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Abstract

The Mancoosi project aims at solving the upgradeability problem that users of Free and Open
Source Software distributions experience when trying to install, remove, or upgrade packages.
The specific aim of Workpackage 4 was to study and develop specialized upgradeability solvers.

A first insight of the algorithms and tools to solve the upgradeability problem has be given
in deliverable D4.2 [ALLM10]. This new document enhances this description with the new
developments that have occurred during the last period of the Mancoosi project.
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Chapter 1

Introduction

Mancoosi workpackage 4 purpose was to develop tools and algorithmsin order to solve the
upgradeability problem. In other words, from an upgradeability problem described using the
CUDF format [TZ09a], WP4 tools compute the best solution according to a set of multicriteria
defining user preferences. This problem is harder than the installability problem which has
proven to be NP-hard [MBC+06]. Thus, one of the main WP4 issue was to find the right
techniques to solve the upgradeability problem in a reasonable amount of time.

WP4 efforts have resulted in the development of four CUDF solvers:

• apt-pbo from CAIXA magica,

• PackUP from INESC-ID,

• cpp-kcudf from UCL,

• and mccs from UNS.

All these solvers have explored different techniques ranging from pseudo boolean solvers to
integer programming techniques with various success. Indeed, CUDF problems offer different
structures which are more or less fitted to the underlying solver technique.

Note that apt-pbo is not described in the report. This solver is a pseudo boolean solver which
have benefited from the work and the know how of INESC-ID. As a result, it uses techniques
similar to the CUDF solver developed at INESC-ID. However, apt-pbo has been included in
deliverable D4.3 as it represents a clear effort to integrate CUDF solvers in a linux distribution.

The report is organized as follows:

• chapter 2 gives a detailed picture of the study of multicriteria issues done at IBM.

• chapter 3 focuses on the implementation of multicriteria combination within the mccs
solver from UNS, an integer programming based framework to solve the upgradeability
problem.

• chapter 4 describes the last developments of the PackUP solver from INESC-ID, a frame-
work to solve the upgradeability problem relying on weighted partial MaxSAT solvers.

• chapter 5 introduces the ccp-kcudf solver, a constraint based solver which relies on new
techniques to handle binary relations that are the origins of the CUDF problem.

9
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Chapter 2

Solving the upgradeability problem

2.1 Upgradeability problem as multi-criteria optimization

The upgradeability problem can be expressed as a mathematical model as follows:

• A boolean variable is associated to each versioned package.

• Dependencies or incompatibilities between packages or versioned packages are constraints
on the corresponding boolean variables.

• Requirements, like install package X are also modelized as constraints.

• Measures of the quality of a solution to the upgradeability problem are modelized as
objective functions.

In general, we have several measures of the quality of the solutions of the upgradeability prob-
lem. For example, we may want to minimize the download time, but in the meantime we want
to get the most recent versions of packages and also to minimize the perturbation to the current
configuration. Solving the upgradeability problem amounts to solve a combinatorial optimiza-
tion problem: find values for the variables that maximize the criteria and satisfy the constraints.
However, these different measures are often contradictory: clearly, on an old intallation, we can
not simultaneously minimize the download time and maximize the recency of the versions of the
packages. That is to say that the upgradeability problem, in its generality, is a multi-criteria
optimization problem.

The problem is not only to find a good or an optimal solution. Indeed, before solving the
problem, we first need to define what kind of solution we want. If we take again the above
example of an old intallation, for which we consider two criteria: minimize the download time,
and maximize the recency of the versions of the packages, we need to decide what kind of
tradeoff between the two criteria we want to have. For example, a solution with an acceptable
tradeoff may be a download time of 5 minutes, and the choice to update some specific more
important packages first. In general, the ability to express the kind of tradeoff we want depends
on the method chosen for solving the multi-criteria optimization problem.

11
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2.1.1 Multicriteria methods without tradeoff

The simpliest approach, the lexicographic optimality, defines a first kind of tradeoff: do not make
any tradeoff. It amounts to prefer any improvement of the most important criterion, even a very
small improvement, to any improvement of the second criterion, even a huge improvement. We
have a strong hierarchical preference between criteria. In other words, the criteria are ordered
lexicographically: a solution s1 is better than s2 iff it is equivalent for criteria 1..i-1, and is
better for the i-th criterion. This approach has a great advantage, it does not need the values
of the criteria to be compared. Indeed, the comparison of the values of different criteria is a
difficult task, and can be specific to a user, and a problem.

Another approach, avoiding the difficult task of defining how the values of different criteria can
be compared, is simply to generate all the solutions which may be prefered. A solution may
be prefered if and only if it is not dominated by another one. Such a non dominated solution
is called a pareto-solution. A solution s1 is better than s2 iff for each criterion, s1 is at least
equivalent to s2, and there exists a criterion such as s1 is strictly better than s2. Intuitively, we
cannot improve a criterion of a pareto-solution without a loss for another criterion. In practice,
the set of pareto solutions is huge, and the usual approach is to compute an approximation of
this set.

2.1.2 Multicriteria methods with tradeoff

The comparison of the values of different criteria is needed in all multi-criteria methods in order
to define what a good tradeoff is. The lexicographic approach, indeed, defines the tradeoff as no
possible tradeoff, and therefore does not need such a comparison. In general, this comparison
is made thanks to a utility function associated to each criterion. A utility function uz maps a
value v of the criteria z to a number uz(v). A utility function uz should satisfy an intuitive
property: v1 < v2 → uz(v1) < uz(v2).

The aim of utility functions is to make possible the comparison between different criteria. The
utility functions of different criteria are strongly related, in such a way that the numbers coming
from different criteria can be compared: let z1, z2 be two criteria and v1, v2 be the values of
z1, z2 in a given solution. We can know that, in this solution, the criterion z1 is more favoured
than the criterion z2 when uz1(v1) > uz2(v2).

Given the values u1, . . . , uk and u′1, . . . , u
′
k of the utility functions for two solutions s and s′, we

want now to define when s is prefered to s′, noted s >m s′. Many different preference orders
>m, and many corresponding multi-criteria methods exist. For the upgradeability problem, we
considered the following as particularly interesting methods.

Weighted sum

An extremely frequent approach is to maximize a weighted sum
∑
wi ∗ ui, where w1, . . . , wk

are weights associated to each criterion.

Formally, we have: s >m s′ iff
∑
wi ∗ ui >

∑
wi ∗ u′i.

This approach seems to be quite intuitive and satisfactory. Nevertheless, despite its general use
in many domains, this approach has some strong drawbacks. The function

∑
wi ∗ ui is linear,

and, when maximizing this function for a concave set of solutions, many good solutions are not
reachable. Furthermore, its sensitivity to the weights is very high.

Deliverable D5.3 Version 1.0 page 12 of 46
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Maximizing the minimun

A different approach, which has many applications too, is to maximize the minimum value
among the criteria. s >m s′ iff minui > minu′i.

This approach unfortunately produces many undistinguishable solutions, and some of them are
not pareto solutions.

Dynamic ordering of the criteria

The weighted sum method, as well as the method of maximizing the minimun have clear draw-
backs. Indeed, these two quite different methods can be strongly improved by integrating in
them the same following idea. This idea is to order the criteria depending on the values they
take in a solution. Then, aggregation of the criteria can be done depending on the rank of the
criteria. The weighted sum method, where the weights depend on the rank of the criteria in the
dynamic ordering, becomes the ordered weighted average method. The method of maximizing
the minimun can be extended in the case of a tie: when the minimum in the two solutions to
compare are equal, the extended method takes into account the second minimum, and if neces-
sary the third minimum, the fourth one, and so on. This extension gives the leximin approach.
These two methods are decribed below.

Ordered weighted average

Let p1, ..., pk be the sorted permutation of u1, . . . , uk in increasing order of values. Let w be a
vector of weights such that wi ≥ wi+1.

The idea is to maximize
∑
wi ∗ pi. We can see that if w1 = w2 = . . . = wk, we get the sum. If

w1 = 1, w2 = w3 = . . . = 0, we get the methods which maximize the minimum.

This method has been introduced by [Yag88].

Leximin/leximax

Once again, let p1, ..., pk be the sorted permutation of u1, . . . , uk in increasing order of values.

