
First version of the DSL based on the model
developed in WP2
Deliverable 3.2

Nature : Deliverable
Due date : 1.11.2009
Start date of project : 01.01.2008
Duration : 36 months

November 2, 2009

Specific Targeted Research Project
Contract no.214898
Seventh Framework Programme: FP7-ICT-2007-1

A list of the authors and reviewers

Project acronym MANCOOSI
Project full title Managing the Complexity of the Open Source Infrastructure
Project number 214898
Authors list Davide Di Ruscio <diruscio@di.univaq.it>

John Thomson <john.thomson@caixamagica.pt>
Patrizio Pelliccione <pellicci@di.univaq.it>
Alfonso Pierantonio <alfonso@di.univaq.it>

Internal review Jeff Johnson <n3npq@mac.com>
David Lutterkort <lutter@watzmann.net>

Workpackage number WP3
Deliverable number 2
Document type Deliverable
Version 1
Due date 01/11/2009
Actual submission date 01/11/2009
Distribution Public
Project coordinator Roberto Di Cosmo <roberto@dicosmo.org>

Preface

This document has been reviewed by two experts from industry working in the package man-
agement area. They were chosen specifically for their experience and knowledge of topics that
are addressed in this document. By doing this, we can be relatively assured that the proposed
mechanisms and the DSL have covered sufficient grounds for the first version. Another reason
for this selection is that they have detailed knowledge of implementing DSLs in practical sys-
tems and as such allow us to be confident that the approach can be adopted by industry and
not be solely a research topic.

We would like to acknowledge their help and feedback which was invaluable not only for input
into this document but also for enhancing our approach and how we will implement it in the
scope of the rest of the Mancoosi project.

Deliverable D3.2 Version 1.0 page 2 of 91

mailto:diruscio@di.univaq.it
mailto:john.thomson@caixamagica.pt
mailto:pellicci@di.univaq.it
mailto:alfonso@di.univaq.it
mailto:n3npq@mac.com
mailto:lutter@watzmann.net
mailto:roberto@dicosmo.org

November 2, 2009

Abstract

Today’s software systems require an evolution in order to both satisfy stakeholders’ increasing
requirements and to react to possible faults. The advancement cannot be confined to phases,
as it happens continuously. Software systems are typically not considered monolithic but orga-
nized in packages, brought to popularity by Free and Open Source Software (FOSS) distribu-
tions. Packages promote the philosophy of system evolution, which typically is implemented as
upgrades, but they do not solve all management problems of large software collections. These
problems are mainly caused by implicit inter-package dependencies that cannot be handled by
upgrades that are typically non-transactional.

This deliverable presents a first version of the Domain Specific Language (DSL) based on the
model-driven approach presented in WP2 to support the upgrades of FOSS distributions. Both
static and dynamic aspects of packages are taken into account: the former relies on implicit
inter-package dependencies, whereas the latter depends on the execution of specific scripts which
are executed during package upgrades. Scripts are implemented in Turing-complete languages,
and all non-trivial properties about them are undecidable, including determining a priori their
effects to be able to revert them upon failure. In this respect, a new model-based Domain
Specific Language is provided for specifying and to simulate the behavior of the scripts which
are executed during package upgrades. There are two benefits of this approach: i) by simulating
the upgrade on the models, our proposed technique is able to predict some upgrade failures, and
ii) the models and transactional logs can drive at run-time the roll-back of residual effects of
failed or undesired upgrades. The aim of creating the DSL is to be able to provide the language
to capture the atomic operations performed and modelled in such a way that we can simulate
the effect of transactional upgrades and roll-backs before applying them to the system. The
effectiveness of the approach is investigated by applying it to some Linux distributions.

Conformance

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL
NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OP-
TIONAL” in this document are to be interpreted as described in RFC 2119 1.

1http://www.ietf.org/rfc/rfc2119.txt

Deliverable D3.2 Version 1.0 page 3 of 91

November 2, 2009

Deliverable D3.2 Version 1.0 page 4 of 91

Contents

1 Introduction 11

1.1 Background . 11

1.2 Related Works . 13

1.3 Structure of the deliverable . 16

1.4 Glossary . 17

2 Classification of upgrade failures 19

2.1 General Description of a Failure . 19

2.2 Failure Classification . 21

2.3 Examples of upgrade failures . 23

2.4 How Meta-Installers deal with upgrade failures 26

3 Model-driven approach for supporting FOSS system upgrades 29

3.1 FOSS system upgrades . 29

3.2 Model Driven Engineering . 30

3.2.1 Models and Meta-models . 31

3.2.2 Model Transformations . 32

3.3 Simulating system upgrades . 32

3.4 Role of the DSL in the upgrade scenario . 34

4 DSLs supporting the upgradeability of GNU/Linux systems 37

4.1 MANCOOSI DSL: Abstract syntax . 38

4.2 MANCOOSI DSL: Concrete syntax . 39

4.2.1 Grammar Definition . 40

4.2.2 Control statements . 43

4.2.3 Iterator statements . 44

4.2.4 Template statements . 45

Alternatives . 45

5

November 2, 2009

Desktop . 46

Doc-base . 46

Emacs . 47

GConf . 47

Icons . 49

Info . 49

Init . 50

Install shared libraries . 51

Menu . 52

Mime . 52

Modules . 52

Scrollkeeper . 53

SGML catalog . 53

udev . 54

usrlocal . 55

Users and Groups . 56

Windows manager . 57

Xfonts . 58

4.2.5 Tagging statements . 58

4.3 MANCOOSI DSL: Semantics . 59

4.3.1 Model transformations and ATL in a nutshell 60

4.3.2 Operational Semantics using ATL . 62

Alternatives . 64

Desktop . 65

Doc-base . 65

Emacs . 66

GConf . 67

Icons . 67

Info . 68

Init . 68

Make shared libraries . 69

Menu . 69

Mime . 70

Modules . 70

Deliverable D3.2 Version 1.0 page 6 of 91

November 2, 2009

Scrollkeeper . 71

SGML catalog . 71

udev . 72

usrlocal . 72

Users and Groups . 72

Windows manager . 74

Xfonts . 74

Tagging statements . 74

5 Sample DSL applications 77

5.1 Apache2 and libapache-mod-php5 . 77

5.2 A sample use-before-define failure: Freeradius-2.1.3 79

6 Conclusion 81

A Fragment of the MANCOOSI metamodel 85

Deliverable D3.2 Version 1.0 page 7 of 91

November 2, 2009

Deliverable D3.2 Version 1.0 page 8 of 91

List of Figures

2.1 Packages with conflicts that are released at a similar time 24

2.2 Invalid configuration is reached when installing freeradius-libs before freeradius . 25

2.3 Incorrect package removal . 26

3.1 Models conforming to a sample metamodel . 31

3.2 The four layers meta-modelling architecture . 31

3.3 Overall approach . 33

3.4 Model injection . 33

3.5 Role of the DSL in the upgrade . 34

4.1 Dependencies among metamodels . 39

4.2 Fragment of the Package metamodel . 40

4.3 Basic Concepts of Model Transformation . 61

4.4 Fragment of a declarative ATL transformation 61

4.5 Operational Semantics using ATL . 62

4.6 Fragment of the Configuration Metamodel . 63

4.7 Sample Configuration model . 64

5.1 Sample configuration model . 78

5.2 Not valid configuration model after libapache-mod-php5 removal 78

9

November 2, 2009

List of Acronyms

ACID Atomicity Consistency Isolation Durability

ATL ATLAS Transformation Language

CUDF Common Upgradeability Description Format

DSL Domain Specific Language

DUDF Distribution Upgradeability Description Format

FOSS Free and Open Source Software

GPL General Purpose Language

MANCOOSI Managing Software Complexity

MDE Model Driven Engineering

MOF Meta Object Facility

OMF Open Source Metadata Framework

OMG Object Management Group

POSIX Portable Operating System Interface [for Unix]

UML Unified Modeling Language

XML XML Metadata Interchange

Deliverable D3.2 Version 1.0 page 10 of 91

Chapter 1

Introduction

Modern software systems are characterized by an ever increasing need to integrate new ca-
pabilities, solutions to requirements and to drop unused ones. This evolution is in response
to “changing user needs, system intrusion or faults, changing operational environments, and
resource variability” [CGI+08]. The growth cannot be confined in to phases, as it happens
continuously and incrementally. Therefore, mechanisms for run-time evolution are needed to
provide good reactions to both system and contextual changes. The evolution should be guided
and constrained by rules that allow local needs to be satisfied in local ways and by preserving
the integrity of the overall system [ea06].

1.1 Background

FOSS systems are among the most complex software systems known, made of many components
that mature over time without centralized design: components advance independently from each
other. They provide, today, a real-world example of what tomorrow’s complex, quickly changing
software systems will look like. In fact FOSS systems are typically written by small, independent
teams that, without central coordination, are dedicated to developing independent software
applications [DH07]. More precisely, FOSS systems are typically organized in packages, i.e., in
a format that can be easily processed by automatic tools and that contains some additional
information useful to handle their installation, removal and update. In a limited allegory this
approach is similar to that of a car manufacturing facility where each sub-component is designed,
created and tested as individual sub-components of a larger system. Rather than re-inventing
the wheel each time, the logical blocks are separated and can be worked on separately and
optimised as individual units. Each package normally provides a small piece of a puzzle as
they are logical, functional blocks that are then integrated by larger systems that can make
use of the pipelined structure. This promotes better code-reusability and the optimisation of
smaller units and it also means that the fragmented development system is possible and allows
for distributed code projects like GNU/Linux to exist.

Maintenance of FOSS systems involves not only the classical activities of correction, adaptation,
and perfection [Swa76], but also integration of new versions of software that have been released.
Packages promote the system evolution, which is typically implemented as upgrades, but they
do not solve all management problems of large software collections. These problems are mainly
caused by implicit inter-package dependencies that cannot be handled by upgrades that are
typically non-transactional. In fact current approaches are able to deal only with static aspects

11

November 2, 2009

but not with dynamic ones that can cause implicit inter-package dependencies. It is not rare
therefore to make the system unusable or unstable by installing or removing some packages that
compromise the stability of the system.

The Mancoosi1 project aims at defining a model-driven approach to support the upgrades
and transactional rollbacks of FOSS distributions. The approach should be able to model
and manage both static and dynamic aspects of the approach. The dynamic aspect of the
packages is realized and described by means of a set of executable maintainer (also known as
“configuration”) scripts that are executed during the upgrade and perform operations required
pre or post installation or removal of each single package. The most common use case for
maintainer scripts is to update some cache, blending together data shipped by the package,
with data installed on the system, possibly from other packages. Maintainer scripts are written
in Turing-complete programming languages and they often rely on data which is available only
on the target installation machine, and not in the package itself. It is clear then that writing
maintainer scripts is a task susceptible to errors that requires diligence on the part of the
package maintainers. Moreover, typically upgrade failures are usually detected via inspection
of script exit code without exact information of the configuration reached and of operations
already performed. A number of packages will only display warnings so not to interrupt the
installation. Therefore, once a possible erroneous configuration has been reached the user might
not be aware about the possible erroneous behaviors and is not warned of the need or guided to
reach a new correct configuration (hopefully reverting back to the system’s exact configuration
before starting the upgrade).

