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1 Introduction

Deliverable D4.2 is a prototype, that can be downloaded from the URL http://www.mancoosi.
org/software/D4.2.tar.gz.

This report accompanies the D4.2 prototype.

It provides an introductory insight of multicriteria optimization in general and multicriteria
optimization issues related to upgradeability problems.

It also provides additional information about the Mancoosi plugins that are found in the pro-
totype and on the internal competition, and used to perform a preliminary evaluation of the
different plugins.

Multicriteria optimization is a corner stone of the Mancoosi approach to upgradeability issues.
Indeed, an upgradeability problem might have a significant amount of solutions to suit, more
or less, to users’ needs. To deal with this issue, the Mancoosi project relies on multicriteria
optimization. The section 2 introduces the basics of multicriteria in the context of upgradeability
problems.

2 On solving the upgradeability problem

2.1 Mathematical model

The upgradeability problem can be expressed as a mathematical model as follows:

• A boolean variable is associated to each versioned package.

• Dependencies or incompatibilities between packages or versioned packages are constraints
on the corresponding boolean variables.

• Requirements, like install package X are also implemented as constraints.

• The quality of solutions to upgradeability problems are measured using objective functions

The upgradeability problem boils down to solving a combinatorial optimization problem: find
values for the variables maximizing the criteria and satisfying the constraints.

In general, we have several quality measures of solutions to the upgradeability problem. For
example, we may want to minimize the download time, but we wish to get the most recent
version of packages and we, also, want to minimize the disruption of the current configuration.
In general, those different measures are contradictory: clearly, on an old installation, we cannot
simultaneously minimize the download time and maximize the freshness of packages’ versions.
That is to say that the upgradeability problem, generally, is a multicriteria optimization prob-
lem.

Before discussing the general multicriteria issue, it is necessary to determine how easy are the
two main subproblems: the simple satisfiability of the upgradeability problem, and the mono-
criterion optimization upgradeability problem.

First of all, the satisfiability of the upgradeability problem, i.e. without taking into account
equality measures of a solution, is already theoretically very difficult. It is an NP complete
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problem: the typical number of variables is 30000, the size of the space to explore is potentially
230000 and some instances of the problem may be well beyond the capacity of the computers.
In practice, fortunately, this problem is much easier than expected by this theoretical view: the
density of solutions is high, and every instance we get in the experiments was solved in a few
minutes.

Given a single criterion, the problem becomes much more difficult to solve. This can be simply
explained: even if the density of a solution is high, the density of optimal solutions may be
quite low. Nevertheless, in practice, the experiments done in Mancoosi pointed that the optimal
solution is reachable by some solvers in a few minutes. Anyway, even when the optimal solution
needs too much CPU time to be found, a user is generally satisfied with a good solution which
is non optimal, but that may be quite easier to find.

2.2 Upgradeability as a multicriteria optimization problem

Now, it is possible to focus on the real problem, where several contradicting measures are used,
giving several criteria. The problem is not only to find a good or an optimal solution. Indeed,
before solving the problem, it is needed to define what kind of solution we want. Taking up the
above example on an old installation, we are considering two criteria: minimize the download
time, and maximize the freshness of the packages versions. We need to decide what kind of
trade-off between the two criteria we want to have.

Lexicographic optimality A first compromise exemple is to favour any improvement of
one criterion, even a very small one, to any improvement of the second criterion, even a huge
one. We have a strong hierarchical preference between criteria. In other words, the criteria are
ordered lexicographically: a solution s1 is better than s2 if it is equivalent for criteria 1..i-1, and
is better for the i-th criterion This is the approach followed for the solvers’ development and for
the solvers’ comparison this year. This approach has a significant advantage: it does not need
the criteria’s values to be compared. Indeed, the comparison of the values of different criteria
is a difficult task, and can be specific to one user and one problem.