Then a Leximin solution is simply a lexicographic optimal solution on p1, ..., pk.

Leximin/leximax have nice properties, that make them intuitive for user:

• They produce only pareto solutions;

• They are egalitarist: a leximin solution is always a solution for the method which maxi-
mizes the minimum;

• They verify the property of reducibility: if a criteria is set to a value it has in an optimal
solution, we get the same set of optimal solutions.

This method has been introduced in social choice community and then used for multicriteria
optimization [Ehr00]. An efficient algorithm has been proposed in [Ogr97]. Note also a clear
presentation of this method in [BL09], where different algorithmic adaptations for constraint
programming are described.
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2.2 Algorithms for solving the upgradeability problem

Within the Mancoosi project, we focused the work on a basic multicriteria approach without
tradeoff, the lexicographic opimization, and on a method with tradeoff that seems well adapted
to upgradeability problems: the leximin approach. The next sections present algorithms for
implementing these approaches.

2.2.1 Implementation of Lexicographic optimization

Different possibilities exist for implementating a lexicographic optimization. In this section, we
describe a general approach that can be implemented on top of any existing optimization solver,
but which does not depend on the underlying solver.

The underlying optimization solver is only required to be able to maximize an objective function
F subject to the set of constraints C.

Let max(F,C) be the minimal value of F among all the feasible solutions of the constraint
system C. This optimal value is computed by calling the underlying optimization solver.

Given n criteria F1, . . . , Fn, and a a set of constraints C , the lexicographic optimization problem
amounts to maximize lexicographically F1, . . . , Fn while satisfying the set of constraints C.

A lexicographic optimization problem P can be solved by solving a sequence of (single criterion)
optimization problems {Pi}i∈[1,n] with an underlying optimization solver.

Each problem Pi consists of maximizing Fi while satisfying the constraints Ci where:

• C1 = C,

• for i ∈ [2, n], Ci = Ci−1 ∪ {Fi−1 = max(Fi−1, Ci−1)}

The solution of the optimization problem {Pn} is the solution of the lexicographic optimization
problem P .

We can see that solving the problem Pi needs the optimal value of the problem Pi−1. There-
fore, the algorithm for computing the solution of the lexicographic optimization problem simply
amounts to compute the solutions of the subproblems {Pi}i∈[1,n] with the underlying optimiza-
tion solver in the order P1, then P2, . . . , until Pn (see Figure2.1).

procedure Lexicographic Maximize(F1, . . . , Fn, C)
1 for i := 1..n

//define problem Pi
2 if i>1
3 C:=C ∪ {Fi−1 = max}

//solve problem Pi
4 maximize(Fi, C) with the underlying solver
5 max:= max(Fi, C)
6 print solution of problem Pn

Figure 2.1: lexicographic optimization
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2.2.2 Implementation of Leximin/Leximax optimization

As for lexicographic optimization, leximin/leximax optimization relies on the existence of an
optimization solver. The approach described in this section is general and can be implemented
on many existing optimization solvers. The approach is presented in a form compatible with a
linear solver with 0-1 variables.

The underlying optimization solver is required to be able to maximize an objective function F
subject to the set of constraints C, and also to be able to handle sum constraints.

Let max(F,C) be the minimal value of F among all the feasible solutions of C. This optimal
value is computed by calling the underlying optimization solver.

A leximin optimization problem P , defined by its n criteria F1, . . . , Fn, and its set of constraints
C, can be solved by solving a sequence of (single criterion) optimization problems {Pi}i∈[1,n]
with the underlying optimization solver. The subproblems Pi are defined as follows.

Subproblem Pi needs to maximize vi while satisfying the constraints Ci where:

• vi is a new variable which is contrained to be the i− th worst criterion by:

1. Constraining it to be less or equal than at least n− i+ 1 criteria, and,

2. Maximizing it.

• C1 = C ∪ {v1 ≤ F1, . . . , v1 ≤ Fn}

• for i ∈ [2, n], Ci =

Ci−1

∪

{vi ≤ F1 + ai,1M, . . . , vi ≤ Fn + ai,nM}

∪

{
∑
j=1..n

ai,j ≤ i− 1}

∪

{vi−1 = max(vi−1, Ci−1)}

where:

– M is a big number.

– ai,j are 0-1 variables:

∗ ai,j = 1 means that the constraint vi ≤ Fj + ai,jM is trivially true, and, thus,
that vi ≤ Fj is not enforced.

∗ Conversely, ai,j = 0 means that the constraint vi ≤ Fj + ai,jM can be rewritten
as vi ≤ Fj which, therefore, is enforced.

Note that the sum constraint,
∑

j=1..n ai,j ≤ i−1, forces at least n− i+1 constraints
of the form vi ≤ Fj to be satisfied.
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The solution of the optimization problem {Pn} is the solution of the leximin optimization
problem P .

Solving the problem Pi needs the optimal value of the problem Pi−1. Therefore, the algorithm for
computing the solution of the leximin optimization problem amounts to compute the solutions
of the subproblems {Pi}i∈[1,n] with the underlying optimization solver in the order P1, then
P2, . . . , until Pn (see Figure 2.2).

procedure Leximin(F1, . . . , Fn, C)
1 for i := 1..n

//define problem Pi
2 if i=1
3 C:=C ∪ {v1 ≤ F1, . . . , v1 ≤ Fn}
4 else

5 C:=C ∪ {vi ≤ F1 + ai,1M, . . . , vi ≤ Fn + ai,nM}
6 C:=C ∪ {

∑
j=1..n ai,j ≤ i− 1}

7 C:=C ∪ {vi−1 = max}
// solve problem Pi

8 maximize(vi, C) with the underlying solver
9 max:= max(vi, C)
10 print solution of problem Pn

Figure 2.2: leximin optimization

Note that the line 3 of the algorithm, handling the case of i = 1, is a simple rewriting of the
general case: it corresponds to the general case where all the a1,j are equal to 0, and thus all
the constraints v1 ≤ Fj are to be satisfied.
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Chapter 3

Handling multiple criteria in an
integer programming framework

3.1 Introduction

mccs, which stands for Multi Criteria CUDF Solver, provides an integer programming platform
to solve CUDF problems as defined in the Mancoosi project1. It translates a CUDF problem
and a set of criteria in one or more integer programs that are then solved by an underlying
integer programming solver. mccs has been developped at UNS in C++ and offers interfaces
to many integer programming, as well as pseudo boolean, solvers.

The main features of this solver2 have alredy been described in section 4 of [ALLM10]. Therefore,
this chapter focuses on a new feature of mccs: its capability to let the user combine criteria in
different ways. The first solver version was only capable to combine criteria in a lexicographic
order. Though such an order is useful, the user might want to combine its criteria in a less
strict order that do no give a so strong priority to the first criterion. For this purpose, mccs
has been enhanced with the capability to handle criteria in a leximin/leximax order, as well as,
a more simple agregate of criteria. These criteria combinations are the basis of a particularly
fexible system of criteria combination.

3.2 Criteria

As a preliminary, this section describes the criteria available in mccs. Among the six available
criteria, five of them have been introduced in the Mancoosi competition. The last one is aimed
at choosing among the solutions the one which, for example, reduces the installation size or the
bandwith required to download the new packages.

3.2.1 Removed criteria

removed counts the number of packages rp which have been removed from the initial con-
figuration Ci in the final configuration Cf . Let I(Ci) be the set of packages with at least one

1See http://www.mancoosi.org/
2Note that we changed the solver name from CUDFsolver to mccs to avoid confusion with other solvers.

17
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installed version in the initial configuration and V(p) be the set of p versions, then, nremoved,
the number of removed feature is

nremoved =
∑

p∈I(Ci)

rp

with each rp being subject to the two following constraints

rp +
∑
v∈V(p)

pv ≥ 1

and

|V(p)|rp +
∑
v∈V(p)

pv ≤ |V(p)|

where the first constraint forces rp to 1 if none of p versions is installed and the second constraints
sets rp to zero if at least one of p versions is installed.