The adopted scripting languages used to write maintainer scripts have rarely been formally
investigated, thus posing additional difficulties in understanding their side-effects which can
spread throughout the system. State of the art package managers lack several important fea-
tures such as complete dependency resolution and roll-back of failed upgrades. Moreover, there
is no support to simulate upgrades taking the behavior of maintainer scripts into account. In
fact, current tools consider only inter-package relationships which are not enough to predict
side-effects and system inconsistencies which can be encountered during upgrades. In order to
deal with these challenging aspects of the upgrade of FOSS systems, in this document we pro-
pose a model-based DSL which will be distribution independent for writing maintainers scripts.
The DSL forces distribution maintainers to use a subset of high level statements (a sort of
macro) with well defined semantics. The well defined semantics enable a deep understanding of
how the system evolved in to a new configuration through the execution of a single statement.
Furthermore the DSL is model-based, i.e., its abstract syntax is defined in terms of the Man-
coosi metamodel (see the deliverable D2.1 2), and this means that it is possible to hypothesise
what the effects will be of an upgrade directly on the models that represent a system execution.
This opens new potential scenarios:

• simulation: an upgrade can be simulated on the models which represent the system config-
uration before performing the real upgrade. Since the models contain also the description
of the scripts, in terms of DSL statements, the simulation is not only a resolution of
explicit dependencies among packages, but it deals also with implicit dependencies and
with failures that can occur because of fallacious or missing script statements. There are
two possible outputs of the simulation: not valid and valid. If the simulation is not valid
then the real upgrade will fail. If the result of the simulation is valid then, due to the
abstraction of the models, the real upgrade can still fail. Also in this case the DSL and

1MANCOOSI project: http://www.mancoosi.org
2http://www.mancoosi.org/deliverables/d2.1.pdf

Deliverable D3.2 Version 1.0 page 12 of 91

http://www.mancoosi.org
http://www.mancoosi.org/deliverables/d2.1.pdf

November 2, 2009

the model-driven approach in general will play its role, as described in the following item;

• models guide the down-grade: models store each executed statement thanks to a log model
and are continuously synchronized with the system execution. In other words the system’s
configuration is kept synchronised with the modelled system. The synchronisation will
occur when the model is about to be accessed by updating the meta-classes and informa-
tion that the model will access. Synchronisation of the model is intrinsic to the behaviour
of the model and as such will be defined in WP2. Due to the well defined semantics of
the corresponding ATL transformations of the configuration scripts and to the detailed
knowledge of the effect that a statement execution has on the system’s configuration,
models can guide the roll-back. Having the current state of the system’s configuration
and the transaction log of the changes made, the model can then use this information and
if there is a reverse operation for each element contained within the transaction log then
the model can perform a roll-back for a single package upgrade path. The combination
of the log and the model will also be able to store historical information regarding the
life-cycle of a package and can drive the roll-back to a set of criteria defined by the user.

The DSL we are proposing derives from a deep analysis of several popular GNU/Linux distri-
butions. This analysis was aimed at finding in maintainer scripts the parts which were auto-
matically generated and thus discovering common generated code recurrences. The language
is intended to be extensible since when new commonalities or recurrent failures are identified,
new constructs in the language have to be added in order to enable simulations and failure
detection for the newly found recurrences. In other words, the DSL and the simulators, can be
extended/refined once new “common failures” have been identified.

This document does not provide details about simulators; that will be part of the deliverable
D2.3 which is due by the end of the project. This deliverable provides the reader with a general
picture about how and what we intend to simulate and present in depth all aspects of the
DSL. In particular, both the syntax and semantics of the language are provided. Concerning
the latter, we define the operational semantics of the language to describe what happens in
a system when a program of that language is executed. In this respect, the runtime system
is defined in terms of a configuration model which represents the current state of the system
in which a given maintainer script has to be executed. Both the configuration and the script
models conform to the Mancoosi meta-model. The semantic mappings which specify the
semantics are given in terms of ATLAS Transformation Language (ATL) transformations. In
particular, for each command of the DSL a corresponding transformation rule is defined in
order to describe how the considered command changes the current configuration model. Some
explanatory examples of maintainer script specifications given with the DSL are also provided.

1.2 Related Works

There are currently quite a few types of systems that perform transactional roll-backs and
allow a previous configuration of a system to be restored. Most rely on the methods of taking
snapshots of the system (some are more efficient in terms of how they realise this) and then
when a user requests or a failure condition is met, a previous configuration set is restored. There
are many issues that a DSL would be able to resolve that the traditional “copy and paste” type
of systems would not be able to offer. One of these is that if any files are located in the
same directory as any of the monitored configuration files that there is a chance that it will be
removed by the snapshot mechanism depending on the granularity that is used by the system for

Deliverable D3.2 Version 1.0 page 13 of 91

November 2, 2009

restoring previous file-system states. Some systems will monitor individual files for changes (e.g.
precise granularity) whereas others will monitor a folder that can contain many different types
of files (lower granularity). Another issue is that when a previous configuration set is restored
it normally reverts back to a previous time and any changes between that time and the current
time, even if they affect other configuration files, are lost. For instance, a package A may have
been upgraded from version 1 to 2 and at a later stage a package B upgraded from 3 to version
5. Reverting to a previous state to restore package A to version 1 would in many cases entail
package B also reverting back to version 3. This often may not be the desired solution, especially
when looking to downgrade a single package but may be useful in the case of a catastrophic
failure where multiple configurations have been changed and reverting a collection of packages
is necessary (in the case of viruses or malicious activity for instance). Being able to revert a
single package also means that the current process of maintaining a specific older version of a
file as another package and then the user removing a package completely and re-installing the
older package would become redundant.

Journalled File Systems are systems where the changes to the hard-drive are first written to
a specifically chosen location on the hard-drive. Journal File Systems, to avoid performance
issues related to writing twice for each operation,tend to only journal meta-data and not all
the file-system data but this is sometimes configurable. They also record all the changes that
the file system intends to make. If a crash then occurs at any stage, the correct state of the
filesystem can be recovered by replaying the journal data over the original data until it succeeds
or by reverting to the last completed transaction. This mechanism relies on the atomicity of
transactions and for the rest of the system to deem whether a process has succeeded or not.
This however is not the case with most Journal File Systems as the journal data is not validated
in many implementations and only the commit block has to have been written correctly for a
journal to be re-processed after a crash. A JFS however does not guarantee that the changes
stored in the journal are atomic. If all the processes in a journal succeed and the journal data is
not corrupt then it can be assumed that the hard-drive has performed the change correctly and
is in the correct state. The journal is normally implemented as a buffer that can dynamically
change in size. There are many similarities between this methodology and that which the DSL
and the simulation use, as explained in the remainder of the document.

ACID is an acronym and set of design principles usually used in conjunction with databases
and is used to guarantee that transactions occur reliably. It represents the thoughts and ideas
behind over 30 years of work into reliable database design. The complexity of enabling such
properties has meant that only recently are compliant systems being produced. Even then
there are different levels of compliance. What is important though is that the design principles
ensure a deterministic and stateful representation of data. By using these principles for storing
the transactional logs and any other sub-systems generated as part of the simulator design in
Deliverable 2.3 and Work Package 2 we can ensure that our logs are reliable. The first initial,
A, stands for atomicity and is used to ensure that either a complete transaction occurs or not
at all. Any combination of results that does not lead to either of these two states are deemed
invalid and the system will try to ensure that either the transaction is successful or rollback to
the state prior to the transaction. In the case of the simulator the two states map directly into
“valid” and “not valid”. C stands for consistency in this case and ensures that only valid data
are used in the database. As the simulator will have boundaries it may be possible to ensure
consistency but it is more suited in the database domain. I means isolation for this acronym
and makes sure that other processes cannot use the data while it is being locked down. APT
and most current meta-installers achieve this by locking down the lists files such that only one
installer can run at a time. The method of locking and unlocking files is also sometimes used

Deliverable D3.2 Version 1.0 page 14 of 91

November 2, 2009

for versioning systems. D is for durability and in databases it means that a transaction is only
deemed successful when it is in the transactional log. At this point the changes have been locked
down and the state is thought to be stable and will persist.

Each of the aforementioned areas have a similarity in the model that we are proposing and
are all used to ensure that only valid states are reached and maintained. By being in a known
state and by logging the transactions, each process if it is expressive enough and has one to
one functionality will be reversible. A transaction log that is expressive enough will allow for a
one to many transaction to be reversed by allowing for the system to know which path to take
when reversing the procedure.

In the rest of the section some of the most representative examples of existing systems that
perform transactional upgrades are summarised.

ZFS/Nexenta, Nexenta is an operating system first released in 2005. It combines an OpenSolaris
Kernel with a GNU application userland. The distribution is based on Ubuntu and aims to
provide the ease of use and large repository available through APT of a GNU/Linux based
system with some powerful features that Solaris has at its Kernel. ZFS, which used to be
known as Zettabyte File System, is a filesystem technology that has been designed to remove
a lot of the fundamental limitations in current file-systems and to take advantage of the latest
research and technologies. It is licensed under the CDDL but ZFS as a name is a trademark
owned by Sun. ZFS exists on top of zpools instead of on a physical drive and so do not need a
volume manager to use additional devices. The fundamental limits of physics were used when
calculating the upper limits of ZFS so that no other system would ever have to replace it.
ZFS because its license is incompatible with GPLv2 cannot be included in most GNU/Linux
distributions, but can be run through FUSE, (File System in User Space). This has slowed the
uptake of the system but it still contains some very interesting features when looking at file
transactions and rollback mechanisms. The main technologies that are of interest in the scope
of this project include the copy-on-write system. This is not the only file-system that uses this
feature and it is an interesting feature. As hard disk capacities have continued to grow and the
cost of storage has decreased with time it has become possible to use hard-disk space to store
different configurations and snapshots of system states. Microsoft uses System Restore, Mac
OS uses Time Machine and even in GNU/Linux previous kernel installations are maintained.
The difference with copy-on-write is that instead of having a lot of replicated information that
is common to two or more systems, a clone is only created when a copy procedure is issued.
Many callers can therefore have simultaneous access to the same resource and only when a caller
modifies it, is the data copied in a way that the other resources can still access the original data.

LVM Snapshots, Logical Volume Management is a form of storage virtualisation. For each
logical extent in an LVM system, copy-on-write is performed. Most logical extents are normally
mapped to a single physical entity and multiple physical entities can exist on a physical volume,
eg. a hard drive. A private copy is only created when the caller tries to modify the data. The
volume manager will copy the Logical Extent to a copy-on-write table just before it is written
to. This preserves the old Logical Volume as a snapshot which can then be reconstructed by
overlaying the copy-on-write table on to the Logical Volume to which it is associated. Read-
write snapshots are branching snapshots because the implicitly allow diverging versions of a
logical volume. This system is used in ZFS for integrity checking and automatic repair.

NixOS, this operating system is a purely functional variant of Linux. Only deterministic and re-
peatable Nix expressions are allowed and the realisation of a configuration is not stateful. NixOS
has less of the traditional directory structure common to GNU systems and contains symlinks
to certain directories and executables such as /bin/sh. Most objects in /etc are symlinks in

Deliverable D3.2 Version 1.0 page 15 of 91

November 2, 2009

NixOS to the store, /nix/store. The only exceptions to this are files that contain mutable states.
Sometimes like for /etc/passwd no equivalent exists. The method of using purely functional
executables is not a new idea. Other systems are looking at similar technologies. One example
of a stateless system is that being investigated by Fedora 3. etckeeper, This collection of tools
allows /etc to be stored in git, mercurial, darcs or a bzr repository4. The tools hook into apt,
yum, pacman-g2 to automatically commit changes made to /etc during package upgrades. Also
in addition to standard revision control, the meta-data is also stored and kept in the revision
control system. cowbuilder, is a possible helper utility and replacement to the debhelp tool.
cowbuilder works with multiple distributions and architectures for Debian. It uses chroots/p-
builder/sbuild users to allow pbuilder to build packages without the compress/uncompress stage
by using copy-on-write mechanisms.

Conary, created by rPath and distributed under the Common Public License, focuses on in-
stalling packages through automated dependency resolution against distributed online reposi-
tories. It provides a concise and easy to use Python based description language to specify how
to build a package. Foresight and rPath Linux both use conary. Using it, only the updated
files in packages are downloaded and this minimises the bandwidth and time requirements for
updating the software. Conary also has the feature of allowing rollbacks of a package and as
well as derived packages. It introduces the notion of dynamic tags to replace the maintainer
script files 5. These tags are then analysed by conary to see if there are any similar operations to
be performed by the packages to be installed and groups these instructions together. Creating
tags is a way of grouping similar package installation procedures but just pushes the same issue
one level higher. Having a DSL that analyses the maintainer script files can perform this cate-
gorisation so this step would become redundant. What is interesting to note though is that the
developers are attempting to manage installation transactions rather than individual packages.
Other systems perform similar mechanisms and we address this issue in Chapters 2 and 5.