Pareto optimality Another approach, avoiding the difficult task of defining how the values of
different criteria can be compared, is simply to generate all the solutions that may be preferred.
A solution may be favoured, if and only if, it is not dominated by another one. Such a non
dominated solution is called a pareto-solution. A solution s1 is better than s2 if, for each
criterion, s1 is at least equivalent to s2, and there exists a criterion such that s1 that is strictly
better than s2. Intuitively, it is not possible to improve a pareto-solution criterion without a
loss for another criterion.

In practice, the set of pareto-solutions is important, and the usual approach taken is to compute
an approximation of this set.

Utility functions The comparison of the different criteria values is needed in all multicriteria
methods to define what is a good trade-off. The lexicographic approach, indeed, defines the
trade-off as no possible trade-off, and therefore does not need such a comparison. In general, this
comparison is made through a utility function associated to each criterion. A utility function
uz maps a value v of the criteria z to a number uz(v). A utility function uz should satisfy an
intuitive property: v1 < v2 → uz(v1) < uz(v2).
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The aim of utility functions is to make the comparison between different possible criteria. The
utility functions of different criteria are strongly related, in such a way that the numbers coming
from different criteria can be compared: let z1, z2 be two criteria and let v1, v2 be the values
of z1, z2 in a given solution. Thus, we know that, in this solution, z1 is more favoured than z2

when uz1(v1) > uz2(v2).

Trade-offs between criteria Given the values u1, . . . , uk and u′1, . . . , u
′
k of the utility func-

tions for two solutions s and s′, we want now to define when s is preferred to s′, noted s >m s′.
Many different preference orders >m, and many corresponding multicriteria methods exist. For
the upgradeability problem, the efforts are focusing on some particularly interesting methods.

Weighted sum An extremely frequent approach is to maximize a weighted sum
∑

wi ∗ ui,
where w1, . . . , wk are weights associated to each criterion.

Formally, we have: s >m s′ iff
∑

wi ∗ ui >
∑

wi ∗ u′i.

This approach seems to be quite intuitive and satisfying. Nevertheless, despite its general use
in many domains, this approach has some strong drawbacks. The function

∑
wi ∗ ui is linear,

and, when maximizing this function for a concave set of solution, many good solutions are not
reachable. Furthermore, its sensitivity to the weights is very high.

Maximizing the minimum A different approach, with many applications too, is to maxi-
mize the minimum value among criteria. s >m s′ iff min ui > min u′i.

This approach, unfortunately, produces many indistinguishable solutions, and some of them are
not pareto-solution.

A common principle for more sophisticated approaches An idea,frequently encoun-
tered in advanced methods, is to order the criteria depending on the values they take in a
solution. We give a detail of two of these methods.

Ordered weighted average Let p1, ..., pk be the sorted permutation of u1, . . . , uk in increas-
ing order of values. Let w be a vector of weights such that wi ≥ wi+1.

The idea is to maximize
∑

wi ∗ pi. We can see that if w1 = w2 = . . . = wk, we get the sum.

If w1 = 1, w2 = w3 = . . . = 0, we get the methods which maximize the minimum.

Leximin/leximax Once again, let p1, ..., pk be the sorted permutation of u1, . . . , uk in in-
creasing order of values.

Then a Leximax solution is simply a lexicographic solution on p1, ..., pk.

Leximin/leximax have nice properties, that make their outcomes intuitive for the user:

• they produce only pareto-solutions;

• they are egalitarian : a leximax solution is always a solution for the method maximizing
the minimum;
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• they verify the property of reducibility : if a criterion is set to a value that is found in an
optimal solution, then leximin/leximax sill produce the same set of optimal solutions as
without that criterion

3 The Mancoosi plugins

The complexity of the upgradeability problem is at least NP complete, and modern operating
systems contain a huge number of packages (often more than 20 000 packages in a Linux
distribution). Solving the upgradeability problem relies on complex algorithms whose efficiency
is hard to predict. Instead of sticking to a given algorithm to solve the Mancoosi problem,
another approach was implemented, where different possibles algorithms and solvers have been
explored. This should improve our ability to handle the upgradeability problem while providing
a broader experience on the right way, and if any, to solve it.

