	Conclusion
	DUDF skeleton serialization example
	RELAX NG schema for DUDF
	CUDF serialization example