Puppet 6, is a system for managing and administering configurations of large set of systems.
Moreover, it provides a means to describe IT infrastructure as policy, execute that policy to
build services then audit and enforce ongoing changes to the policy. There is the possibility of
adopting the DSL that will be proposed in the rest of the document for achieving similar policy
frameworks.

Augeas7, it is an alternative domain specific language that consider the problem of distributed
configuration files within a system and organizing them into a tree based structure. Changes
to the configuration files are captured in terms of tree manipulations. These manipulations can
then be stored back into the original system. We envisage that in the first version of our DSL
we will not need to store configuration changes for maintainer scripts.

1.3 Structure of the deliverable

This deliverable is structured in six chapters:

• Chapter 1 contains an outline of the Deliverable and discusses the context in which this
work appears;

3http://fedoraproject.org/wiki/StatelessLinux
4http://joey.kitenet/code/etckeeper
5http://www.rpath.com/technology/techoverview/otherconcepts.html#dynamictags
6http://puppet.reductivelabs.com
7http://augeas.net/

Deliverable D3.2 Version 1.0 page 16 of 91

http://fedoraproject.org/wiki/StatelessLinux
http://joey.kitenet/code/etckeeper
http://www.rpath.com/technology/techoverview/otherconcepts.html#dynamictags
http://puppet.reductivelabs.com
http://augeas.net/

November 2, 2009

• Chapter 2 goes into more detail about the types of failures that can occur during the
installation of a package and highlights some of the cases which cannot be dealt with by
current meta-installers;

• Chapter 3 explains the methodology and approach chosen. The various parts of the
system model are described with reference to Deliverable 2.3 that will provide the concrete
definition. How we use the model is expressed within this chapter;

• Chapter 4 plays a key role in this document since it describes the proposed DSL in depth
and defines its dynamic semantics by means of ATL transformations;

• Chapter 5 works through studies identified in Chapter 2 and uses the first definition of the
language outlined in Chapter 4 to see how the failures could be identified by the model
proposed;

• Chapter 6 concludes the Deliverable and describes the main findings through the analysis
of the problem domain and the aspects discovered in the creation of the DSL.

1.4 Glossary

This section contains a glossary of essential terms which are used throughout this specification.

Distribution A collection of software packages that are designed to be installed on a common
software platform. Distributions may come in different flavors, and the set of available
software packages generally varies over time. Examples of distributions are Mandriva,
Caixa Mágica, Pixart, Fedora or Debian, which all provide software packages for the the
GNU/Linux platform (and probably others). The term distribution is used to denote both
a collection of software packages, such as the lenny distribution of Debian, and the entity
that produces and publishes such a collection, such as Mandriva, Caixa Mágica or Pixart.
The latter are sometimes also referred to as distributors.

Still, the notion of distribution is not necessarily bound to FOSS package distributions,
other platforms (e.g. Eclipse plugins, LaTeX packages, Perl packages, etc.) have similar
distributions, similar problems, and can have their upgrade problems encoded in Common
Upgradeability Description Format (CUDF).

Installer The software tool actually responsible for physically installing (or un-installing) a
package on a machine. This task particularly consists in unpacking files that come as
an archive bundle, installing them on the user machine to persistent memory, probably
executing configuration programs specific to that package, and updating the global system
information on the user machine. Downloading packages and resolving dependencies be-
tween packages are in general beyond the scope of the installer and are what differentiates
a meta-installer from an installer. For instance, the installer of the Debian distribution is
dpkg, while the installer used in the RPM family of distributions is rpm.

Meta-installer , also known as a Package Management System. The software tool responsible
for organizing a user request to modify the collection of installed packages. This par-
ticularly involves determining the secondary actions that are necessary to satisfy a user
request to install or de-install packages. To this end, a package system allows the declara-
tion of relations between packages such as dependencies and conflicts. The meta-installer
is also responsible for downloading necessary packages. Examples of meta-installers are
apt-get, aptitude and URPMi.

Deliverable D3.2 Version 1.0 page 17 of 91

November 2, 2009

Package A bundle of software artifacts that may be installed on a machine as an atomic unit,
i.e. packages define the granularity at which software can be added to or removed from
machines. A package typically contains an archive of files to be installed on a machine,
programs to be executed at various stages of the installation or de-installation of a package,
and metadata.

Package status A set of metadata maintained by the installer about packages currently in-
stalled on a machine. The package status is used by the installer as a model of the software
installed on a machine and kept up to date upon package installation and removal. The
kind of metadata stored for each package varies between distributions, but typically com-
prises package identifiers (usually name and version), human-oriented information such as
a description of what the package contains and a formal declaration of the inter-package
relationships of a package. Inter-package relationships can usually state package require-
ments (which packages are needed for a given one to work properly) and conflicts (which
packages cannot coexist with a given one).

Package universe, is the collection of packages available through sources known to the meta-
installer in addition to those already known by the installer, which are stored in the local
package status. Packages belonging to the package universe are not necessarily available
on the local machine—while those belonging to the package status usually are—but are
accessible in some way, for example via download from remote package repositories.

Upgrade request A request to alter the package status issued by a user (typically the system
administrator) using a meta-installer. The expressiveness of the request language varies
with the meta-installer, but typically enables requiring the installation of packages which
were not previously installed, the removal of currently installed packages, and the upgrade
to newer version of packages currently installed.

Upgrade problem The situation in which a user submits an upgrade request, or any abstract
representation of such a situation. The representation includes all the information needed
to recreate the situation elsewhere, at the very minimum they are: package status, package
universe and upgrade request. Note that, in spite of its name, an upgrade problem is not
necessarily related to a request to “upgrade” one or more packages to newer versions, but
may also be a request to install or remove packages. Both Distribution Upgradeability
Description Format (DUDF) and CUDF documents are meant to encode upgrade problems
for different purposes.

Deliverable D3.2 Version 1.0 page 18 of 91

Chapter 2

Classification of upgrade failures

FOSS distributions, as well as other complex systems, provide their software components in
“packaged” form. Packages, available from remote repositories, are installed and removed on
local machines by means of package manager applications, such as APT, RPM, URPMI, IPKG
or YUM. Package managers are responsible for both finding suitable upgrade strategies by
solving dependencies and conflicts among packages, and for actually deploying the resolved set
of packages on to the filesystem, possibly aborting the operation if problems are encountered.

During the installation and removal of a package, actions are required in addition to simple
file relocation to finalise the component within the overall system configuration. Such actions
are usually delegated to executable maintainer scripts, contained in the packages. Maintainer
scripts are written mostly in POSIX shell script that makes it very hard, generally impossible,
to predict a-priori their side-effects which can affect the entire system. As a consequence, a
satisfactory solution able to deal with automatic recovery of faults caused by mis-configured
maintainer scripts is still missing.

In this section we devise a classification of possible failures which can occur during upgrade
scenarios. We highlight those which are currently most difficult to manage since raised by
incomplete or incorrect maintainer scripts. In particular, in Section 2.1 we provide a general
description of the failure concept. Then we provide a first classification of possible failures which
typically occur on real systems (see Section 2.2). After this general classification, in Section 2.3
examples of recurrent failures are also provided. Finally, we conclude the chapter by discussing
how current meta-installers deal with the presented failures in order to precisely identify what
are the situations which are still not sufficiently supported.

2.1 General Description of a Failure

The upgrade of a FOSS system typically requires the following steps:

1. a user selects the package he/she aims to install or uninstall;

2. suitable dependency resolution algorithms compute additional packages that are involved
in the upgrade;

3. the meta-installer then decides which order to install or remove the files using a sorting
algorithm dependent on the meta-installer used;

19

November 2, 2009

4. package files are downloaded from the repositories to the local machine;

5. pre installation or removal (for uninstalls) scripts are executed to perform the upgrade.

6. packages are extracted and the files moved to the required locations;

7. post installation or removal (for uninstalls) scripts are executed to perform the upgrade.

If the required packages are available and the dependencies resolution algorithms resolve each
dependency, then step 7 can be performed. At this point there are two different types of upgrade
failures that can occur: (i) a script may fail during the upgrade sometimes issuing an error-code,
and (ii) scripts do not fail but a “not valid” configuration is reached.

Current package management systems can detect script failures only at run-time since they rely
on physical resources that are not considered by meta-installers. Meta-installers currently do
not analyse the maintainer scripts except for their output. In this setting, problems can be
caused by accesses to non-existent files, problems with access rights of files, available memory,
bandwidth, databases that are locked or inaccessible, etc. These types of failures will be defined
as dynamic failures that are easily rectifiable and reversible because the lists of files associated
with a package are known and can be removed or downloaded again. They do not fail as
a result of a configuration setting on the host machine and as such can be fixed by current
meta-installers.

Focusing on (ii), it is important to understand the notion of “valid” configuration in this context.
In general terms a valid configuration is a configuration that does not contain inconsistencies. Of
course this is a vague definition, but a better definition can be provided only by defining exactly
the different inconsistencies. However, inconsistencies are discovered through the knowledge
and experience of failures. The situation, however, is made more complicated by the fact that
sometimes errors can only be noticed after some days, weeks and in some cases months. The
problem with this type of configuration failure is that the errors will only come to light when
a user that experiences an error submits the feedback. Those who are knowledgeable and have
enough skills to fix the errors, might not submit their fixes to the maintainers and the fixes
might exist only in a decentralised location such as a forum. Those with little experience may
receive the error but do not know how to submit an error report. For these reasons and many
others, the feedback loop if existent, relies on human intervention and as such can take a long
time before the error is resolved. It is expected that the more people that use a particular
package, the more testing and people there are that can potentially fix the problem if it arises
but this is not always the case. An automated mechanism for detecting these failures would
hopefully decrease the rate at which end users are affected by the failures by detecting them
and requesting package maintainers produce a patch.

A valid configuration will be defined in this context as a set of inputs into to the simulator
such that the simulator produces a result that passes the inbuilt tests and exits the failure-
detector with no errors. This maps into computational complexity theory as a “decidable”
problem. The proof that the installability problem can be encoded as a SAT problem is located
in [MBdC+06]. The satisfiability problem is the first example of an NP-complete problem and
as such the complexity of satisfying any configuration will be at least NP-complete [Coo71].
Any other configuration will produce a result of a “not valid” configuration as the simulator
will not have produced a “valid” result. If the set of all configurations is E then E = {V,¬V }
where V is the set of configurations where the simulator produces a “valid” result. ¬V is the
logical inverse of the set V . If ∃V : V 6= ∅ then the “installer” will have to choose a specific V to

Deliverable D3.2 Version 1.0 page 20 of 91

November 2, 2009

use. Only notable exceptions such as apt-pbo1 try to calculate an “optimal” solution by using a
combination of user choices and algorithms. An optimal V has yet to be defined but it could be
in terms of least downloads, least packages upgraded or other cost functions. The first valid V
at this moment in time is used in current meta-installers. Such a definition is important since
it underpins the upgrade simulation which has two possible outputs: “valid” and “not valid”.

A package failure is thus deemed to have occurred whenever a configuration script has reported
back an error code (trivial case already detected) or an inconsistent configuration has been
reached. Some failure types will be detectable by analysis of the configuration scripts whereas
others will only be detectable by using a logging mechanism and noting when a change has
not been or could not be reverted. There also might be times when a failure is caused by a
modification of the system extraneously from the meta-installer. Depending on the mechanisms
used to track the changes in configuration there might be a way of detecting the change(s) and
reverting them. It is also dependent on the granularity and the length of the time interval in
which changes are made as to whether or not they will be detected.

Therefore as we appreciate that there will be changes to what we can and cannot detect, we
follow an iterative and open approach, by adding new inconsistencies as we become aware of
them and new techniques are developed for discovering and identifying failures. In the following
section we highlight a first failure classification that has been identified through prior research.

2.2 Failure Classification

The first failure classification can be provided by taking into account the time when failure are
noticed. In this respect we distinguish among:

1. Failure before the package commences installation, upgrades can fail before the real instal-
lation of packages. Hence the system configuration is not changed and this kind of failure
can be raised because of the following situations which can occur both singularly and in
combination:

– The package list either locally or remotely has errors;

– Package management database is locked or inaccessible;

– Package management database is corrupted, incoherent or is in an erroneous state;

– Dependencies may be missing due to a broken or unsynchronised repository;

– Package may refer to a package that has been deprecated and/or removed.