At this stage of the project, four different systems are under development:

• Apt-pbo developed by Caixa Magica relies on a pseudo boolean solver and benefit from
the environment of a Linux distribution.

• INESC solver relies on an original approach based on MAXSAT.

• UCL solver relies on graph constraints.

• UNSA solver relies on Integer Linear Programs.

This strategy should offer a wide spectrum of approaches to handling the upgradeability prob-
lem, and maximize the quality of the results.
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4 CUDFsolver

CUDFsolver represents UNSA efforts to implement a CUDF problem solver. It is written in
C++ and relies on Flex and Bison to implement a CUDF reader. This solver translates the
CUDF problem into a MILP problem and then relies on an underlying MILP solver to get a
CUDF problem solution.

This section describes the MILP translation of the CUDF problem, as well as, the solver im-
plementation.

4.1 A MILP model for the upgradeability problem

The upgradeability problem aims at finding the best solution according to some given criteria.
That is why we investigated the capabilities of MILP to solve this problem. In other words, we
translate the upgradeability problem into a minimisation problem of a set of binary variables
under some integer linear equations and inequalities. Multicriteria optimisation is handled
either through a classical implementation of lexicographic multicriteria optimisation or through
an aggregate function.

4.1.1 Constraints

Modelling the CUDF problem as a linear integer program is quite straightforward. Each unique
couple < package, version > is represented by a binary variable, the value of which states
whether the couple < package, version > is installed or not. So, the domain of these variables
is restricted to {0, 1} and solving the problem consists in finding an assignment of these variables,
i.e., determining whether the corresponding couple < package, version > is installed or not in
the final configuration.

A depend field provides a description of the related package dependencies by means of a con-
junction of disjunctions of package names. Assume that p v, i.e., package p in version v, has
the depend field:

n∧
i=1

pi vi ∧
m∧

j=1

lm∨
k=1

pj,k vj,k

We translate such a formulae into a set of of integer linear inequalities in two steps:

1. The first set of conjunctions of the formulae is translated into the following inequality:

−n ∗ p v +
n∑

i=1

pi vi >= 0

Such an inequality ensures that all pi vi are installed if p v = 1, i.e., if p v is installed. Of
course, the pi vi can take any value if p v is not installed.

2. The following integer linear inequality is generated for each disjunction:

−p v +
lm∑

k=1

pj,k vj,k >= 0

This inequality ensures that at least one of the pj,k vj,k is installed if p v is installed.
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package: car
version: 1
depends: engine, wheel, door, battery
installed: true
description: 4-wheeled, motor-powered vehicle

package: gasoline-engine
version: 1
depends: turbo
provides: engine
conflicts: engine, gasoline-engine
installed: true

package: gasoline-engine
version: 2
provides : engine
conflicts : engine , gasoline-engine

package: electric-engine
version: 1
depends: solar-collector | huge-battery
provides : engine
conflicts : engine , electric-engine

package: battery
version: 3
provides : huge-battery
installed : true

...

request :
install : bicycle , electric-engine = 1
upgrade: door

Figure 1: A CUDF example (extracted from [TZ09])

Each conflict field is translated into the following inequality:

n′ ∗ p v +
∑

p′ v′ ∈ Conflict(p v)

p′ v′ <= n′

where Conflict(p v) is the set of packages conflicting with p v and n′ is the cardinality of
Conflict(p v).
Such an inequality ensures that none of the p v conflicting packages can be installed if p v is
installed.