3.2.2 Changed criteria

changed: counts the number of packages which have a modified set of version in the solution
with respect to the initial configuration. Let IV(p) be the set of installed versions of p in Ci
and UV(p) be the set of uninstalled versions of p in Ci, then nchanged is given by

nchanged =
∑
p∈Ci

cp

with each cp being subject to the two following constraints

−cp −
∑

vi ∈IV(p)

pvi +
∑

vu ∈UV(p)

pvu ≥ −|IV(p)|

and

−|V(p)|cp −
∑

vi ∈IV(p)

pvi +
∑

vu ∈UV(p)

pvu ≤ −|IV(p)|

where the sum −
∑

vi ∈IV(p) p
vi +

∑
vu ∈UV(p) p

vu will increase if a version of package p installed
in the initial configuration is uninstalled in the final configuration or if a version of package
p uninstalled in the initial configuration is installed in the final one. Note that, in the initial
configuration, this sum is equal to −|IV(p)|, the cardinality of the set of installed versions of
p. As a consequence, the first constraint sets cp to zero if no change in the installed versions
occurs while the second constraint forces cp to one on any change.

3.2.3 Notuptodate criteria

notuptodate counts the number of installed packages which are not installed in their latest
available configuration. Let sup(V(p)) be the highest available version of p, then nnotuptodate is
given by

nnotuptodate =
∑
p ∈ Ci

nup

Deliverable D5.3 Version 1.0 page 18 of 46
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with each nucp being subject to the two following constraints

−|V(p)|nup − (|V(p)| − 1)psup(V(p)) +
∑

v ∈V(p)−sup(V(p))

pv ≤ 0

and
−|V(p)|nup − (|V(p)| − 1)psup(V(p)) +

∑
v ∈V(p)−sup(V(p))

pv ≥ −|V(p)|+ 1

where the first constraint sets nup to one if one of p version is installed while the highest version
of p is not installed, and the second constraint sets it to zero if the highest version of p is
installed or none of the lower versions of p are installed.

3.2.4 Nunsat criteria

Nunsat counts the number of disjunctions in a vpkgformula property of installed packages that
are not satisfied by final configuration.

nnunsat =
∑
p∈Ci

∑
v ∈V(p)

∑
d∈Disjunct(property(pv))

urd

with each urd being subject to the following constraints

urd − pv ≤ 0

urd − nsd ≤ 0

urd − pv − nsd ≥ −1

where nsd is true iff d is unsatisfied

nsd +
∑
pvd∈d

pvd ≥ 1

|d|nsd +
∑
pvd∈d

pvd ≤ |d|

Here, the two first constraints set urd to 0 when pv, i.e., version v of package p is not installed
or the disjunct is satisfied (i.e., nsd = 0). The third constraint sets urd to one if pv is installed
and the disjunct is unsatisfied (i.e., nsd = 1). The fourth constraint sets nsd to 1 (i.e., unsat)
if none of package p version is installed while the last constraint sets it to 0 (i.e., sat) if one or
more version of p are installed.

3.2.5 New criteria

new counts the number of newly installed packages. Let U(Ci) be the set of packages with none
installed version in the initial configuration, then, nnew, the number of removed feature is given
by

nnew =
∑

p∈U(Ci)

newp

with each newp being subject to the two following constraints

−newp +
∑
v∈V(p)

pv ≥ 0
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and

−|V(p)|newp +
∑
v∈V(p)

pv ≤ 0

where the first constraint sets newp to 0 if no version of p is installed while the second constraint
sets it to 1 if at least one version of p is installed.

3.2.6 Count criteria

count computes the weight of a given property on installed versionned packages

count =
∑
p∈Ci

∑
v∈V(p)

value(property) ∗ pv

Using an option, the set of handled packages can be reduced to the set of newly installed
pacakages. In such a case, the previous function will be reduced to the set of uninstalled
packages in the initial configuration.

3.3 Combining multiple criteria

All the underlying integer programming solvers used to solve CUDF problems only do monoob-
jective optimisation. As a consequence, solving multicriteria problems requires a mean to trans-
late the initial multicriteria problem in a set of monocriteria problems. This section describes
the different options that mccs offer the possiblity to carry out such a translation.

3.3.1 Basic combination

Agregation

The easiest way to combine multiple criteria is through a simple agregation of the criteria. Let
ci be n criteria and λi be the user defined weight of criteria ci, the objective function of a criteria
agregation is given by:

obj =

n∑
i=1

λi ∗ ci

Though easy to define and to solve, a criteria agregation is not always easy to understand. For
instance, assuming that criteria c1 has weight 1 and criteria c2 has weight 2, decreasing c1 by
2 is equivalent to decreasing c2 by 1. This behavior can lead to consider two very different
solutions as equivalent.

Lexicographic order

The lexicographic order allows a clear and well defined behavior of the solver: each criteria
is ordered according to its lexicographic specification, i.e., the highest priority is given to the
first specified criteria . The two common ways to solve a lexicographic order are by using an
algorithm implementation or a lexicographic agregate of the criteria.
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Algorithm implementation optimises each criteria after the other in order to reach the
lexicographic order. The first criteria c1 is optimised subject to the problem constraint set P ,
i.e., dependency and conflict constraints:

min c1

subject to

P

Then, a new constraint is introduced to insure that the first criteria is equal to the computed
objective function value O1, the objective function is set to c2 and the problem is solved again
to get O2, the optimal value of c2. This process is repeated for each criteria:

min ci

subject to

c1 = 01

. . .

ci−1 = Oi−1

P

Thus, this algorithm which requires solving one optimisation problem for each criteria could be
costly.

Lexicographic agregate is another way to implement a lexicographic order. Instead of calling
the underlying solver for each criteria, they are agregated in a single objective function:

obj =

n∑
i=1

λi ∗ ci

where

λi > sup(
n∑

j=i+1

λj ∗ cj)

The key issue here is to correctly choose criteria weights so that any change in ci+1, . . . , cn
criteria values does not affect ci. mccs computes such weights. However, all solvers have
limited domain values for their objective functions. So, in practice, combining more than 2 to
3 criteria in a lexicographic agregate can lead to a solver failure.

Leximin/leximax order

The leximin/leximax order offers more balanced solutions than the lexicographic order. It is
suitable when the user does not want to give a strict priority to some criteria. mccs implemen-
tation of the leximin/leximax has been described in section 2.2.2.

Note that this algorithm relies on integer variables which are not available in pseudo boolean
solvers. Thus, the use of leximin/leximax order is restricted to actual integer programming
solvers.

3.3.2 Extensive combination

The criteria combination introduced in the previous section offers much more possible criteria
combination than expected. A key observation here is that all these combiners can be viewed as
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a variation of the lexicographic algorithm: the agregate and lexagregate combiners use only one
objective function which could be solved using the lexicographic algorithm. The leximin/lexi-
max combiners are implemented using such an algorithm. These properties have been used to
extend criteria combination capabilities.

Both agregate and lexagregate combine their criteria through a single linear combination which
only requires one call to the underlying integer programming solver. A lexicographic algorithm
might solve one of these combination but, it can also solve more than one of these combination.
For example, the trendy set of criteria is composed of four different criteria which have to be
solved in a lexicographic order. Solving the four criteria using the lexicographic algorithm re-
quires four calls to the underlying solver, and that is a quite time consumming approach. Solving
them using the lexagregate combiner requires a linear combination of the criteria which does not
fit to the objective function domain limitations of the underlying solver. A compromise could
be reached by combining the two previous combiners, i.e., by using a lexicographic algorithm
on two lexagregate pairing the criteria two by two. This approach preserves the combination
semantics (it does select the same set of solutions) while improving time consumption.

Combining agregate and lexagregate together or between themselves is also possible and it
results in a linear combination of linear combinations. Such combinations can then be used like
criteria within a lexicographic or a leximin/leximax order.

Finally, the leximin/leximax combiners offer less flexibility. They can only be combined with
a lexicographic order. However,they provide a useful mean to address some user’s needs. For
example, assuming that three criteria have to be combined and that, while the first criteria
is critical, the two next ones are quite equivalent to the user. Then, applying a lexicographic
algorithm on the first criteria, followed by a leximin/leximax order on the two last criteria will
fit with users needs.