2. Failure of scripts during upgrades, these kind of failures rely on the state of physical
resources and for this reason it is difficult to simulate or predict. The main causes of these
failures can be summarised as follows:

– Scripts may try to access to non-existent files;

– Scripts may have problems with access rights to/from files;

– Scripts referred to may fail e.g. APT-Lua;

– Pre and Post Install scripts may have insufficient permissions;

– Syscall or other system failures due to the system missing applications e.g. BASH/Perl;

1http://aptpbo.caixamagica.pt

Deliverable D3.2 Version 1.0 page 21 of 91

http://aptpbo.caixamagica.pt

November 2, 2009

– A file present in the package may already have been installed by another package
and be of a different version or be erroneous;

– Files in one package might touch files from another package. Once this collision has
occurred it is difficult to know which version to use and maintain;

– Package management database may be corrupted after installing to the file system;

– Scripts could be unable to commit changes to the local package database;

– A script may refer to a variable or part of the filesystem that has not been defined yet
but that would be defined by another package to be installed later in the transaction
set. This is different to the other types of script failures in that the same things
can occur but will only happen dependant on the order in which the packages are
installed;

– External interruption:

• Power or I/O failure;
• Kernel or system fault;
• User may interrupt the installation especially if it seems that the install has

hung. e.g. apt-get install a package when synaptic is running will appear to hang
because it has not gained an exclusive lock on the package database. Synaptic
on the other hand will check for an exclusive lock before starting.;

– Insufficient resources, for example disk or memory may become full;

– when scripts have been created they make assumptions about the state of the system
and as such are not idempotent. For instance the creation of a new user could have
a guard in which the system checks to see if the user exists before adding the new
user.

3. Non valid configurations are reached, the upgrade process reaches the end but the obtained
configuration is “not valid” since, for instance, there are configuration files which refer to
others which no longer exist in the file system;

4. Slow failures, even in this case, if the upgrade process reaches the end there is a chance
that the obtained configuration contains failures that might not become apparent until
another package is released or that it is in a generally unused part of the package and is
“logic bomb”;

In addition to this classification, it is worth mentioning the following failures that typically
occur during system upgrades.

Script ordering and use-before-define: another kind of failure that has been identified is
when the ordering of the script is implicitly important. The term use-before-define is often
used in reverse in the context of programming where most languages require the definition of a
variable before it can be used (e.g. define before use). The term is being used here to describe
the situation where a package that refers to a particular resource is using it for a value but
that the value has not been assigned yet. This type of error does not incorporate that of a
missing resource that the system should have but rather it is for the more specific case when
a value would be defined by another package in the manifest but that the package that would
enable the functionality is installed later in the sequence. Sometimes maintainer scripts will exit
with a code if there has been this sort of failure, sometimes they will exhibit strange behaviour
and sometimes they might use a fall-back mechanism that ultimately leads to a configuration
problem. Re-ordering the normally lexically sorted list of packages can highlight problems that
are never met in most contexts, because the package maintainer has fixed the packages in such
a way that it works with most systems. In RPM-based meta-installers that uses librpm for

Deliverable D3.2 Version 1.0 page 22 of 91

November 2, 2009

example the process is as follows: (i) firstly an rpm transaction is created, (ii) next all the packages
that the meta-installer wants to install or remove are added to the transaction set, (iii) configuration
flags are then set for the transaction set and then rpmtsOrder() function is called. If the order returns
a non-zero value or if there are any other errors then the transaction will fail, otherwise it will run.

This mechanism does not guarantee if another type of installer is used or if the algorithm used (which
is based on tsort style of algorithm 2) for ordering the packages is changed that the packages will install
correctly. It is negatively stable in that it will work as long as the current conditions last but as soon
as the algorithm is varied then it will fail. A method for indicating this type of failure is to reverse or
randomise the manifest that is provided to the meta-installer. APT does have a mechanism to counteract
this which is in the form of another piece of meta-data, pre-depends. Other package managers may have
similar mechanisms but it is not ubiquitous. The helper utilities do not help to ascertain the correct
ordering in which package installation should occur. This has been highlighted in a few locations 3.
These failures, if found through randomisation of the order of the manifests, are normally indicative of
a missing pre-dependency between packages. It may be the case though that a dependency cannot be
added as it would bring in a dependency loop where two packages inter-rely on each other and can cause
the selection algorithms to behave incorrectly.

Multiple provides: one of the other failures that has been identified is that of the multiple provides
type of failure. If many packages have the same provides, it is up to the meta-installer to decide which
package that best matches the provide. Some “provides” might work as they also have a maintainer-
script that sets up some variables that are implicitly depended by the calling package. This could be
abstracted as a type of missing dependency but the package maintainer might not think that the other
package is a dependency but it needs a more specific case of provides. This again is a type of implicit
dependency.

Currently the most intelligent “Package management systems” or meta-installers rely on the maintainers
to find dependency requirements and conflicts. Certain helper applications may be able to detect a
lot of the possible conflicts and requirements but it is normally based on checks made on the package
maintainer’s system. Once these dependencies have been calculated they are then static and will not
update unless the package is re-released or updated.

All the failures previously described can occur on real systems both in isolation and in combination. In
fact, upgrade processes can lead to unrecognised states which can be reached through a mixture of the
above or a different unforseen issue. In the rest of the section concrete examples of possible failures will
be provided by taking into account the classification previously described.

2.3 Examples of upgrade failures

By taking into account the classification previously presented, in this section we will discuss some concrete
examples of upgrade failures. We will discuss how current approaches are able to deal with them and
what are the features which are still missing for having comprehensive support of upgrade failures. We
will pay particular attention to those failures which depend on fallacious or uncompleted maintainer
scripts whose execution lead to “not valid” configurations.

Example 1 Two or more developers may be working on software packages that will when released
conflict with the others. As shown in Figure 2.1 Developers of software B and C based on A may check
for conflicts with every other package in the package universe. This is already a massive undertaking if
taken in a non-automated fashion. If B and C are released and have no knowledge of each other before
they are released there is no possibility for B and C to be checked against each other for inconsistencies
and to add meta-data to the packages. Certain helper applications may be able to detect a lot of the
possible conflicts and requirements but it is normally based on checks made on the package maintainers
system. Once these dependencies have been calculated they are then static and will not update unless
the package is re-released or updated. Having a mechanism that updates itself with the knowledge of the

2http://rpm.org/api/4.4.2.2/tsort.html
3http://rpm5.org/docs/api/depends_8c-source.html

Deliverable D3.2 Version 1.0 page 23 of 91

http://rpm.org/api/4.4.2.2/tsort.html
http://rpm5.org/docs/api/depends_8c-source.html

November 2, 2009

Figure 2.1: Packages with conflicts that are released at a similar time

current set of packages would mean a lot of these potential errors could be avoided. Although software
and updates are released continuously the updates performed by the end user and the distribution
upgrades tend to happen a lot less frequently. Packages tend to get upgraded at discrete times or at the
user/administrator’s discretion and so it is possible that the conflicts can be tested before release but
not all permutations can be checked and a DSL would help highlight sources of potential configuration
errors;

Example 2 An example of a use-before-defines type of failure that leads to an inconsistent system
configuration is that which occurs when installing freeradius. More specifically in this example, the
failure relates to the usage of user and group identification values before they have been defined. There
are many other processes related to scriptlet behavior that highlights the general failure type but for this
example we use a sub-set failure type that will be exhibited by many packages not just freeradius.

The general failure of using an undefined user and group ID (UID and GID respectively) has been
approached using different methods. To avoid several different instantiation mechanisms, RPM for
instance always uses getpwnam and getgrnam for resolving the IDs. The issue is that getpwnam and
getgrnam can only be installed once /etc/passwd and /etc/group exist on the system. This means
that packages that are installed before normally use the fallback option of using UID and GID of root.
Intervention is needed at this point to make sure the correct UID and GID are assigned to and used by
the various packages that have been added to the system. In terms of an example of this type of failure
we use that which occurs when installing freeradius-libs and freeradius. If the library is installed
before the freeradius package then it would expect a user to be present that is only created by the
configuration file in the freeradius package. Although the package maintainer has correctly identified
that freeradius depends on freeradius-libs the package maintainer cannot then add a dependency
from freeradius-libs back without creating a nested loop. If this is the case some meta-installers that
cannot resolve the circular dependency would fail. The problem in this case is that a username is checked
for and added as necessary by only freeradius package as shown in listing 2.1.

Listing 2.1: Part of the .spec file in freeradius that checks and adds a user, radiusd
1 %pre

2 getent group radiusd >/dev/null | | /usr/sbin/groupadd −r −g 95 radiusd

3 getent passwd radiusd >/dev/null | | /usr/sbin/useradd −r −g radiusd −u 95 −c "radiusd

↪→user" −s /sbin/nologin radiusd > /dev/null 2>&1
4 exit 0

In the above example getent is the UNIX utility for getting entities from the administrative databases
such as group or passwd. The database it is requested to search is the first parameter and the second
is they key value for which to perform the search. When the database finds an entry marked with the
same key it then returns the associated information. In listing 2.1 the group and user radiusd is searched
for in the respective administration databases. If an entry is found it will return a non-zero value and
the output will be discarded, e.g. passed to /dev/null. If the value is found the script will not run the
second part however if it cannot be found then the second element in each part of the script following
the logical “OR” (||) will be run. The groupadd command is fairly trivial and associates the new radiusd
group with Group ID (GID) 95. As for the useradd command there are a number of values that describe
how the user fits into the system. The main thing though is that a user is added with the GID defined

Deliverable D3.2 Version 1.0 page 24 of 91

November 2, 2009

Figure 2.2: Invalid configuration is reached when installing freeradius-libs before freeradius

to be equal to the radiusd grouping. At the end of this script, as long as it completes successfuly we
can safely assume that a user and group called radiusd exists. It can then be used for reference, like by
freeradius-libs.

If the non-library package installs first then it is fine, otherwise it will fail. The example can be found in
the CentOS mailing lists 4. Although some package management systems have mechanisms for avoiding
this type of failure by creating additional meta-data, there is a lack of enforcement of this by any of the
existing helper tools. Serialization of side-effects of scriplet actions can help catch these flaws. It is a
particularly interesting error in that depending on changes in the algorithm it may not be reproducible
on another system given the same inputs and actions carried out by the end user. Only those who fully
understand what the meta-installer is doing might be able to catch this type of failure through looking
at the logs and recognizing that the order of package installation is leading to the invalid configuration
state.

Example 3 Although not a failure per-se the following example highlights a deficiency of current
meta-installers. Many maintainer scripts run cache rebuilders to make sure that any new changes are
integrated into the system. They are normally added into maintainer scripts by package maintainers
to make sure that (de-)associations are made at the correct time. The issue is that many package
maintainers now use the cache-rebuilders whether or not they are needed. Many maintainer scripts are
created by helper utilities but of those that are hand-written, from the analysis performed, it would
appear that a significant number are copied and modified. It has now become the norm to run cache-
rebuilders and in some cases it is required to pass validation tests, for instance it is mandated by the
Debian Policy. The processing power of modern systems means that running these cache-rebuilders does
not affect too much on performance. However with large upgrade procedures such as a distribution
upgrade the small performance hit is repeated many times by many packages and can slow the package
installation process. What was worse was if the cache had to be rebuilt several times if there was a
shortage of memory available to the cache 5, however these issues have had various patches at different
stages and now since glibc 2.7 the patch is incorporated. By using a model of the system that has
a knowledge of the libraries installed as one of the meta-classes, it is possible for the simulator to only
run ldconfig when necessary and optimise the number of times the cache rebuilder is run. Calculating
the minimal/optimal number of times a cache-rebuilder has to be run is of course an additional process
that has its own limitations. What can be done though is to analyse the maintainer scripts sequentially
as each package is installed to see if a library has been installed since the previous configuration and if
it is to be used by an executable file then run the cache rebuilder. This will not optimise the number
of rebuilds performed for the whole set of packages but will minimise the number of times that a cache
rebuild is performed on the set in that particular order. By removing the redundant cache rebuilds we
can highlight one of the benefits of the DSL that is not ubiquitous amongst standard meta-installers at
the moment.