To illustrate this translation process, we provide hereafter part of the model generated for
gasoline- engine_1, the gasoline-engine package in version 1 (see figure 1). gasoline-engine_1
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depends from package turbo_1 which only exists in version 1. To ensure that turbo_1 is in-
stalled whenever gasoline-engine_1 is installed, the following constraint is generated:

- gasoline-engine_1 + turbo_1 >= 0

gasoline-engine_1 conflicts with any other version of gasoline-engine (like gasoline-engine_2)
as well as with any other package providing the engine feature (like electric-engine_1 and
electric- engine_2). To ensure that none of these packages is installed whenever gasoline-engine_1
is installed, the following constraint is generated:

3 gasoline-engine_1 + gasoline-engine_2
+ electric-engine_1 + electric-engine_2 <= 3

The provide field does not directly involve constraint generation. As a matter of fact, it is taken
into account while managing the depend or conflict fields through the interpretation of feature
names into set of related package names. For instance, when package car asks for engine in its
depend field, the set {gasoline-engine version 1, gasoline-engine version 2, electric-engine version
1} is substituted to engine.

Once constraints for all the versioned packages have been generated, the solver handles the
problem requests. Install or remove requests are directly translated by a variable setting corre-
sponding to the required status in the final configuration. For instance, constraint p v = 1 is
generated for request install: p = v and constraint p v = 0 for request remove: p = v.

An upgrade request must ensure that only one version of the upgraded package will be installed
and that the installed package version will be higher or equal to any installed version of the
current package in the initial configuration. For instance, assume that gasoline-engine has 5
versions ranging from 1 to 5, and that version 3 is installed in the initial configuration. Then,
for request upgrade: gasoline-engine, the solver generates:

• a constraint that prevents version 1 and 2 to be installed:

gasoline-engine_1 + gasoline_engine_2 = 0

• a constraint to ensure the uniqueness of the installed version:

gasoline-engine_3 + gasoline_engine_4 + gasoline_engine_5 = 1

4.1.2 Solving multicriteria optimisation

CUDFsolver implements a lexicographic order of multicriteria optimisation. Two different man-
ners of combining different criteria have been considered: a classical lexicographic optimisation
of each criteria in a sequential order and a mono criteria optimisation based on an aggregate of
the multiple criteria. To illustrate these two methods, let us consider the two following criteria:

• Criterion (1) : minimize the number of removed functionalities among the installed
ones. In other words, we should try to keep installed package p if any version of p
is installed. This criterion requires the introduction of an additional binary variable p
for each package. Remember that the default variables represent the status of a couple
< package, version >, e.g., p v which represents the status of package p version v. To
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make sure that p is true if any version of p is installed, and that p is false otherwise, we
add the following constraints:

−p +
∑

vi∈Version(p)

p vi ≥ 0

and
n′′ ∗ p−

∑
vi∈Version(p)

p vi ≥ 0

where Version(p) is the set of versions of p, and n′′ is Card(Version(p)), the cardinality
of Version(p). Criterion(1) is then implemented by:

min
∑

p ∈ F Installed

−p

where F Installed is the set of installed functionalities.

• Criterion (2) : minimize the number of modifications, i.e. if package pi, version vi is
installed keep it installed, if package pu version vu is uninstalled keep it uninstalled.
Criterion (2) is implemented by:

min
∑

pi vi ∈ P Installed

−pi vi +
∑

pu vu ∈ P Uninstalled

pu vu

where P Installed is the set of installed couples < package, version > and P Uninstalled is
the set of uninstalled couples < package, version >.

These two criteria are considered in a lexical order so that they have to be handled independently.

Classical lexicographic multicriteria optimisation

Since the considered solvers optimize only one function at once, each criterion have to be handled
one after the other. The first criterion is thus optimised according to the CUDF constraints:

min
∑

p ∈ F Installed

−p

subject to

Const

The underlying optimiser computes the global optima c1 of criterion C1 without taking into
account the other criteria. The second criterion is then optimised with an additional constraint
which states that first criterion value has to be less or equal to c1:

min
∑

pi vi ∈ P Installed

−pi vi +
∑

pu vu ∈ P Uninstalled

pu vu

subject to ∑
p ∈ F Installed

−p ≤ c1

Const
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When there is more criteria, the process goes on, taking each previous criteria value into account
through additional constraints:

min Criti

subject to

Crit1 ≤ c1

. . .