3.3.3 A small language for user defined combination

mccs provides a small dedicated language to let the user define its own criteria combination.
The key idea is to map, at least, virtually, any possible criteria combination to an underlying
lexicographic order. Indeed, monoobjective criteria combinations, like a simple agregation, fits
directly to a lexicographic algorithm reduced to one criteria and the leximin/leximax order
implementation do rely on an underlying lexicographic order implementation. Therefore, the
basic criteria combination is the lexicographic one:

-lexicographic[<lccriteria>{,<lccriteria>}*]

The next level of criteria combination gives access to the leximin/leximax order:

<lccriteria> ::= {+,-}leximax[<ccriteria>{,<ccriteria>}*] |

{+,-}leximin[<ccriteria>{,<ccriteria>}*] |

<ccriteria>

As a consequence, one, two or more leximin/leximax orders can be lexicographically ordered,
meaning that, for instance, the user does not want to order the two first criteria, neither he
wants to order the third and fourth criteria, while he clearly wants the set of the two first
criteria to be handled before the rest of the criteria.

Note that the leading sign gives the optimisation direction, i.e., a leading - for a minimisation
and a leading + for a maximisation.
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The final level of combiners gives access to the agregate and lexagregate combination:

<ccriteria> ::= {+,-}agregate[<ccriteria>{,<ccriteria>}*]{[lambda]}? |

{+,-}lexagregate[<ccriteria>{,<cccriteria>}*]{[lambda]}? |

<criteria>

This recursive definition allows the user to define agregate of agregate or lexagregate. An
optional lambda value gives the opportunity to attach a weight to the agregate by means of a
positive integer. All the coefficients of the criteria will be multiplied by this weight.

At last, the user can choose among the following criteria which one he wants to optimize:

<criteria> ::= {+,-}removed{[lambda]}? |

{+,-}changed{[lambda]}? |

{+,-}notuptodate{[lambda]}? |

{+,-}new{[lambda]}? |

{+,-}nunsat[<property:>,<withproviders>]{[lambda]}?

{+,-}count[<property:>]{[lambda]}?

With such a language, the trendy set of criteria can be defined using a pure lexicographic order:
-lexicographic[-removed,-notuptodate,-nunsat[recommends:,true],-new]

or a combination of lexicographic order and lexicographic agregate to balance the number of
optimisation to do and the limitation of the solver to handle big values:
-lexicographic[-lexagregate[-removed,-notuptodate],

-lexagregate[-nunsat[recommends:,true],-new]]

Note that, spaces can not be used within a criteria combination.
This final example shows how weights could be used to give more priority to some criteria:
-lexicographic[-removed,-agregate[-count[size:,true][10],-count[installedsize:,true]]]

To facilitate criteria combination definition by the user, the following criteria combination short-
cuts have been introduced:

• -lex[<lccriteria>{,<lccriteria>}*] which is equivalent to
-lexicographic[<lccriteria>{,<lccriteria>}*]

• -lexagregate[<ccriteria>{,<ccriteria>}*] which is equivalent to
-lex[-lexagregate[<ccriteria>{,<ccriteria>}*]]

• -lexsemiagregate[<ccriteria>{,<ccriteria>}*] which is equivalent to
-lex[-lexagregate[<ccriteria>,<ccriteria>],-lexagregate[<ccriteria>,<ccriteria>],...]

• -agregate[<ccriteria>{,<ccriteria>}*] which is equivalent to
-lex[-agregate[<ccriteria>{,<ccriteria>}*]]

• -leximax[<ccriteria>{,<ccriteria>}*] which is equivalent to
-lex[-leximax[<ccriteria>{,<ccriteria>}*]]

• -leximin[<ccriteria>{,<ccriteria>}*] which is equivalent to
-lex[-lexmin[<ccriteria>{,<ccriteria>}*]]

• -lexleximax[<ccriteria>{,<ccriteria>}*] which is equivalent to
-lex[<ccriteria>,-leximax[<ccriteria>{,<ccriteria>}*]]
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• -lexleximin[<ccriteria>{,<ccriteria>}*] which is equivalent to
-lex[<ccriteria>,-leximin[<ccriteria>{,<ccriteria>}*]]

Thus, for example, instead of writing
-lex[-lexagregate[-removed,-notuptodate],-lexagregate[-nunsat[recommends:,true],-new]]

to describe the trendy set of criteria, the user can more simply write
-lexsemiagregate[-removed,-notuptodate,-nunsat[recommends:,true],-new]

or, instead of
-lex[-removed,-leximax[-count[installedsize:,true],-count[size:,true]]]

he could more simply write
-lexleximax[-removed,-count[installedsize:,true],-count[size:,true]]

3.4 Solver modifications and extension

A first description of the mccs architecture was made in [ALLM10]. This section describes
the main modifications that have been done to the solver to cope with its new multicriteria
capabilities.

3.4.1 Solver implementation modification

The support of a lexicographic algorithm have required changes in the solver interface imple-
mentation. The previous interface was relying on a monocriteria approach and thus, had only
to deal with a unique objective function. Now that mccs allows the handling of multiple cri-
teria and flexible combination of these criteria, a deep modification of the solve function of
each solver interface was required. To this regard, the abstract solver class was modified to
allow the handling of a list of criteria and, each solver implementation was modified to handle
a lexicographic order in its solve method.

The abstract solver class is implemented by the following classes:

• cplex solver.h & cplex solver.c which implements an interface with the Cplex solver.

• gurobi solver.h & gurobi solver.c which implements an interface with the Gurobi solver.

• lpsolve solver.h & lpsolve solver.c which implements an interface with the Lpsolve solver.

• glpk solver.h & glpk solver.c which implements an interface with the GLPK solver.

• lp solver.h & lp solver.c which implements an interface with lp format compliant solvers.
Note that the lp format used here is the one defined by cplex and that it has only be
tested with the cbc and scip solvers.

• pblib solver.h & pblib solver.c which implements an interface with pblib compliant solvers
(file based interface).

3.4.2 Criteria and combiner implementation

A flexible implementation of criteria and combiners has been introduced. Criteria are imple-
mentation of the abstract class abstract criteria while combiners are implementation of the
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abstract class abstract combiner. Note that some combiners, like the agregate combiner, are
implementation of both the abstract criteria and the abstract combiner classes. Such combin-
ers can thus be either used as combiner or criteria. This architecture supports the flexible user
defined criteria combination introduced in mccs.

Pure combiners are:

• lexicographic combiner.h & lexicographic combiner.c

• lexsemiagregate combiner.h & lexsemiagregate combiner.c

• lexleximin combiner.h & lexleximin combiner.c

• lexleximax combiner.h & lexleximax combiner.c

Classes which implement both combiner and criteria are:

• agregate combiner.h & agregate combiner.c

• lexagregate combiner.h & lexagregate combiner.c

• leximin combiner.h & leximin combiner.c

• leximax combiner.h & leximax combiner.c

Pure criteria are:

• removed criteria.h & removed criteria.c

• changed criteria.h & changed criteria.c

• notuptodate criteria.h & notuptodate criteria.c

• nunsat criteria.h & nunsat criteria.c

• new criteria.h & new criteria.c

• count criteria.h & count criteria.c
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Chapter 4

PackUP

PackUP is a framework for solving the package upgradability problem. It translates the problem
to a weighted partial MaxSAT formula [LM09] and uses a dedicated solver for the formula. The
following are the options for solving the formula.

1. the MaxSAT solver msuncore

2. the optimization pseudo-Boolean problem (OPB) solver WBO

3. an external OPB solver, for example minisat+

The options (1) and (2) provide two distinct approaches to solving the problem. The option (3)
should be seen as an open platform for other researchers trying their solvers on the upgrad-
ability problems. Moreover, PackUP together with minisat+ provide a free and open-source
implementation of an upgradability solver.

Figure 4.1 schematically depicts the possible workflows in PackUp. The input given in the for-
mat CUDF is encoded into a weighted MaxSAT formula by the tool cudf2msu. This formula
can either be solved by the MaxSAT solver integrated in cudf2msu, or, by the solver bmo-pblex.
Since bmo-pblex is a separate tool, which operates solely on the formula, a mapping between
packages and variables is required to produce a solution in CUDF; the script sol2cudf recon-
structs a solution for the package upgradability problem from a solution of the formula. Finally,
when an external OPB solver is used, cudf2msu calls it repeatedly to obtain the solution.

The encoding of the problem is carried out in similar fashion to the encoding of the solvers
presented in deliverable 4.2 [ALLM10]. However, some novel techniques were explored and these
are described in section 4.2 using the notation introduced in the following section. section 4.3
discuss the techniques used for solving the weighted partial MaxSAT formula.