Example 4 An example of possible upgrade which can lead to a non valid configuration is presented in
the following by considering Apache2 and PHP5 which is a scripting language integrated with the Apache
Web server. In particular, let us assume that we want to remove the package libapache-mod-php5
from the filesystem. Then the PHP5 module in the Apache configuration has to be disabled before its
removal. This is necessary, otherwise inconsistent configurations can be reached like the one shown

4http://lists.centos.org/pipermail/centos-devel/2009-March/004250.html
5http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=431143

Deliverable D3.2 Version 1.0 page 25 of 91

http://lists.centos.org/pipermail/centos-devel/2009-March/004250.html
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=431143

November 2, 2009

in Figure 2.3. The figure reports the sample Configuration2 which has been reached by removing
libapache-mod-php5 without changing the configuration of apache2. Such a configuration is broken
since it contains a dependency between the apache2 and libapache-mod-php5 package settings, when
only apache2 is installed. If Apache is now run as a service it may refer to the missing package, PHP5
which of course could lead to many errors including security breaches and services crashing.

Figure 2.3: Incorrect package removal

In order not to lead to invalid configurations like the one in Figure 2.3, the package libapache-mod-php5
contains the postinst and prerm scripts reported on the left hand-side and right hand-side in the following
snippet, respectively.

1 #postinst

2 #!/bin/sh

3 i f [−e /etc/apache2/apache2 . conf] ; then
4 a2enmod php5 >/dev/null | | true
5 reload_apache

6 f i

1#prerm

2#!/bin/sh

3i f [−e /etc/apache2/apache2 . conf] ; then
4a2dismod php5 | | true
5f i

In particular, the PHP5 module installed during the unpacking phase, gets enabled invoking the a2enmod
command (see line 4 on the left-hand side above); the Apache service is then reloaded (line 5) to make
change effective. Upon PHP5 removal the reverse will happen, as implemented by the prerm script snippet
above.

It is important to note that currently, available package managers are not able to predict inconsistencies
which can occur if maintainer scripts are not complete. For instance, the invalid configuration reported in
Figure 2.3 can be obtained if the prerm above does not contain the statement ’a2dismod php5’. Package
managers are not able to detect that such a statement is missing or that an invalid configuration has been
reached. The only types of errors they can detect are run-time failures of scripts. They cannot normally
resolve the problem and perform a limited set of actions at this point. They may try and restart the
configuration script, report the error to the user or more frequently than not they will abort the script
and possibly provide an error code and/or warning message.

2.4 How Meta-Installers deal with upgrade failures

Currently the system for how meta-installers cope with failures is distribution and meta-installer depen-
dent. Most will use algorithms as identified earlier to detect if a solution to the satisfiability problem
exists and generate a package transaction set to install.

Once they have a set of packages to install the order in which they are installed again depends on the
algorithms used but as examined before there are a whole class of problems that can be identified by

Deliverable D3.2 Version 1.0 page 26 of 91

November 2, 2009

Existing approaches Model driven approach
Before upgrade Y Y
During upgrade Y6 Y
After upgrade N Y
Slow failures N Y

Table 2.1: Current support to detect and manage upgrade failures

randomising the order in which packages are installed. If there are no circular dependencies identified
that cannot be resolved, i.e. for rpm, rpmtsOrder() would come back with a value of zero then there
exists a solution set for the packages to install. If all these pre-conditions are met and an ordered list of
packages has been stored into a transaction set the meta-installers at this stage act as dumb-agents and
call dpkg, rpm or the associated installer on the packages and report the error codes at this stage. The
installer will then unpack the files downloaded by the meta-installer and run the associated configuration
scripts. It is at this stage that the meta-installers assume that the configuration files will report an error
code if something has gone wrong.

As highlighted before it might be the case that the package maintainer may have made a mistake, not
made a reference to a dependency or some other types of error within the maintainer file. If this is the
case then the maintainer scripts will still run. They are after all written in Turing complete languages.
Although they may be syntactically correct they may not be logically correct. There is a large assumption
made at this point in that the maintainer is expected to write conditional checks against anything that
might fail. Utilities such as deb-helper can help produce maintainer scripts for packagers but it doesn’t
guarantee that they will be free of configuration errors. Most of the time when a failure is detected by
a meta-installer it will report the error code and stop the installation. The packages that have been
installed to this point are normally left as they are and all the commands that were run up to the point
of the failure are left as they were. In this case it leaves the system in a non-deterministic state. Files
may have been modified and cache-updaters may have been run but the system currently will just say
that the package installation failed. This leaves the possibility that some packages were installed, being
dependencies of the desired package but are not being used. This entails all the standard problems of
failed installations.

There are possible security holes as the installation will be reported back as not have being successful.
Also there may be resources that have been left in an erroneous state. For instance if there is a power
failure after a pre-rm script is run then the caches may have been updated to report that the application
has been removed when it has not. Having a transactional system that monitors the configuration states
will highlight these errors and possibly revert all the changes dependent on the user’s preferences.

To summarize, Table 2.1 reports the main categories of possible upgrade failures that we identified and
described in the previous sections. For each of them the table states if current approaches are able or
not to detect and eventually manage them. The model driven approach presented in the deliverable
D2.1 and recalled in the next chapter has been conceived to focus on detecting failures before, during
and after upgrades are performed. The DSL plays a key role in the overall approach since the upgrade
simulation and the failure detection rely on the maintainer script behavior and on configuration models
which abstract the real systems.

6Failures may be detected as the script will report an error code but the changes already performed are usually
not undone

Deliverable D3.2 Version 1.0 page 27 of 91

November 2, 2009

Deliverable D3.2 Version 1.0 page 28 of 91

Chapter 3

Model-driven approach for
supporting FOSS system upgrades

The problem of maintaining FOSS installations is far from trivial and has not yet been addressed prop-
erly [DTZ08]. In particular, current package managers are neither able to predict nor to counter vast
classes of upgrade failures. The main reason is that package managers rely on package meta-information
only (in particular on inter-package relationships), which are not expressive enough. In the deliverable
D2.1 and in [CRP+09] we proposed an approach consisting of maintaining a model-based description
of the system and simulating upgrades in advance on top of it, to detect predictable upgrade failures
and notify the user before the actual installation occurs and the system is affected. More generally, the
models are expressive enough to isolate inconsistent configurations (e.g., situations in which installed
components rely on the presence of missing sub-components), which are currently not expressible as
inter-package relationships.

In this chapter we recall the phases of FOSS upgrades (see Section 3.1) and outline the concepts of
Model Driven Engineering (MDE) (see Section 3.2). Then the model-driven approach already proposed
in D2.1 is summarized in Section 3.3 even though we focus more on the role of the DSL which has
been conceived to specify the behavior of the maintainer scripts and to predict several of their effects on
package upgrades (see Section 3.4).

3.1 FOSS system upgrades

The different phases of the so called upgrade scenario are summarized in Table 3.1, using as an example
the popular APT meta-installer. The process starts in phase (1) with the user requesting to alter the local
package status. The expressiveness of the requests varies with the meta-installer, but the aforementioned
actions (install, remove, etc.) are ubiquitously supported, possibly with different semantics [TZ08].

Phase (2) checks whether a package satisfying the dependencies and conflicts exists (the satisfiability
problem is at least NP-complete [EDO06]). If this is the case one is chosen in this phase. Usually the
one that occurs first is chosen but different tools now allow the user to specify what constraints should
be upheld (eg. see apt-pbo1 by Caixa Mágica Linux). Deploying the new status consists of package
retrieval, phase (3), and unpacking, phase (4). Unpacking is the first phase actually changing both the
package status (to keep track of installed packages) and the filesystem (to add or remove the involved
files).

Intertwined with package retrieval and unpacking, there can be several configuration phases, (exemplified
by phases (5a) and (5b) in Table 3.1), where maintainer scripts get executed. The details depend on the
available hooks; dpkg offers: pre/post-installation, pre/post-removal, and upgrade to some version [JS08].

1http://aptpbo.caixamagica.pt

29

http://aptpbo.caixamagica.pt

November 2, 2009

Table 3.1: The package upgrade process

Each phase of the upgrade process can fail as well as package deployment. Trivial failures, for example,
network or I/O failures before configuration, can be easily dealt with when considered in isolation: the
whole upgrade process can be aborted and the unpack stage can be undone, since all the involved files
are known; they can be removed safely and no upgrade is performed and thus the system is unchanged.
Maintainer script failures can not be as easily undone, nor prevented. Scripts are implemented in Turing-
complete languages, and all non-trivial properties about them are undecidable, including determining
a-priori their effects to be able to revert them upon failure [DTZ08]. In this respect, state of the art
package managers do not provide support to simulate system upgrades taking the behavior of maintainer
scripts into account. In fact, current tools consider only inter-package relationships which are not enough
to predict side-effects and system inconsistencies which can be encountered during upgrades. They also
often rely on the competance of the package maintainer. If a standard template or assistance tool is
used, these types of errors are minimised but often the experience of the package maintainer is relied
upon to know whether their package will conflict with any others. As the number of packages available
tends to increase the maintainer also has to think in advance of what type of packages might conflict but
have not been developed yet. This of course is not feasible and increases the chances of a failure due to
the lack of expressiveness of or the insufficient meta-data.

3.2 Model Driven Engineering

MDE [Sch06] refers to the systematic use of models as first class entities throughout the software engi-
neering life cycle. Model-driven approaches shift development focus from third generation programming
language codes to models expressed in proper domain specific modelling languages. The objective is
to increase productivity and reduce time to market by enabling the development of complex systems
by means of models defined with concepts that are much less bound to the underlying implementation
technology and are much closer to the problem domain. This makes the models easier to specify, under-
stand, and maintain [Sel03] helping the understanding of complex problems and their potential solutions
through abstractions.

MDE relies on a conceptual framework consisting of model, meta-model, and model transformation which
are described in the rest of the section.

Deliverable D3.2 Version 1.0 page 30 of 91

November 2, 2009

(a) Graph Metamodel

(b) Graph models

Figure 3.1: Models conforming to a sample metamodel

3.2.1 Models and Meta-models

Bézivin and Gerbé in [BG01] define a model as “a simplification of a system built with an intended goal
in mind. The model should be able to answer questions in place of the actual system”. According to
Mellor et al. [MCF03] a model “is a coherent set of formal elements describing something (e.g., a system,
bank, phone, or train) built for some purpose that is amenable to a particular form of analysis” such
as communication of ideas between people and machines, test case generation, transformation into an
implementation, etc.

In MDE models are not considered as merely documentation but precise artifacts that can be understood
by computers and can be automatically manipulated. In this scenario meta-modelling plays a key role. It
is intended as a common technique for defining the abstract syntax of models and the interrelationships
between model elements. Meta-modelling can be seen as the construction of a collection of “concepts”
(things, terms, etc.) within a certain domain. A model is an abstraction of phenomena in the real world,
and a meta-model is yet another abstraction, highlighting properties of the model itself. This model is
said to conform to its meta-model like a program conforms to the grammar of the programming language
in which it is written [B0́5]. For instance, Fig. 3.1.a depicts a sample meta-model containing the concepts
and the relations between the elements of a graph. In this respect, the metamodel contains the concept
Node which represents a source and/or target of edges according to the relations between the Node and
Edge metaclasses. In Figure 3.1.b two sample models conforming to the graph meta-models previously
mentioned are reported.

Object Management Group (OMG) has introduced the four-level architecture illustrated in Figure 3.2.
At the bottom level, the M0 layer is the real system. A model represents this system at level M1.