Criti−1 ≤ ci−1

Const

That way, each criteria is optimised according to previous criteria optima and without taking
into account next criteria. It thus result in a lexicographic order of the multicriteria optimisa-
tion.

Note that each step requires a call to the underlying solver. This procedure can thus be time
consuming.

Aggregate of multicriteria

To avoid calling the solver once for each criteria, we can aggregated criteria (1) and (2) in the
following way:

min
∑

p ∈ F Installed

− Card(P ) ∗ p +
∑

pi ∈ P Installed

−pi +
∑

pu ∈ P Uninstalled

pu

where P = P Installed ∪ P Uninstalled. Multiplying first criterion coefficients by Card(P ) lets
any of them have a higher value than any combination of the second criterion. That way, the
first criterion could reach its minimum without being influenced by the second criterion. Note,
however, that the variables involved in the first criterion are connected to variables involved in
the second criterion by constraints.

When n criterion have to be handled, the first criterion is then multiplied by (Card(P ))n−1 and,
thus can quickly reach the solver limitations. Moreover, the domain of the objective function
can be huge. Note that solver limitations are not only linked to coefficient domains but also to
the type of the coefficients. For example, Cplex uses double to do its computations and thus
might represent values ranging from −1.79∗10308 to 1.79∗10308. However, the distance between
the double 1016 and its predecessor is equal to 2. As a consequence, if the objective function
value is 1016 for one solution and 1016 − 1 for another solution, Cplex might not be able to
distinguish the two solutions.

4.2 Solver architecture and implementation

CUDFsolver has been interfaced with different solvers ranging from MIP solvers to pseudo
boolean solvers. It relies on the capability of these different solvers to minimize a linear objective
function subject to a set of linear equations and inequalities where coefficients are restricted to
integers and variable domains to {0, 1}.

The main components of the solvers are:

• a CUDF problem reader which is in charge of reading the CUDF problem file and build the
required internal data representation of the CUDF problem (i.e. a list of CUDFVersioned-
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Package to represent the (package, version) couples and a list of CUDFVirtualPackage to
represent a list of virtual packages, also called features).

• a constraint generator which generates constraints corresponding to the CUDF problem
according to the chosen constraint solver.

• a CUDF problem solver that calls an external solver to get an optimal solution and
generates the corresponding CUDF solution file.

Smooth interfacing of external solvers is facilitated by means of a solver abstract class.

Note that CUDFsolver is written in C++ and relies on Flex and Bison for the CUDF reader.

4.2.1 CUDF reader

For practical reasons, CUDF reader has been written has an independent library called libcudf.
This library provides all the tools required to read and write CUDF files and acts as an abstract
layer which handles CUDF files. Though its CUDF file writing capabilities, its main feature is
to read a CUDF problem.

libcudf is organized around 4 files available in libsrcs directory:

• cudf.h provides CUDF data structures and CUDF function templates.

• cudf.l is a flex compliant lexical analyser for CUDF problems.

• cudf.y is bison compliant parser for CUDF problems which build the internal represen-
tation of a CUDF problem according to a CUDF problem file.

• cudf_tools.c implements methods to handle CUDF data structures, as well as, additional
methods to print out a CUDF problem or a CUDF solution.

libcudf can be used as an independent library by any other solver.

4.2.2 constraint generation

constraint_generation.c (from sources directory) translates a CUDF problem into a min-
imization problem according to a chosen solver. To facilitate the interfacing with different
solvers, class abstract_solver abstracts the solver interface. Each interface to a solver is then
implemented through a concrete class (e.g., cplex_solver.h and cplex_solver.c for the cplex
MILP solver).