4.1 Preliminaries

PackUp supports CUDF 2.0 [TZ09b], but since the full description of CUDF 2.0 is beyond the
scope of this report, only the prominent features of the format are considered. The follow-
ing concepts and notations are simplifications of the formal semantics used in the CUDF 2.0
standard [TZ09b]. Each package has a name, version, dependencies, conflicts, recommended
packages, and information whether the package is installed or not. A package universe is mod-
eled as a package description, which is as a partial function from name-version pairs to a tuple
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CUDF input cudf2msu
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CUDF solutioncudf2msu, MaxSAT
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Figure 4.1: Workflows in PackUp

of the package’s properties. For a package description φ, name p, and version v, we write
φ(p, v). installed, φ(p, v). conflicts, φ(p, v). depends, and φ(p, v). recommends, for the respective
properties of package p with version v.

The installed property of a package determines if the package is installed and has either the
value true or false. The other properties hinge on the concept of constraints, which are triples
(p, relop, n), where p is a package name, n a version number, and relop is one of the binary
operators =, 6=,≥,≤. A package description φ satisfies a constraint (p, relop, n) iff there is a
package in φ that is installed, has the name p, and version v satisfying v relopn. For instance,
(x,=, 4) is satisfied by descriptions where φ(x, 4). installed = true and (x,≥, 4) is satisfied by
descriptions where φ(x, v). installed = true for some v ≥ 4.

The conflicts property is a set of constraints corresponding to packages that must not be
installed along with the pertaining package, i.e. if φ(x, v). installed = true then none of the
φ(x, v). conflicts can be satisfied. For instance,

φ(p, 1). conflicts = {(x,=, 2), (y, 6=, 3)}

means that the version 1 of package p conflicts with the version 2 of package x and with all the
versions of the package y except for the version 3. For simplicity, we assume that only (y, 6=, v)
is allowed to be a member of φ(p, v). conflicts when p = y, meaning that version v conflicts with
all other versions of p.

The depends property is a conjunction of disjunctions of constraints whose satisfiability is the
satisfiability of constraints extended by the standard semantics of conjunction and disjunction.
Hence, if φ(x, v). installed = true then φ(x, v). depends must be satisfied. For instance,

φ(p, 2). depends = ((x,≥, 3) ∧ (y,≥, 3)) ∨ (z,≥, 10)

means that version 2 of package p requires a version 10, or higher, of package z, or, packages x
and y with versions at least 3.

The recommends property has the same format as depends but is not enforced and is used only
for expressing optimization criteria.

A request is a pair (li, ld) where li is a set of constraints determining the packages that must be
installed and ld is a set of constraints determining the packages that must be removed.

Given a package description φ and a request (li, ld), a solution to the package upgradability
problem is a package description ψ such that ψ differs from φ only on the installed properties;
all the depends properties are satisfied; no conflicts properties are violated in ψ; all constraints
in li are satisfied and no constraints in ld are satisfied by the installed packages.
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To introduce the optimization criteria we use several auxiliary definitions. We write iφ(p) for
the set of versions of a given package, We introduce a collection of measures of how much a
solution ψ changes the original package universe φ: the number of packages removed, number
of new packages, number of packages changed,

iφ(p) = {v | (p, v) ∈ Dom(φ) ∧ φ(p, v). installed = true}
removed(φ, ψ) = | {p | iφ(p) 6= ∅ ∧ iψ(p) = ∅} |
new(φ, ψ) = | {p | iφ(p) = ∅ ∧ iψ(p) 6= ∅} |
changed(φ, ψ) = | {p | iφ(p) 6= iψ(p)} |
notuptodate(φ, ψ) = | {p | iψ(p) 6= ∅ ∧ vmax /∈ iψ(p)} |

In addition, unmet-recommends(φ, ψ) is the number of unsatisfied disjunctions in recommends
property of installed packages in ψ.

A criterion is a tuple (f1, . . . , fn) where fi is one of the removed , new , changed , and notuptodate,
e.g. (removed ,new). A score of a solution ψ for an initial installation φ is the tuple

(f1(φ, ψ), . . . , fn(φ, ψ))

Given a package description φ, request (li, ld), and a criterion T , a solution is optimal iff its
score is minimal among all the other solutions under the lexicographic ordering. For instance,
for the criterion (removed , changed) a solution ψ1 is better than ψ2 iff

removed(φ, ψ1) < removed(φ, ψ1)
∨ (removed(φ, ψ1) = removed(φ, ψ1) ∧ changed(φ, ψ1) < changed(φ, ψ1))

4.2 Encoding

The encoding process is performed in the following sequence of steps.

1. read in the problem: reads the problem into dedicated data structures;

2. slice: traverses the data structures obtained in the previous step and discards all packages
that are certainly unnecessary to provide a solution [TSJL07];

3. encode package constraints: captures conflicts and depends;

4. encode request: captures the given request;

5. encode preference: captures the given preferences;

6. encode auxiliary variables: generates additional formulas giving semantics to auxiliary
variables used in the previous steps.

The encoding relies on propositional logic with the standard notions of clause being a disjunction
of literals and a literal either a Boolean variable or its negation. To encode the problem we
produce a weighted partial MaxSAT formula [LM09], which comprises two sets of clauses: hard
clauses and soft clauses where each soft clause has a non negative weight. A solution to such
formula is a variable valuation that satisfies all the hard clauses and maximizes the sum of
weights of satisfied soft clauses. A soft clause c with the weight W will be denoted as (W, c).

Whether a package p with version v is installed, is modeled by a Boolean variable xvp. Constraints
are encoded with the use of the following four types of variables, called interval variables (similar
to order encoding [TTKB09]):
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relop C [x, (q, relop, n)] D [x, (q, relop, n)]

= ¬x ∨ ¬xnq ¬x ∨ xnq
6= (¬x ∨ u�n−1q ) ∧ (¬x ∨ u�n+1

q ) ¬x ∨ i�n−1q ∨ i�n+1
q

≥ ¬x ∨ u�nq ¬x ∨ i�nq
≤ ¬x ∨ u�nq ¬x ∨ i�nq

Table 4.1: Definition of the operators C and D for constraints.

• u�vp — all versions greater than or equal to v of p are uninstalled

• u�vp — all versions less than or equal to v of p are uninstalled

• i�vp — at least one version greater than or equal to v of p is installed

• i�vp — at least one version less than or equal to v of p is installed

To define the encoding, we use two auxiliary operators C and D. The operators correspond
to the encoding of conflicts and dependencies, respectively. Table 4.1 defines the operators at
the level of single constraints. So for instance C

[
xvp, (q,≤, n)

]
yields the formula ¬xvp ∨ u�nq ,

which represents that if version v of p is installed, then all the packages q with versions less or
equal to n must be uninstalled. Analogously, D

[
xvp, (q,≤, n)

]
yields ¬xvp ∨ i�nq which represents

that if version v of p is installed, then at least one package q with a version less or equal to
n must be installed. Observe that C [x, (q, relop, n)] always yields one or two clauses and that
D [x, (q, relop, n)] always yields one clause.

To extend C to a set of constraints l, we take the conjunction of encodings of the constraints in
the set. To extend D to a conjunctive normal form of constraints, we reconstruct the conjunctive
normal form from the translations of those constraints:

C[x, l] =
∧
r∈l
C[x, r] D[x, l1 ∧ l2] = D[x, l1] ∧ D[x, l2]

D[x, l1 ∨ l2] = D[x, l1] ∨ D[x, l2]

Apart from encodings of constraints between packages, we need to give the interval variables
their intended meaning. To this end, we generate the following clauses for each package p and
version v.

Ivp = (¬ i�vp ∨xvp ∨ i�v+1
p ) ∧ (¬u�vp ∨¬xvp) ∧ (¬u�vp ∨u�v+1

p )

∧ (¬ i�vp ∨xvp ∨ i�v−1p ) ∧ (¬u�vp ∨¬xvp) ∧ (¬u�vp ∨u�v−1p )

where xvp for nonexistent packages is treated as false, unneeded interval variables are not gen-
erated, and the formulas are simplified accordingly.