Figure 3.2: The four layers meta-modelling architecture

Deliverable D3.2 Version 1.0 page 31 of 91

November 2, 2009

This model conforms to its meta-model defined at level M2 and the meta-model itself conforms to the
metametamodel at level M3. The metametamodel conforms to itself. OMG has proposed Meta Object
Facility (MOF) [Obj03a] as a standard for specifying meta-models. For example, the Unified Modeling
Language (UML) meta-model [Obj03b] is defined in terms of MOF. A supporting standard of MOF
is XMI! (XMI!) [Obj03c], which defines an XML-based exchange format for models on the M3, M2,
or M1 layer. This meta-modelling architecture is common to other technological spaces as discussed by
Kurtev et al. in [AKB02]. For example, the organisation of programming languages and the relationships
between XML documents and XML schemas follow the same principles described above (see Fig. 3.2).
In addition to meta-modelling, model transformation is also a central operation in MDE as discussed in
the next section.

3.2.2 Model Transformations

In addition to meta-modelling, model transformation is also a central operation in MDE. The MDA
guide [OMG03] defines a model transformation as “the process of converting one model to another
model of the same system”. Kleppe et al. [KW03] defines a transformation as “the automatic generation
of a target model from a source model, according to a transformation definition.” A transformation
definition is a set of transformation rules that together describe how a model in the source language can
be transformed to a model in the target language. A transformation rule is a description of how one
or more constructs in the source language can be transformed to one or more constructs in the target
language.

These aspects will be discussed in more detail in Chapter 4.3, which uses model transformations for
specifying the semantics of the proposed DSL for specifying maintainer scripts.

3.3 Simulating system upgrades

The model-driven approach depicted in Figure 3.3 relies on the specification of system configurations and
available packages. Maintainer scripts are also described in terms of models which abstract from the real
system, but are expressive enough to predict several of their effects on package upgrades. Intuitively, we
provide a more abstract interpretation of scripts, in the spirit of [Cou06], which focuses on the relevant
aspects to predict their effects on the operation of software distributiona. To this end, models can be
used to drive rollback operations, to recover previous configurations according to user decisions or after
upgrade failures. Being more precise, the simulation takes two models as input: the System Model and
the Package Model (see arrow a©). The former describes the state of a given system in terms of installed
packages, running services, configuration files, etc. The latter provides information about the packages
involved in the upgrade, in terms of inter-package relationships. One of the most important aspects of the
simulation is the behaviour of the maintainer scripts that are defined using the DSL which is presented
in depth in the next chapter. Taking this further, given the current configuration, defined in terms of a
system model, the simulator simulates upgrading the system by taking into account the packages which
have to be installed and/or removed. In particular, for each package involved in the package model, the
associated maintainer scripts are executed. If the execution of a script has some problems or a ‘not valid’
configuration is reached, then the outcome of the simulation will be ‘not valid’ (see arrow c©). In this
case it is taken for granted that the upgrade on the real system will likely fail. Thus, before proceeding
with upgrading the problem(s) identified by the simulation should be fixed. Conversely, if the overall
upgrade leads to a new configuration that is a ‘valid’ configuration, then the simulation outcome will
be ‘valid’ (see arrow d©). In this case, the upgrade on the real system can be performed (see arrow i©).
However, since the models are an abstraction and hence a simplification of the real system as discussed in
Section 3.2.1, upgrade failures might still occur. In the scenario that our simulation approach is unable
to detect failures the system will capture the logs but the original upgrade would take place just as if
simulation was not adopted.

In order to support the down-grade, during the real upgrade of the system, the models are continuously
updated and kept aligned with the real system that they are modelling. Furthermore, Log models are

Deliverable D3.2 Version 1.0 page 32 of 91

November 2, 2009

Figure 3.3: Overall approach

produced in order to store all the transitions between configurations (see arrow b©). The information
contained in the system, package, and log models (arrows e© and f©) are used in case of failures (arrow
l©) or in the case that a user decides to perform a down-grade at a later stage. In other words, models

drive the down-grade, by indicating the reverse actions that must be performed to bring the system
back to a previous valid configuration (arrow g©). This model-driven approach, to be effective, must
be integrated with other approaches able to physically store useful system information, and be able to
retrieve these pieces of information as needed. A reliable transaction store of the logs is required as any
corruption on the store will otherwise mean that all the configuration states are no longer useful.

Figure 3.4: Model injection

In order to apply the approach depicted in Figure 3.3 onto a real scenario, existing systems have to
be represented in terms of models. In this respect, the availability of injectors is crucial since they are
tools that transform software artifacts into corresponding models in an automatic way. In particular, as
shown in Figure 3.4, given a real software system and a set of packages a corresponding representation
in the modelling world has to be obtained. Since it is not possible to specify in detail every single part of
systems and packages, trade-offs between model completeness and usefulness have been evaluated. In this
respect, models are specified by using modelling constructs which are formalized in specific metamodels
that have been conceived during a domain analysis phase (see the deliverable D2.1).

Over the last years, several approaches for extracting models from software artifacts have been proposed
even though the optimal solution which can be used for any situation does not exist yet [JJJ08]. The
complexity of the problem relies on the limitation of current lexical tools which do not provide the proper

Deliverable D3.2 Version 1.0 page 33 of 91

November 2, 2009

Figure 3.5: Role of the DSL in the upgrade

abstractions and constructs to query code and generate models with respect to given metamodels. Some
approaches like [WK06, Eff06] focus on generating metamodels from grammars but they have some
drawbacks that may restrict their usefulness, such as the poor quality of the automatically generated
metamodel [JJJ08]. Approaches like [JBK06] enable the automatic generation of injectors starting from
annotated metamodels with syntactic properties. However, they do not permit the reuse of existing
grammars written for well-known parser generators. Techniques like [JJJ08] propose specific languages
to query software artifacts and generate models according to specified source-to-model transformation
rules.

Several projects are under development to provide tools and methodologies for model-driven moderni-
sation and model injection. For instance, MoDisco [Ecl] defines an infrastructure for supporting model-
driven reverse engineering by relying on the concept of discoverer which is a piece of software in charge
of analysing part of an existing system and extracting a model using the MoDisco’s infrastructure. How-
ever, the automatic representation of real systems in terms of models is the main topic of the deliverable
D2.2. In this respect, in the rest of this document, we will assume the availability of models without
taking into account how we have obtained them.

In the next section, the role of the DSL in the simulation of system upgrades is explained in more detail.

3.4 Role of the DSL in the upgrade scenario

The rationale behind a brand new language for specifying maintainer scripts is forcing distribution
maintainers to use a subset of high level statements (a sort of macro) with well defined semantics. The
well defined semantics enables a deep understanding of how the system evolves into a new configuration
by executing the single statement. Furthermore the DSL is not Turing-complete because by definition
the DSL was designed to describe an abstraction of systems and to focus on the main aspects of the
particular problem domain. By adding Turing-complete elements we increase the expressive power of
the language but we lose the benefits that we gain by having that abstraction. It is a consideration that
has been taken into account when designing and specifying the DSL.

As depicted in Figure 3.5 the simulation of a package installation relies on an abstract representation of
the source configuration and executes the maintainer scripts whose behavior is specified by means of the
proposed DSL. The aim of the simulation is to identify possible inconsistencies which can be detected
during the maintainer scripts execution or once a target configuration is obtained. For instance, the
execution of a statement on a service which does not exist in the current configuration can stop the
simulation. In this way the maintainer can identify and modify the script in order to solve such a
problem. Then the failure detector is used to analyze target configurations and check if inconsistencies
occur. In the case of “valid” configuration, the installation is performed on the real system. In particular,
the scripts specified with the DSL are transformed in to target code written in currently used, Turing

Deliverable D3.2 Version 1.0 page 34 of 91

November 2, 2009

complete, scripting languages. The scripts obtained are then executed on the real configuration.

To summarize, the DSL will have two different implementations each of them at different level of abstrac-
tions. A first implementation is represented by a simulator which is able to simulate package upgrades
and check if they lead systems to inconsistent states or not. Another implementation is represented by a
metainstaller which will be able to execute DSL scripts on real systems. In the rest of the document we
will focus on the DSL by presenting its building concepts, and semantics without referring to particular
implementations. In fact, the support of the DSL and its application on real scenarios is the focus of
forthcoming deliverables, like D2.3 and D3.3.

Deliverable D3.2 Version 1.0 page 35 of 91

November 2, 2009

Deliverable D3.2 Version 1.0 page 36 of 91

Chapter 4

DSLs supporting the upgradeability
of GNU/Linux systems

DSLs are languages able to raise the level of abstraction beyond coding by specifying programs using
domain concepts [TK05]. In particular, by means of DSLs, the development of systems can be realized
by considering only abstractions and knowledge from the domain of interest. This contrasts with General
Purpose Language (GPL), like C++ or Java, that are supposed to be applied for much more generic
tasks in multiple application domains. By using a DSL the designer does not have to be aware of
implementation intricacies, which are distant from the concepts of the system being implemented and
the domain the system acts in. Furthermore, operations like debugging or verification can be entirely
performed within the domain boundaries.

Over the years, many DSL have been introduced in different application domains (telecommunications,
multimedia, databases, software architectures, Web management, etc.), each proposing constructs and
concepts familiar to experts and professionals working in those domains.

As any other computer language (including GPLs), a DSL consists of abstract and concrete syntax
definition and possibly a semantics definition, which may be formulated at various degrees of preciseness
and formality. In the context of MDE we conceive of the DSL as a collection of coordinated models.
We are in this way, leveraging the unification power of models [Béz05]. Each of the models composing a
DSL specifies one of the following language aspects:

– Abstract syntax. As we discussed before, the basic distinction between DSLs and GPLs is based on
the relation to a given domain. DSLs have a clearly identified, concrete problem domain. Programs
(sentences) in a DSL represent concrete states of affairs in this domain. A conceptualization of the
domain is an abstract entity that captures the commonalities among the possible state of affairs. It
introduces the basic abstractions of the domain and their mutual relations. Once such an abstract
entity is explicitly represented as a model it becomes a metamodel for the models expressed in
the DSL. It plays a central role in the definition of the DSL. For example, a DSL for directed
graph manipulation will contain the concepts of nodes and edges, and will state that an edge may
connect a source node to a target one. Similarly, a DSL for Petri nets will contain the concepts of
places, transitions and arcs. Furthermore, the metamodel should state that arcs are only between
places and transitions;

– Concrete syntaxes. A DSL may have different concrete syntaxes. For instance, a possible concrete
syntax of a Petri net DSL may be defined by mapping places to circles, transitions to rectangles, and
arcs to arrows. The display surface metamodel in this case has the concepts of Circle, Rectangle,
and Arrow;

– Dynamic semantics. Generally, DLSs have different types of semantics. For example, OWL [Wor]
is a DSL for defining ontologies. The semantics of OWL is defined in model theoretic terms. The
semantics is static, that is, the notion of changes in ontologies happening over time is not captured.

37

November 2, 2009

Many DSLs have a dynamic semantics based on the notion of transitions from state to state that
happen in time. Dynamic semantics may be given in multiple ways, for example, by mapping to
another DSL having itself a dynamic semantics or even by means of a GPL.

In this chapter, all these aspects of the DSL conceived for the maintainer script specifications will be
presented in depth. In particular, Section 4.1 presents the abstract syntax in terms of a refined version
of the MANCOOSI metamodels introduced in the deliverable D2.1. The concrete syntax of the language
is defined in Section 4.2. Finally, the semantics of the language is given in Section 4.3.

4.1 MANCOOSI DSL: Abstract syntax

In order to identify the right trade-off between model completeness and usefulness we analyzed two
complex FOSS distributions: Debian1, the largest distribution in terms of number of software pack-
ages [AGRH05] and RPM-based Fedora2 distributions. The first result of the analysis has been the
definition of the metamodels presented in the following. However, the most challenging part of the con-
ducted analysis was the analysis of maintainer scripts. In fact since our aim is to define the DSL for
writing maintainer scripts it is of fundamental importance to known what are the statements that must
be included by the DSL. In other words the DSL should contain a restricted and well defined subset of
statements, but the DSL must be expressive enough. Thus, our aim is to describe the most common
macro-actions of maintainer scripts in terms of models which abstract from the real system, but are
expressive enough to grasp several of their effects on package upgrades.

The adopted scripting languages are mainly POSIX shell but they are written also in Perl [The09b],
Bash [The09a], etc. Scripting languages have rarely been formally investigated and with no exciting
results [XA06, MZ07], thus posing additional difficulties in understanding their side-effects which can
spread throughout the whole (file)system.