4.2.3 CUDF problem solving

cudf.c (from sources directory) contains the main function. First, it calls the CUDF reader
followed by a call to the constraint generator. Then, it calls the chosen solver (as an abstract
solver) and produces the CUDF solution file thanks to the print out methods provided by
libcudf.
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5 INESC solver

INESC solver relies on Partial Weighted MaxSat (PWMS) to solve CUDF problems. On an
implementation point of view, INESC solver calls sequentially the following components:

• p2cudf which translates the CUDF problem into a pseudo boolean optimisation problem.
The translation done here follows similar principles than the one used in CUDF solver1.

• pb2wcnf translates the pseudo boolean problem into a PWMS format.

• MSUnCore, a Partial Weighted MaxSat solver, is then used to solve the CUDF problem
from the PWMS file.

This section focuses on the translation from the pseudo boolean problem to the partial weighted
MaxSat problem and on solving of multicriteria optimisation problems using MSUnCore.

5.1 Multi-Level Optimization through PWMS

This section describes the use of the MSUnCore MaxSAT solver to get a solution from a CUDF
instance. MSUnCore is a MaxSAT solver which is known for being particularly suitable for
solving large problem instances coming from real applications. MSUnCore relies on the identi-
fication of unsatisfiable subsets of clauses. With this purpose, a SAT solver is called iteratively
and relaxation variables are added to the clauses belonging to the unsatisfiable subset of clauses,
jointly with at most one constraints for the new variables. At the end, the solution can be ob-
tained from the values given to relaxation variables. Further details can be found in [MMSP09].

The core of the solver is called INESC-ID, as the solver has been developed within the participa-
tion of INESC-ID in the Mancoosi project2. Following the use of p2cudf.jar, we have to translate
the OPB file produced by p2cudf.jar to the PWMS format. This translation is done with the
tool pb2wcnf. Both tools, p2cudf.jar and pb2wcnf, also produce different mappings between
the original source and the variables used in the output encoding. In the case of p2cudf.jar, it
writes a file with the mapping between the variables of the OPB format and the package names
and versions of the original CUDF file. The tool pb2wcnf produces the mapping between the
Boolean variables and the OPB variables.

The way the different components of the solver have been integrated has several advantages.
One of them is that each one of the main components of the process is a standalone tool that
can be build independently from the others. Another advantage is that we can easily replace
any of the components without affecting the other components. The main drawback of this
method is that the communication between tools is currently achieved through files. It makes
the implementation easier but can require significant memory and slows down the whole process
if the files are too large.

5.1.1 Constraints and lexicographic optimization in MaxSAT

The goal of the tool pb2wcnf is to translate the pseudo-Boolean constraints and the objective
function generated by p2cudf to a MaxSAT formula. Actually, the resulting formula corresponds

1p2cudf is more detailed in [ALL+10].
2Note, however, that the solver was also contributed by UdL and UCD, and uses p2cudf as a front-end.
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to a Partial Weighted MaxSAT (PWMS) formula, where clauses can be hard or soft and soft
clauses are associated with weights (being represented as (C, w)). A solution to a PWMS formula
satisfies all the hard clauses and maximizes the sum of the weights associated to satisfied soft
clauses. Note that in practice all the hard clauses are associated with a weight given by the
sum of the weights of all soft clauses plus one.

The translation from PB-constraints to PWMS is performed as follows:

• The pseudo-Boolean constraints which correspond to clauses are translated to hard clauses,
i.e., constraints corresponding to dependencies, conflicts, packages that cannot be found
in the universe and packages that are requested to be installed, as well as, constraints
corresponding to the handling of the inconsistency of installed packages.

• The remaining pseudo-Boolean constraints, which correspond to the cardinality constraint
≤ 1, meaning that no more than one version of each package can be installed, are converted
to hard clauses as well. In this case, each constraint is encoded into a set of hard clauses
using the bitwise encoding [Pre07]. Considering that we have m versions of the same
package, the bitwise encoding introduces O(log m) new variables and O(m log m) binary
clauses.