To encode the non-preferential part of the upgradability problem comprising a package descrip-
tion φ and a request (li, ld), we generate the following formula:

r ∧ D(r, li) ∧ C(r, ld) ∧
∧
Ivp ∧∧

(p,v)∈Dom(φ)

D[xvp, φ(p, v). depends] ∧ C[xvp, φ(p, v). conflicts]

where r is a fresh variable corresponding to an always-installed package.

To encode preferences we generate soft clauses capturing the objective to minimize the functions
in the given criterion. The weights for these clauses are generated in such a way that they will
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Algorithm 1: Solving the problem with an external OPB solver

ω ← constraints corresponding to hard clauses in the problem;1

for i← 1 to n do2

(outc, si)← Optimize(ω,Σjk
i
j ∗ xij); // optimize for fi3

Ci ← fi(si); // compute i-th element score4

if outc = false then5

return false; // the problem does not have a solution6

ω ← ω ∧
(

Σjk
i
j ∗ xij ≤ Ci

)
; // fix the value of a solution7

return sn8

capture the lexicographic ordering on the scores [Ehr05], i.e. for a criterion T = (f1, . . . , fn) the
weight for clauses capturing minimization of the function fi is defined as Wi = 1 + Σj<iWj × cj
where cj is the number of clauses generated for the function fj . Hence, in the following we
assume that for the functions removed , new , changed and notuptodate their corresponding
weights Wr, Wn, Wc, and Wu, respectively, were generated for the given criterion T with
Wi = 0 if fi does not appear in T .

Given a package description capturing the initial installation φ for the individual functions we
use the following rules.

For the function removed : If iφ(p) 6= ∅ then generate the soft clause (Wr, i�1p).

For the function new : If iφ(p) = ∅ then generate the soft clause (Wn, u�1p).

For the function changed : Let sp be a fresh variable then generate the following hard clauses
¬sp ∨ xvp if φ(p, v). installed = true and ¬sp ∨ ¬xvp if φ(p, v). installed = false; add the soft
clause (Wc, sp).

For the function notuptodate: Let tp be a fresh variable; generate the hard clauses ¬xvp∨tp for all
(p, v) ∈ Dom(ψ); generate the soft clause (Wn,¬tp ∨ xvmax

p ) where vmax is the maximal version
of p appearing in φ.

For the function unmet-recommends: For each clause in c ∈ D(xvp, φ(p, v). recommends) generate
the soft clause (Wu, c).

4.3 Computing a Solution

Once the problem is encoded as a weighted partial MaxSAT formula, an out-of-the-box solver
can be used to solve it. Then, an optimal solution to the upgradability problem is a solution
that installs those packages whose corresponding variables have the value true in the solution
to the formula.

Previous research showed that out-of-the-box solvers do not cope well with the large weights
resulting from the lexicographic ordering [ABL+10]. Hence, PackUp uses solvers that are spe-
cially adapted to lexicographic optimization [ALMS09]. cudf2msu contains an extension of the
solver msuncore and bmo-pblex is an extension of the solver WBO. The solver msuncore searches
on the lower-bound of the optimization function [FM06, MMSP09] and therefore is suitable for
problems where the optimum is not too far from the best theoretically result. In contrast, WBO
searches on the upper-bound [BF98] and therefore is expected to perform well on problems with
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high deviation from the best theoretical result.

When PackUp is used with an external OPB solver, it invokes the solver multiple times us-
ing the techniques from [ALMS09]. The weighted partial MaxSAT formula representing the
upgradability problem is converted to OPB using standard conversion techniques [MMSP09].
Then, for a criterion (f1, . . . , fn), each fi corresponds to a sum of the form Σjk

i
j ∗ xij for some

integer coefficients kij and variables xij . line 1 presents in pseudo-code how the external OPB
solver is called. PackUp maintains a set of constraints ω, which are gradually strengthened. For
each function in the criterion it calls the OPB solver (line 1). In the pseudo-code, the solver is
represented by the function Optimize(τ, ξ) where τ is an OPB constraint and ξ is a function to
be optimized. The return value is a pair (outc, s) where outc represents whether the problem
has a solution or not, and, s represents a solution if one was found. Once the optimum for fi is
found, its value is fixed (line 1) and the algorithm moves onto the function that follows in the
lexicographic ordering.
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Chapter 5

Constraint programming and the
package installability problem

This chapter presents the approach we used to solve the package installability problem by using
constraint programming. It is divided into two main sections, the first one describing the process
of taking a CUDF file and interpreting it and the second one describing the solving process itself:
the modelling of the problem as a set of constraints and their semantic.

In the first section, we realized that a CUDF specification was still high level from a solver
perspective. This is based on the fact that a big part of the solver process was dealing with
interpreting the specification. As a result we decided to isolate and modularize this part and
to establish an intermediate low level language that was easier to interpret for the solver. This
language is KCUDF which stands for Kernel CUDF. It presents a simplified semantics still
preserving the complete problem information. A set of tools were also developed in order to
convert from and back to CUDF specifications.

The second section presents the constraint-based solver. After analyzing the problem, and
the possible different ways in which constraint programming existing research could be used
to solve, it was decided to use constraints on binary relations. This decision is based on two
aspects: first, the core of the problem can be expressed (in natural language) as relations among
packages. Second, the opportunity to compare how different approaches, that the research area
offers, can tackle the problem and solve it.

5.1 The solver infrastructure

5.1.1 KCUDF

CUDF is a great achievement promoted by this project and as such, it offers great compatibility
and a common base to work in applications that rely on package information. However, the
solvers by themselves work at a lower level of abstraction and a CUDF specification still needs
some interpretation before being an input to a solver. This is why we propose KCUDF as a
kernel language that is more suitable for the solvers.

The language is defined by the following grammar:

KCUDFSpec : := <PkgSpec> <RelSpec>
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PkgSpec : := ’P ’ <Id> <Keep> <I n s t a l l>

RelSpec : := <DepSpec>∗ <ConfSpec>∗ <PvdSpec>∗

DepSpec : := ’D ’ <Id> <Id>

ConfSpec : := ’C ’ <Id> <Id>

PvdSpec : := ’R ’ <Id> <Id>

Keep : := ’K’ | ’ k ’

I n s t a l l : := ’ I ’ | ’ i ’

Id : := [0−9]+

Every line in a KCUDF specification is either declaring the existence of a package or defining
the relations among them. When a package is defined, the first character of the line contains the
letter P followed by a numerical identifier and two letters specifying how the package must be
treated by the solver regarding its presence in the system. K stands for Keep and its uppercase
form indicates the solver, that whatever the installed state of this package is, has to remain at
the end of the process. I represents an installed package while the same in lower case would
represent that the package is not installed.

For instance, the statement P 42 K i will be interpreted by the solver as: the package with
identifier 42 will be kept uninstalled from the system. In a similar way, P 54 K I will instruct
the solver to install the package.

Additionally, statements starting with D represent the existence of a dependency relation be-
tween the two packages specified (the first one depending on the second one). In the case of a C

a conflict relation between the two mentioned packages is defined. Finally, statements starting
with R define that the first package provides the second one.

The benefits of having KCUDF as the input language for the solver are:

• No interpretation has to be performed at the solver level.

• The information can be parsed by a single traversal of the input file.

• The Installability problem is encoded in the install and keep attributes on the packages.

One of the most important drawbacks is that it does not offer a common way to encode the
optimization criterion. However, it is extensible: new attributes can be defined in a per-package
basis and a lexicographical search criterion can be expressed on them.

Apart from defining this format we also provide some tools that facilitate working with KCUDF
files:

• A program called cudf2kcudf that takes a CUDF specification and translates it to
KCUDF.

• kcudf-reduce which takes a KCUDF and outputs an equivalent problem (in KCUDF)
that discards the packages that will not affect the solution of the solver.
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This tool is fundamental in the case of our constraint based solvers because it eliminates
the noise caused by packages that does not have an effect on the solution.

• kcudf2cudf that takes a KCUDF and an original CUDF specification and produces a
CUDF. In this CUDF the packages have the state reported by the KCUDF specification.
This program is useful to report solutions.

This set of tools allows a clean integration of KCUDF-based tools with others such as libcudf
which is provided by other partners of the project and provides parsing functionalities on CUDF
specifications.