Due to the large amount of scripts to consider (e.g., about 25.000 on Debian Lenny), we tried to collect
scripts in clusters to be able to concentrate the analysis on representatives of the equivalence classes iden-
tified. The adopted procedure for clustering has been presented in the deliverable D2.1 and in [RPPZ09]
and is schematised in the following:

1. Collect all maintainer scripts of a given distribution;

2. Identify scripts generated from helper tools. Since a large part of maintainer scripts are auto-
matically generated using “helper” tools (which provide a collection of small, simple and easily
understood tools that are used to automate various common aspects of building a package) we can
concentrate the analysis on the helpers themselves, rather than on the result of their usage;

3. Ignore inert script parts. We then found and ignored inert script parts, i.e., script parts which do
not affect their computational state such as blank lines of comments;

4. Study of scripts written “by hand”. We analyzed the remaining scripts tying to identify recurrent
templates that maintainers use when writing the scripts.

Summarizing, our analysis of Debian and Fedora highlighted the it is possible to define a higher-level
language that can be substituted to current script languages. Thanks to the analysis we are now able to
define statements that are necessary for the DSL and, on the other side, statements that should be out
of scope of the DSL.

Their analysis has induced the definition of three metamodels (see Figure 4.1) which describe the concepts
making up a system configuration and a software package, and how to maintain the log of all upgrades.
The metamodels have been defined according to an iterative process consisting of two main steps a)
elicitation of new concepts from the domain to the metamodel b) validation of the formalisation of

1http://www.debian.org
2http://fedoraproject.org

Deliverable D3.2 Version 1.0 page 38 of 91

http://www.debian.org
http://fedoraproject.org

November 2, 2009

Figure 4.1: Dependencies among metamodels

the concepts by describing part of the real systems. In particular, the analysis has been performed
considering the official packages released by the distributions with the aim of identifying elements that
must be considered as part of the metamodels. We report here only the results of the analysis, i.e., the
metamodels themselves:

– the System Configuration metamodel, which contains all the modeling constructs necessary to
make the FOSS system able to perform its intended functions. In particular, it specifies installed
packages, configuration files, services, filesystem state, loaded modules, shared libraries, running
processes, etc. The system configuration metamodel takes into account the possible dependency
between the configuration of an installed package and other package configurations. The ability to
express such fine-grained and installation-specific dependencies is a significant advantage offered
by the proposed metamodels which embody domain concepts which are not taken into account by
current package manager tools;

– the Package metamodel, which describes the relevant elements making up a software package.
The metamodel also gives the possibility to specify the maintainer script behaviors which are
currently ignored—beside mere execution—by existing package managers. In order to describe the
scripts behavior, the package metamodel contains the Statement metaclass, see Figure. 4.2, that
represents an abstraction of the commands that can be executed by a given script to affect the
environment, the file system or the package settings of a given configuration;

– the Log metamodel, which is based on the concept of transactions that represent a set of state-
ments that change the system configurations. Transitions can be considered as model transforma-
tions [B0́5] which let a configuration C1 evolve into a configuration C2.

As depicted in Figure 4.1, System Configuration and Package metamodels have mutual dependencies,
whereas the Log metamodel has only direct relations with both System Configuration and Package
metamodels.

The proposed metamodels represents a step toward (i) simulation of package installations, (ii) fault
and roll-back management, (iii) log management. Simulation of package installations and fault man-
agement are achieved thanks to the Configuration and Package metamodels. Roll-back management
and log management are instead achieved by means of the Log metamodel. In fact, roll-back operations
can exploit the information contained in the log models which store the transactions between different
configurations. In the next section we will focus on the the package metamodel since it embodies the
abstract syntax of the DSL which is the main outcome of this document.

4.2 MANCOOSI DSL: Concrete syntax

In this section we define the notation the end user will use to specify scripts conforming to the abstract
syntax (defined by means of the Mancoosi metamodel previously outlined). The DSL consists of
statements which modify the system configuration that is modeled in terms of File system, Environment
and Package setting elements. Moreover, there are control and iterator statements which can be used
to specify the application of the other statements. They will be explained in Section 4.2.2 and 4.2.3,
respectively.

Deliverable D3.2 Version 1.0 page 39 of 91

November 2, 2009

Figure 4.2: Fragment of the Package metamodel

4.2.1 Grammar Definition

The Grammar definition uses Extended Backus-Naur Form as standardised by ISO/IEC 14977. It is a
formal mathematical description (metasyntax) that is used to describe a context-free grammar. EBNF
varies from BNF in that it allows more operators that define the number of times objects can appear.
EBNF can be represented in BNF and vice versa3. ε refers to an empty set and so can be used to simplify
a syntax instead of using optional operators.

SCRIPT ::= STATEMENT LIST

STATEMENT LIST ::= TEMPLATE STATEMENT STATEMENT LIST |
CONTROL STATEMENT STATEMENT LIST |
ITERATOR STATEMENT STATEMENT LIST |
TAGGING STATEMENT STATEMENT LIST |
ε

CONTROL STATEMENT ::= CASEPOSTINST | CASEPOSTRM | CASEPRERM | CASEPREINST

CASEPOSTINST ::= CasePostinst(){
CONFIGURE
ABORTUPGRADE
ABORTREMOVE
ABORTDECONFIGURE
}

3http://www.garshol.priv.no/download/text/bnf.html

Deliverable D3.2 Version 1.0 page 40 of 91

http://www.garshol.priv.no/download/text/bnf.html

November 2, 2009

CONFIGURE ::= configure: STATEMENT LIST, | ε

ABORTUPGRADE ::= abortUpgrade: STATEMENT LIST, | ε

ABORTREMOVE ::= abortRemove: STATEMENT LIST, | ε

ABORTDECONFIGURE ::= abortDeconfigure: STATEMENT LIST, | ε

CASEPOSTRM ::= CasePostrm(){
PURGE
REMOVE
UPGRADE
FAILEDUPGRADE
ABORTINSTALL
ABORTUPGRADE
DISAPPEAR
}

PURGE ::= purge: STATEMENT LIST, | ε

REMOVE ::= remove: STATEMENT LIST, | ε

UPGRADE ::= upgrade: STATEMENT LIST, | ε

FAILEDUPGRADE ::= failedUpgrade: STATEMENT LIST, | ε

ABORTINSTALL ::= abortInstall: STATEMENT LIST, | ε

ABORTUPGRADE ::= abortUpgrade: STATEMENT LIST, | ε

DISAPPEAR ::= disappear: STATEMENT LIST, | ε

CASEPRERM ::= CasePrerm(){
REMOVE
UPGRADE
DECONFIGURE
FAILEDUPGRADE
}

DECONFIGURE ::= deconfigure: STATEMENT LIST, | ε

FAILEDUPGRADE ::= failedUpgrade: STATEMENT LIST, | ε

CASEPRERM ::= CasePreinst(){
INSTALL
UPGRADE
ABORTUPGRADE
}

Deliverable D3.2 Version 1.0 page 41 of 91

November 2, 2009

INSTALL ::= install: STATEMENT LIST, | ε

ITERATOR STATEMENT ::= ITERATOR DIRECTORY | ITERATOR FILE | ITERATOR ENUMERATION |
ITERATOR PARAMETER | ITERATOR WORD

ITERATOR DIRECTORY ::= ForEachFile(DIRECTORY,ORDER){
STATEMENT LIST,
}

ITERATOR FILE ::= ForEachLine(FILE,ORDER){
STATEMENT LIST,
}

ITERATOR ENUMERATION ::= ForEachElement(ENUMERATION,ORDER){
STATEMENT LIST,
}

ITERATOR PARAMETER ::= ForEachArg(PARAMETER,ORDER){
STATEMENT LIST,
}

ITERATOR WORD ::= ForEachChar(STRING,ORDER){
STATEMENT LIST,
}

ORDER ::= left | right

TEMPLATE STATEMENT ::= ALTERNATIVE | DESKTOP | DOCBASE | EMACS |
GCONF | ICONS | INFO | INIT |
LIBRARY | MENU | MIME | MODULES |
SCROLLKEEPER | SGML | UDEV | USRLOCAL
USERGROUPS | WM | XFONT

ALTERNATIVE ::= rm alternative(STRING,STRING) |
add alternative(STRING,STRING)

DESKTOP ::= update desktopdb

DOCBASE ::= inst doc(STRING) | rm doc(STRING)

EMACS ::= inst emacs package(STRING) | rm emacs package(STRING)

GCONF ::= preinst gconf | postinst gconf
postrm gconf | prerm gconf

ICONS ::= update icons

INFO ::= inst info(STRING) | rm info(STRING)

Deliverable D3.2 Version 1.0 page 42 of 91

November 2, 2009

INIT ::= postinst init(STRING) | postinst init nostart(STRING)
postinst init restart(STRING) | prerm init(STRING)
postrm init(STRING)

LIBRARY ::= update libs

MENU ::= update menu | postinst menu | postrm menu

MIME ::= update mime(STRING)

MODULES ::= update modules(STRING)

SCROLLKEEPER ::= update scrollkeeper

SGML ::= postinst sgmlcatalog | prerm sgmlcatalog | postrm sgmlcatalog

UDEV ::= preinst udev | postinst udev

USRLOCAL ::= postinst usrlocal | prerm usrlocal

USERGROUPS ::= user add(STRING,STRING,STRING) | user remove(STRING,STRING)
group add(STRING) | group remov(STRING)

WM ::= postinst wm(STRING,STRING) | postinst wm noman(STRING)
prerm wm(STRING)

XFONT ::= update xfonts

TAGGING STATEMENT ::= add<metaclass name>(<metaclass feature values>)
delete<metaclass name>(<metaclass feature values>)
add<metaclass name> <attribute>(<element>,<attribute value>)
delete<metaclass name> <attribute>(<element>)
add<metaclass name> <reference>(<source element>,<target element>)
delete<metaclass name> <reference>(<source element>,<target element>)

4.2.2 Control statements

Control statements give an explicit control flow specifying statement executions. Depending on the script
in which they are located, they can be in turn classified into:

� case postinst, it is used in maintainer scripts that would normally be triggered after performing the
installation of the package. As such it is normally used to register that the installation was success-
ful and allow other applications and sym-links to refer to the newly upgraded/(installed) package.
The elements identified that a maintainer script would then utilise are: configure, abortUpgrade,
abortRemove, abortDeconfigure. A sample use of the case postinst statement is reported in the
following:

1 case postinst{
2 configure : s tatementList ,
3 abortUpgrade : s tatementList ,
4 abortRemove : s tatementList ,
5 abortDeconfigure : s ta tementL i s t
6 }

Deliverable D3.2 Version 1.0 page 43 of 91

November 2, 2009

� case postrm, it is used in maintainer script that would be activated after the removal of a package. It
is normally used to modify databases of installed packages or to remove referenced links. The possible
states that this can have are: purge, remove, upgrade, failedUpgrade, abortInstall, abortUpgrade
and disappear. A sample use of the case postrm statement is given in the following:

1 case postrm{
2 purge : s tatementList ,
3 remove : s tatementList ,
4 upgrade : s tatementList ,
5 failedUpgrade : s tatementList ,
6 abortInstall : s tatementList ,
7 abortUpgrade : s tatementList ,
8 disappear : s ta tementL i s t
9 }

� case prerm, it will only occur when the parent template has selected that this part of the maintainer
script is in the state of just before removing the package. The possible templates that can exist below
are identified as: remove, upgradem, deconfigure, failedUpgrade. In the following a sample use of
the case prerm statement is reported:

1 case prerm{
2 remove : s tatementList ,
3 upgrade : s tatementList ,
4 deconfigure : s tatementList ,
5 failedUpgrade : s ta tementL i s t
6 }

� case preinst, the statement occurs when the case pre-installation has been selected by the parent
template. There are three potential states that have been identified that a maintainer script would
use before an install and these are: install, upgrade and abortUpgrade.