Moreover, the optimization function in the formula generated by p2cudf is translated to a set
of weighted soft clauses having only one literal each. The weight associated to each clause
is extracted from the coefficients in the optimization function. The translation is therefore
performed as follows, depending on the criterion being used:

• In the paranoid criterion the optimization function is (|U |+1)×
∑

removedpi+
∑

changedpj

where |U | is U cardinality. Hence, for each package removedpi is created a weighted soft
clause (¬removedpi , |U | + 1) and for each package changedpj is created a weighted soft
clause (¬changedpj , 1).

• In the trendy criterion the optimization function is (|U |+ 1)× (|U |+ 1)×
∑

removedpi +
(|U |+ 1)×

∑
notuptodatepj +

∑
newpk

. Hence, for each package removedpi is created a
weighted soft clause (¬removedpi , (|U | + 1) × (|U | + 1)), for each package notuptodatepj

is created a weighted soft clause (¬notuptodatepj , |U |+ 1) and for each package newpk
is

created a weighted soft clause (¬newpk
, 1).

The weight of the hard clauses is therefore (|U |+ 1)× (|U |+ 1) for the paranoid criterion and
(|U |+ 1)× (|U |+ 1)× (|U |+ 1) for the trendy criterion.

5.1.2 Lexicographic Optimization with MaxSAT solving

Once we have translated the original CUDF problem instance to the OPB format, using
p2cudf.jar, and the resulting OPB file to PWMS, using pb2wcnf, we can run the MaxSAT
solver MSUnCore with the PWMS obtained file.

The actual version of MSUnCore being used has been enhanced with the possibility of handling
lexicographic optimization functions as a sequence of optimization functions. This means that
the optimal value for the first optimization criterion is found first, then the optimal value to the
second criterion subject to the optimal value to the first criterion, and so on. (The use of this
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approach both in the context of MaxSAT and PBO is further detailed in [ALMS09].) Not only
this approach can be more efficient for solving some problems, but also it takes advantage of
the competition evaluation rules which consider that better non-optimal solutions give better
values to the most important criteria.

Let us illustrate a call to MSUnCore for which the optimization function corresponds to the
trendy criterion. The soft clauses can therefore be of three different types: (¬removedpi , (|U |+
1)× (|U |+ 1)), (¬notuptodatepj , |U |+ 1) and (¬newpk

, 1), which requires three iterations:

1. In the first iteration, MSUnCore finds a solution to the hard clauses and the soft clauses
with the largest weight (i.e. (|U | + 1) × (|U | + 1)). Since all soft clauses have the same
weight, the problem being solved is an instance of partial MaxSAT. The MinUNSAT
solution computed by MSUnCore is denoted u1. In addition, by the time the search has
finished, MSUnCore has changed the original formula, by adding relaxation variables and
at most one constraints as required to solve the problem while identifying unsatisfiable
subsets of clauses. All clauses in the modified CNF formula are declared hard for the next
iteration.

2. In the second iteration, MSUnCore finds a solution to the modified set of hard clauses and
the soft clauses with the next weight (i.e. (|U | + 1)). As before, all soft clauses have the
same weight and so the problem being solved is an instance of partial MaxSAT. The new
solution computed by MSUnCore is denoted u2. In addition, and as before, all clauses in
the modified CNF formula are declared hard for the next iteration.

3. Finally, for the third iteration, MSUnCore finds a solution to the modified set of hard
clauses and the soft clauses with weight 1. Again MSUnCore solves an instance of partial
MaxSAT. The new solution computed by MSUnCore is denoted u3.

The final solution is given by u1, u2 and u3. This approach has the advantage of completely
eliminating the direct manipulation of weights by the MaxSAT solver. In addition, even when
the solver has not yet run all the iterations, it is possible to provide a solution which can be
already optimized for the first requirements. A more detailed description of this approach is
described elsewhere [MSAGL10].