Figure 5.1 presents a graphical description of the interaction between the proposed components.
The modules Translator, Reducer and Formatter are directly supported by the applications
cudf2kcudf, kcudf-reduce and kcudf2cudf presented above. An important aspect of the presented
infrastructure is that the communication between modules is done via KCUDF. The reducer
module provides two outputs: a description with the packages and their corresponding states
in the system that does not have to pass through the solver (tagged with E in the figure); and
the equivalent sub-problem that needs to be solved. At the end, both solutions emitted by the
solver and the output of the reducer are mixed by the formatter to produce a CUDF output to
the installability problem.

INFO

KCUDF

CUDF

LIBCUDF

Parser

KCUDF

E

KCUDF

OutputCUDF

Translator

FormatterReducer

Solver

KCUDF
S

Figure 5.1: Solver infrastructure and supporting components.
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5.1.2 Reduction process

The process of reducing the input to only consider packages that need to be taken into account
by the solver is crucial for the kind of solver we propose. The solving process uses a considerable
amount of resources and its complexity depends on the domains of the constraint variables (this
topic will be described in depth in the next part of this report). The reducer aims at trimming
the input taking into account several aspects of the problem:

• User requests usually specify small changes compared to the set of available packages in
the universe.

• Only packages marked to be kept installed or uninstalled need to be considered in addition
with the packages related in some way with the packages in the request.

For these two reasons, there are a considerable number of packages that are not going to change
due to the solving process. This is the set of packages that is extracted by the reducer algorithm.
This algorithm works on the assumption that each package has an initial state (the first time
it is considered by the reducer) and this state can change according to the diagram presented
in Figure 5.2.

FAIL

SEARCH

MUST
INSTALL

CAN
INSTALL

CAN
UNINSTALL

MUST
UNINSTALL

Figure 5.2: Reducer state diagram.

The states labelled CanInstall (CI) and CanUninstall (CU) correspond to packages that, have
k I and k i in the KCUDF specifications. Packages in MustInstall (MI) and MustUninstall
(MU) correspond to K I and K i. During the reducing phase, packages change from one state
to another, taking into their relations with other packages. For instance, if a package needs to
be installed, it will get in the state MI and all its dependencies will have this state too. On the
other hand, all its conflicts will go to state MU.

There are two other states that are considered by the reducer: a state labelled Search (SR) that
contains part of the packages for which the solver needs to provide a solution. The state Fail
indicates a failure or inconsistency detected by the reducer. In this case the reducer has found
that the request and the current information make the problem unfeasible.

The reduction algorithm will apply the rules introduced by the relations among packages until
no change of state is possible. At this point if there is any package in the failure state, the
problem is known to have no solution. For all the packages that end up in the state SR the
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solver has to find a solution. Enough information about this packages is provided in the output
of the solver.

5.2 Constraint based solver for the PIP using binary relations

In the previous section we described the set of tools using around the solver component. This
section is completely devoted to the solver itself and presents the way we solve the problem
using constraints on binary relations.

Binary relations match perfectly with the existing relations among packages: Dependencies,
Conflicts and Provides. In this part of the report we show how they are directly expressed in
terms of decision variables that have relations as domain.

5.2.1 Constraint model

The problem data can be naturally described in terms of relations among packages. This fact
can be further exploited at the solving process by exploiting the relation concept to solve it. To
do this, the constraint model includes variables with relation domains and constraints on them.

Variables

• Inst: The goal of the solver is to find a set of packages to be installed that fulfills the
user request and this is exactly what the Inst variable represents. It is a set variable with
domain:

MI ⊆ Inst ⊆ U \MU

where U is the set of all possible packages defined by the number of repositories accessible
from the user system.

• Dep represents the dependency relation, its domain is:

Dep0 ⊆ Dep ⊆ Depmax

The argument for having the dependencies as variables in our model is that new depen-
dencies can be inferred by constraint propagation. For instance, only direct dependencies
are given by the input. Depmax is computed with the information in the input. Basically
when a package p depends on a virtual package v, the dependencies of v are considered
as possible dependencies of p. Note that this property is transitive.

• Conf represents the conflict relation, its domain is:

Conf0 ⊆ Conf ⊆ Confmax

In the same way as new dependencies can be inferred by constraint propagation it is
possible to do the same for the conflicts. Confmax is computed with the information of
the input and a similar process as the one described for Depmax. However in this case it
is not a transitive property.

Deliverable D5.3 Version 1.0 page 37 of 46



May 24, 2011

• Prov represents the provides relation. It is a binary relation with domain:

∅ ⊆ Prov ⊆ Prov0

This is the only relation variable with an empty lower bound. The reason for this is
that only when packages get installed the variable will change with the provided virtual
packages.

The argument for considering the relations as variables and not just as raw input data is that
during the solving process new information can be inferred. At first sight this looks like some-
thing that is not possible since package relations are there from the very early stages of their
design, however, the request and particular user configurations can change this aspect dramat-
ically. Just to give an example, suppose that installing package p requires some functionality q
that is provided by packages r and s. As soon as one of the packages r or s become uninstallable
for any reason, a new element of the dependency relation emerges, this time between p and the
remaining package.

The current installation plays no role in the domains of the variables and will not be used for
the constraints either. This guarantees that the full search space is considered without artificial
restrictions and that any inconsistency in the current installation will not propagate to the
solution. By contrast, we will use the information about the current installation to guide the
search and to evaluate the quality of solutions.

Constraints

To enforce the conflict relation the following constraint imposes that two conflicting packages
cannot be installed together.

conflicts(Conf, Inst) ≡ ∀x, y : x ∈ Inst ∧ (x, y) ∈ Conf =⇒ y /∈ Inst

The constraint enforcing the dependency relation among installed packages is presented below.
It ensures that the dependencies of an installed package are installed. Conversely, if a package
p depends on a package q that will not be installed, p will not be installed as well.

dependencies(Dep, Inst) ≡ ∀x, y : x ∈ Inst ∧ (x, y) ∈ Dep =⇒ y ∈ Inst

The following constraint states that any installed package must have a provider. If an installed
package has a unique candidate provider left, the pair representing this becomes part of Prov.
Conversely, when a package is marked as not installed, all the pairs leading to it can be excluded
from Prov.

provides(Prov, Inst) ≡ ∀x : x ∈ Inst =⇒ ∃y ∈ Inst ∧ (y, x) ∈ Prov

Concrete packages (the ones that really install files on the computer) are self-providing. Virtual
packages are not. Generally, Prov is a subset of Dep since if concrete package p provides
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functionality q, it is impossible to install p without also having q available. Because of the
inherent disjunction that it represents, the implementation of this constraint only propagates
when a package has only one provider or no provider at all.

These constraints do not exploit much the fact that we have relation variables and not values.
Redundant constraints will be added later and will provide further propagation and pruning of
the search space.

5.2.2 Traversal of the search space

The constraints previously presented are enough to represent and solve the PIP. However,
because of the search strategy we need to add one more constraint to the problem.

The natural search strategy would be to add basic constraints to Inst as it is the variable whose
value is the result we are searching for. However, there is no natural criterion to decide on
which package to include or exclude at any point in the search. A far better approach is to
decide to include or exclude a potential provider of a package that is known to be installed in
the solution, but which as not yet a known installed provider. Packages that are not installed
do not need a provider. By adding the following constraint, we can simply search on Prov and
have Inst be determined as a side-effect. Note that the decisions will be taken on Prov and will
be propagated to Inst by this constraint.

Image(Inst,Prov) ≡ ∀x, y : (x, y) ∈ Prov =⇒ y ∈ Inst

Adding a pair to Prov will include the provided package in Inst; removing all pairs leading to a
package, will remove it from Inst. Therefore, when Prov is determined, Inst is also completely
known. The propagation between Inst and Prov is bidirectional.

Here is the branching algorithm. The choice point is created as described above by including
or excluding a pair from Prov. That leads to a package that is known to be installed and not
provided by an installed package. Which candidate provider gets selected is decided by the
selectProvider procedure that allows the use of different criterion to compute the provider.
In this algorithm ProvI stands for the provider relation (i.e. Prov−1)

branch ( ProvI , I n s t ) {
f o r a l l (p in domain ( ProvI ) :

I n s t . conta in s (p) && Prov . minCard (p) == 0) {
v = s e l e c t P r o v i d e r (p , ProvI ) ;
try ProvI . i n c lude (p , v ) | ProvI . exc lude (p , v ) ;

}
}

So far we have presented the constraints used to solve the PIP. From the problem perspective
they are enough to bring correct solutions. Note that these are not necessarily the only con-
straints we use to solve the problem. The next section presents redundant constraints that are
considered as part of the model.
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5.2.3 Redundant constraints

The constraints presented so far are not taking much advantage of the fact that we have re-
lational variables. However, many deductions can be done that will increase propagation and
pruning and therefore reduce the need for search.

A first batch of redundant constraints derives from the fact that if p depends on q, any instal-
lation in which p is present will necessarily also include q. Because of this, any dependency of
q can be seen as a dependency of p and any conflict of q is a conflict of p. These properties are
translated into two constraints. The first one ensuring that Dep is transitively closed. While
the second enforces that the conflicts of the dependencies of a given package are also conflicts
of the package itself.

TransitivelyClosed(Dep)

Follow(Dep,Conf,Conf)

These two constraints are effective but stop at the same point: virtual packages have generally
no dependencies or conflicts. Their providers do, but because of the disjunction that the virtual
package represents the conflicts and dependencies of a provider cannot be safely considered as
conflicts and dependencies of the virtual package itself.

However, the providers of a virtual package are generally different versions of a same program
or several similar programs. It is common for them to have the same dependencies and conflicts.
And if all the candidate providers of a virtual package have a conflict or dependency in common,
then that conflict or dependency can safely be considered as applying to the virtual package
itself. In essence, this is a specific form of constructive disjunction. This could be represented
in the model by the following constraints.

FollowAll(Prov−1,Dep,Dep)

FollowAll(Prov−1,Conf,Conf)

Informally, FollowAll captures the notion of transitivity between two relations to deduce more
information about a third one. For instance, it allows us to reason about packages in the provides
and in the dependency relation to possibly deduce new dependencies: when all the providers of
a package share the same dependency then this becomes a dependency of the package itself.

The FollowAll constraint brings some implementation challenges that in some cases render it
unpractical. The FAAA constraint overcomes this problem at the price of an extra argument.
It still captures the notion of transitivity but this time limiting it to the elements that appear
in its first argument. For our problem we use Prov0 (only the ones that have a provider) to
limit the action of the constraint instead of considering all the packages in the repository.

FAAA(Prov−10 ,Prov−1,Dep,Dep)

FAAA(Prov−10 ,Prov−1,Conf,Conf)

By Prov−10 we mean the inverse relation: Prov0 denotes the provides relation and Prov−10 the
provider one.
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Heuristics

The definition of selectProvider in Section 5.2.2 is purely heuristic, it could be for instance
selecting the first provider available:

int s e l e c t P r o v i d e r (p , ProvI ) {
return ProvI (p ) . begin ( ) ;

}

In this implementation the first possible provider of p is returned. This heuristic does not lead
to good solutions for the user. When a user installs a package it is expected that solutions
describe installations that are close to the current system state. A solution that calls for the
removal of many packages might be a solution to the problem but will not be acceptable for the
user. Taking into account the current setup in the heuristic will help provide better solutions.
This is done by:

int s e l e c t P r o v i d e r (p , ProvI , In s t0 ) {
set<int> c = i n t e r s e c t ( ProvI (p ) , In s t0 ) ;
i f ( c . empty ( ) ) return ProvI (p ) . begin ( ) ;
else

return c . begin ( ) ;
}

This time the heuristic checks for providers of p already present in the initial installation
(Inst0) and considers them first. If there is no provider installed, any package that can provide
p is selected. Even if the initial installation is not consistent for the reasons mentioned in
Section 5.2.1, we are not risking correctness as this information is only used as an heuristic.

When there are no possible providers of p that are part of Inst0 there is still an heuristic
to apply. We can associate a rank to every package given how difficult it is to install. This
difficulty can be measured by the number of conflicts it has and by the number of dependencies.
We can consider packages with bigger number of conflicts and dependencies as packages that
should be installed first and then get more pruning of the search space. The following heuristic
implementation integrates this concept:

int s e l e c t P r o v i d e r (p , ProvI , Dep , Conf , In s t0 ) {
set<int> c = i n t e r s e c t ( ProvI (p ) , In s t0 ) ;
i f ( c . empty ( ) )

return ProvI (p ) . begin ( ) ;
return d i f f i c u l t (p , ProvI , Dep , Conf ) ;

}

The implementation of difficult is straightforward, it just consists of traversing all the
providers of p and returning the one for which the number of dependencies and conflicts is
maximal. Rather than considering static information, this heuristic will consider the current
state of the dependencies and the conflicts. That is, it will consider dependencies and conflicts
that were deduced.

5.2.4 Optimization

Instances of PIP are typically under-constrained and have many solutions. We use heuristics to
provide user-acceptable solutions but this is generally not enough. In most cases an optimization
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criterion can be defined. Different users will have different ideal functions. As an example, we
can define the paranoid criterion for users who want to avoid removing currently installed
packages as much as possible.

To express this criterion, we introduce two new variables. The first is a set, defined as the
intersection of the solution installation with the actual installation. The other is an integer and
is simply defined as the cardinality of the first one.

Common = Inst ∩ Inst0

Close = card(Common)

Of course the optimization criterion and the heuristic have to be closely matched to have good
performances. However, even if each user has a different view on the prefect solution, the basic
ideas are common. In the optimization algorithm below, BestSF represents the best solution
found so far and Curr represents the current search space.

void opt imize ( BestSF , Curr ) {
Curr . Close > BestSF . Close ;

}

5.2.5 Current results

To measure the performance of the implemented solver we use data from the Mancoosi project.
This project aims at integrating new technologies in FOSS distributions. In particular, it focuses
on the development of efficient algorithms and tools to plan system upgrades based on various
information sources about software packages and optimization criteria. Part of this project
consists of a solver competition where different technologies are used to tackle the PIP.

The experiments we have done with instances of the solver competition provide evidence that
our approach to tackle PIP can be competitive. This section presents a description of the data
used and the times we got with our solver.

The data consists of a universe from a Debian distribution using stable, testing and unstable
branches. On some of the instances a random package is selected to be installed (this is where
the instance name cameos from). The state of the packages is inconsistent. This means that
the installation is broken and that the solver will have to fix it. As an optimization criterion a
system closer to the current is requested.

Table 5.2.5 shows the name of the instance, the time used by the solver to find a first solution
(TFFS) using as heuristic the installation of the packages already present in the system. The
third column presents the time for the solver start proving optimality (TOP), the fourth column
presents the number of solutions found when the search was stopped (Sols.) and finally the last
column presents the time spent by a SAT based solver to solve the problem. All times are in
seconds.

Due to the size of the search space our solver is not able to finish in a practical time (e.g. 5
minutes is the maximum time in the solver competition). The time to find the first solution is
around 8 minutes (average). In most of the benchmarks it takes 2 minutes more to find about
30 solutions to the instance. After that time the number of failures start increasingly very fast.
Because of this, and the way the search tree looks like we think that the huge amount of failures
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Instance TFFS TOP Sols. SAT

ark 408 470 27 282
codebreaker 400 502 32 282
dpkg-dev 408 507 30 285
libnss3-ld 410 495 29 289
libgnokii4 413 510 33 283
mercurial-common 411 521 30 292
mono-gac 411 535 31 291
openoffice.org-l10n-da 411 519 29 284

is due to the fact that the solver is traversing the search space proving optimality. In fact the
last solution found differs only by 70 (average) packages from the initial one. The fact that
the initial installation is inconsistent could imply that those packages cannot be installed. It is
important to highlight that the SAT solver is able to proof the optimality of the solution.

In conclusion, to reduce the time to check the optimality of a solution we need to improve the
complexity of domain operations (by a profiler analysis, most of the time is consumed by the
execution of domain iteration done by Follow and FAAA). We wrongly believe that a better
domain representation will change the way constraints modify the domain and will leaf to better
times. The times presented in this section were taken on an explicit domain representation.
These times are an argument to design the new domain representation. For space reasons that
part of the work is not presented here but it is available on the Mancoosi repository1.

1 https://gforge.info.ucl.ac.be/svn/mancoosi/trunk/PIPsolvers/ccp-kcudf/docs/confirmation.pdf
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