If MSUnCore ends with a solution within the available CPU time, we can proceed to parse the
output of the solver and identify the Boolean variables set to true. Otherwise, if the solver
cannot find a solution within the CPU time given, the solver outputs the best solution found so
far and we can proceed the same way. A Boolean variable with the true value assigned means
that the package referenced by this variable must be installed to get the optimum solution
given by MSUnCore. Following the mapping from Boolean variables to OPB variables, and the
mapping from OPB variables to package names, the package names and respective versions that
have to be installed in the optimal solution can be identified. As a final step, the list of package
names with the respective version is output as the CUDF solution.

Deliverable D4.2 Version 1.0 page 15 of 18



May 21, 2010

6 An internal competition

At the beginning of January, for the Mancoosi first 2010 meeting, project members from Uni-
versity Paris Diderot organized an internal competition. This was a great opportunity to assess
the solvers on a significant number of issues.

The solvers have been assessed on a set of 200 problems, about half being real problems and
half being randomly generated problems. Note that more than 40 problems were coming from
Caixa Magica, a Linux distributor.

Two tracks were organised corresponding to two different criteria. The first criteria, called
“paranoid”, proposed a conservative approach to the problem. In other words, the least changes
would be the best. The second criteria attempted to provide a “fresher” installation and was
called “trendy”.

More formally, let U be the universe of a CUDF problem, containing the description of all
available packages and, S a solution to the user request. Assume that V (X, name) is the set
of versions in which name (the name of a package) is installed in X, where X may be either U
or S. Note that this set may be empty (name is not installed), contains one element (name is
installed with exactly one version), or even contains multiple elements (if a package is installed
in multiple versions). Finally, assuming that H(name) is the highest version of name available
in U and that Card(X) is the cardinality of set X. Let us define some basic functions:

• #removed(U, S): is the number of packages removed in the proposed solution S w.r.t.
the original installation U :

#removed(U, S) = Card({name|V (U, name) 6= ∅ ∧ V (S, name) = ∅})

• #changed(U, S): is the number of packages with a modified (set of) version(s) in the
proposed solution S w.r.t. the original installation U :

#changed(U, S) = Card({name|V (U, name) 6= V (S, name)})

• #notuptodate(U, S): is the number of installed packages but not in the latest available
version :

#notuptodate(U, S) = Card({name|V (S, name) 6= ∅ ∧H(name) /∈ V (S, name)})

• #new(U, S): is the number of new packages in the proposed solution S w.r.t. the original
installation U :

#new(U, S) = Card({name|V (U, name) = ∅ ∧ V (S, name) 6= ∅})

The two optimization criteria combines basic criteria in a lexicographic order:

• paranoid: minimize the number of packages removed in the solution, and also the packages
changed by the solution; the optimization criterion is :

lexicographic(min #removed,min #changed)
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• trendy: minimize the number of packages removed in the solution, the number of outdated
packages in the solution, and the number of extra packages installed. The optimization
criterion is :

lexicographic(min #removed,min #notuptodate, min #new)

Solvers taking part to the competition have been ranked according to these criteria.

Competition results3 have underlined different solver issues. Most of the problems were linked
to CUDF and criteria interpretation. Some of these issues have already been corrected and a
new run of solvers have offered better results4.

Note that, unfortunately, the solver from UCL was not ready in time to take part to the
competition.

This competition was a good opportunity to assess most of the Mancoosi plugins and to see
where and how these plugins could be improved.

7 A note on deliverable 4.2

Deliverable D4.2 hold the INESC-ID solver as well as the UNSA solver. Both solvers have been
provided with their code and with a compiled version (for linux 32 bits).

INESC solver requires Java and Python and to run. This SAT-based solver uses the p2cudf
parser and the MaxSAT solver MSUnCore. It should run smoothly on any linux 32 bits version.

Due to licence restrictions, the compiled UNSA solver provided here only uses free softwares. It
includes the GNU glpk and lpsolve which are respectively distributed under GPL and LPGL.
Even if cplex is not included, the sources contains the cplex interface and, thus, allow a com-
pilation with cplex5 Note that, though not included, it can also run using the pseudo boolean
solver Wbo and the MILP solver SCIP.

Both solvers include a readme with additional information.
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