1 case preinst{
2 in s ta l l : s tatementList ,
3 upgrade : s tatementList ,
4 abortUpgrade : s ta tementL i s t
5 }

4.2.3 Iterator statements

Iterator statements, depending on the considered collection, can be in turn classified into:

� Directory iterator, which permits to iterate on the files contained in a given directory. The forEachFile
statement takes two arguments: directory and order. The template will then sequentially select each
file for use in the direction defined by order which can consist of the keyword ascending or descending.
Since the elements will be lexicographically ordered, the descending keyword is used to instruct the
iterator which has to consider the elements that appear before in the considered sequence. Viceversa,
the ascending keyword is used to consider first the elements which appear after in the sequence. This
way to specify the order is the same for all the iterators provided by the DSL.

Each file can be manipulated by further control templates. Once the last file has been reached the
template will have no more to access and this control template will return control back to its parent
template.

1 forEachFile (directory , order) {
2 s tatementList ,
3 }

� Lines of a file iterator, to specify iterations on the lines of a given file. In particular, the forEachLine
statement will take as arguments two parameters file and order. File is the document separated by
carriage-return line-feeds. The control template will read each line in the file in the direction specified

Deliverable D3.2 Version 1.0 page 44 of 91

November 2, 2009

by order and the template will be able to use the current line for further control. The file will be read
sequentially until the end of file is reached (EOF).

1 forEachLine (file , order) {
2 s tatementList ,
3 }

� Enumeration iterator, takes an enumeration iterator to work on an ordered set of index;value pairs in
the direction specified by order.

1 forEachElement (enumeration , order) {
2 s tatementList ,
3 }

� Input parameter iterator, to iterate iterate through each argument that has been passed to the script
in an order as defined by a parameter of the same name. Order type is not specified but it could be
in terms of sequential ordering or in terms of text to maths conversion and then ordered.

1 forEachArg (order) {
2 s tatementList ,
3 }

� Word iterator, it is to repeat a set of statementLists a number of times. Two arguments are passed
to this statement, the string and the order. The string provides the characters to look at and also
sets the number of iterations unless the inner templates modify the control statements. Order decides
whether the template will start at the beginning or end of the string and then allow it to work away
in the reverse direction.

1 forEachChar (string , order) {
2 s tatementList ,
3 }

4.2.4 Template statements

During the analysis stage, the maintainer scripts were correlated against each other and several recurring
elements were identified. For each of the patterns that were identified a corresponding DSL statement
is provided. In this section we present the DSL statements grouped together by their functionality.

Alternatives

Alternatives is a location of symbolic links and helper-system where associations can be named and
maintained in a consistent manner. It allows distribution and package owners to group and categorise
packages that provide similar functionality. For example, instead of having to refer to every email client
that exists in the repositories it is possible for package maintainers to refer to the group association
“email” and if it is required by the package the operating system and user can select which email client
they would like to use. Similarly if a new package provides the same features as expected in the “email”
category it can use the alternatives system to suggest that it is capabale of performing the actions
required.

� add alternative(name, location), this is almost identical to the preceding listing and notifies the
alternatives system when a file that provides a generic feature is installed or removed. The shell
or the administrator can then decide which specific file of the alternatives to use, if any. A typical
implementation of this statement is as follows:

1 i f [−x /usr/sbin/alternatives] ; then
2 /usr/sbin/alternatives −−install %{_bindir}/%{name1} %{name1} %{_bindir}/%{name2}
3 f i

Deliverable D3.2 Version 1.0 page 45 of 91

November 2, 2009

If the file /usr/sbin/alternatives is executable then run it and pass the switch to install to the
sym-link of the master-link %bindir/%name1, the name of the master-link %name1 and the symlink to
the file to be associated %bindir/%name2.

� rm alternative(name, location), it is used to remove alternatives in the system configuration. In
particular, it removes the sym-link name to location which is a name in the alternatives directory
which in turn is a link to the actual file. A typical implementation of this statement in shell script is
the following:

1 i f [$1 −eq 0] ; then
2 i f [−x /usr/sbin/alternatives] ; then
3 /usr/sbin/alternatives −−remove %{name1} %{_bindir}/%{name2}
4 f i
5 f i

If the preceding regular expression result is equal to the string “0” and if the file /usr/sbin/alternatives
is executable ie. update-alternatives for Mandriva is installed for CM/MD based systems and alterna-
tives for Deb based systems then run it and pass the switch to remove the name from /etc/alternatives
from the associated path links. If it is the last type of association then it will delete the association
completely. Alternatives and update-alternatives maintain a list of master and slave symbolic links.

� update alternative(name, location), this command is provided in order to change the current
executable that we want to assign to a given alternative. For instance, we have two alternative Java
virtual machines in our configuration and we want to change the once that has to be executed when
we execute the java command.

Desktop

Packages that use a GUI tend to add a .desktop entry to /usr/share/applications/ containing MIME
filetype information. These configurations help suggest what file association should be made with the
.desktop file. File opening scripts such as xdg-open make use of the mimeinfo.cache generated from
the set of .desktop files. To rebuild, add or remove associations a desktop-cache updater needs to be
run after installation and prior to removal of a package. How this is achieved tends to be distribution
and windowing system and desktop environment dependent.

� update desktopdb(location), it is used to update the desktop database typically after a package
installation or removal. A sample implementation of the statement in Fedora is as follows:

1 update−desktop−database &> /dev/null | | :

Essentially, the template above checks for the existence of update-desktop-database. The Fedora
template will do nothing (|| :) if update-desktop-database, in silent mode (&> /dev/null), fails.

Doc-base

Doc-base was conceived by Debian developers as a way of producing a standardised documentation
system that would work with the two main helper utilities at the time dwww and dhelp and adhere to
the Debian policy which was open to interpretation on this subject 4.

� inst doc(package, doc file, target doc file location), it is used to install the documentation file
of a given package. Such file is denoted by the parameter doc file. The implementation in Debian
of such statement is as follows:

1 i f ["$1" = configure] && which install−docs >/dev/null 2>&1; then
2 install−docs −i /usr/share/doc−base/#DOC -ID#
3 f i

4http://www.fifi.org/doc/doc-base/doc-base.html

Deliverable D3.2 Version 1.0 page 46 of 91

http://www.fifi.org/doc/doc-base/doc-base.html

November 2, 2009

Debian checks for the existence of install-docs in any of the $PATH directories and that the state is
“configure”. If that is the case it will run install-docs and install the file denoted by #DOC-ID#. This
method has largely been superseeded in dh installdocs to use alternatives. Doc-base file processing is
now handled by file-triggers. Debhelper > 7.2.3 will remove these code snippets. Installs documenta-
tion for the package into /usr/share/doc/<packagename>.

� rm doc(doc file, doc file location), it is used to remove the documentation file of a given pack-
age. Such file is denoted by the parameter doc file and it is located in doc file location. The
implementation in Debian of such statement is as follows:

1 i f ["$1" = remove] | | ["$1" = upgrade

2] && \
3 which install−docs >/dev/null 2>&1; then
4 install−docs −r #DOC -ID#

5 f i

The code above checks to see if the state is either “remove” or “upgrade”. If this is the case and
install-docs exists in any of the $PATH directories run it and remove the documentation denoted by
#DOC-ID#. Similar to the previous listing except this deregisters the documentation and removes the
doc files.

Emacs

Emacs templates allow the installation of scripts without the necessity for an administrators account
because they call a package installer provided by Emacs itself.

� inst emacs package(package name), this statement is used to install an Emacs package. In order
to do this in Debian the following code has to be provided

1 i f ["$1" = "configure"] && [−x /usr/lib/emacsen−common/emacs−package−install] then
2 /usr/lib/emacsen−common/emacs−package−install #PACKAGE#

3 f i

This template checks to see if the state is “configure” and whether the file emacs-package-install
under directory /usr/lib/emacsen-common/ is executable. If this is the case then run the emacs-
package-install executable and install #PACKAGE#. Emacs uses its own package installer to install
LISP scripts to customise the look, layout and functionality of emacs without requiring administrator
privileges. Elisp package manager does not provide dependency mappings or requirements and so may
require additional correction from errors provided within emacs.

� rm emacs package(package name), once the file of an emacs package have been remove from the
system, the configuration model has to be updated by means of this commands which remove the
corresponding EmacsPackage instance.

GConf

GConf is a system that was created to help the management of user preferences associated with appli-
cations 5. It stores user preferences in a configuration database that is represented in the file-system as
/etc/gconf/<version>/path. These preferences can then be referenced to by any application using
the associated key. In this way, multiple applications can rely on the preferences set by one tool. This
has obvious benefits for system wide preferences but also means that the administrator can backup
and maintain preferences without having to examine each program to see where the preferences are
stored. Schemas collate all this configuration information as meta-data into a .schema file. They can
be bundled with packages to allow default user preferences to be selected. They need to be placed in
the gconf directory and then cache updater has to be called using SIGHUP on the GConfD daemon.

5http://www.caixamagica.pt/pag/a_index.php

Deliverable D3.2 Version 1.0 page 47 of 91

http://www.caixamagica.pt/pag/a_index.php

November 2, 2009

� preinst gconf , this command capture the recurrent code which is provided before the GConf instal-
lation. In the following the corresponding Fedora implementation is reported

1 i f ["$1" −gt 1] ; then export GCONF_CONFIG_SOURCE=gconftool−2
2 −−get−default−source gconftool−2 −−makefile−uninstall−rule \
3 {_sysconfdir }/gconf/schemas / [NAME] . schemas >/dev/null | | :
4 f i

In particular, the code above sets up the GCONF CONFIG SOURCE variable. The variable requests
the default path to install schemas and also sets up the deinstallation rule that should be called on
removal of the package. It then uses a macro to generate a schema. It does all of this or if any
stage fails then it will do nothing and likely succeed. Gconftool is used to install schemas and register
them with gconf. The standard location for gconf schemas to be installed is /etc/gconf/schemas.
Gconf-editor is used to validate the resgistration to /usr/share/gconf/schemas.

� postinst gconf , it is used after the installation of Gconf and some corresponding implementations
are reported. For instance the Debian specification is as follows:

1 i f ["$1" = "configure"] ; then
2 gconf−schemas −−register #SCHEMAS#

3 f i

The template above checks to see if the installer state is “configure” and if so then after the install of
the files it registers the schema, #SCHEMAS#, for GConf preferences.

The Fedora implementation of the same statement is reported in the following. It sets up the
GCONF CONFIG SOURCE variable and then runs the macro % sysconfdir/gconf/schemas/[NAME].schemas
and pipes the output into nothing or does nothing.

1 export GCONF_CONFIG_SOURCE=gconftool−2 −−get−default−source
2 gconftool−2 −−makefile−install−rule \
3 %{_sysconfdir }/gconf/schemas / [NAME] . schemas > /dev/null | | | :

� postrm gconf , it is provided to completely remove of gconf settings. Its Debian implementation is
as follows

1 i f ["$1" = purge] ; then
2 OLD_DIR=/etc/gconf/schemas
3 SCHEMA_FILES="#SCHEMAS#"

4 i f [−d $OLD_DIR] ; then
5 for SCHEMA in $SCHEMA_FILES ; do
6 rm −f $OLD_DIR/$SCHEMA
7 done
8 rmdir −p −−ignore−fail−on−non−empty $OLD_DIR

9 f i
10 f i

The template checks for the existence of a directory of name /etc/gconf/schemas/ and deletes
the schemas as defined by #SCHEMAS# by calling rm -f on them. It then deletes the directory
/etc/gconf/schemas/ and its immediate parent /etc/gconf/. The Fedora implementation of the
same statement is given in the following

1 export GCONF_CONFIG_SOURCE="$(gconftool -2 --get -default -source)"

2 gconftool−2 −−makefile−uninstall−rule %{_sysconfdir }/gconf/schemas/%{name } . schemas &>/
↪→dev/null | | :

It gets the GConf default directory and then creates an uninstall rule for the particular schema.

� prerm gconf , it is provided to remove all the gconf schemas in the system. A sample Debian imple-
mentation of this statement is as follows

1 i f ["$1" = remove] | | ["$1" = upgrade] ;
2 then
3 gconf−schemas −−unregister #SCHEMAS#

4 f i

Deliverable D3.2 Version 1.0 page 48 of 91

November 2, 2009

The template looks to see if the state is either “remove” or “upgrade” and if so before it removes the
files it requests the removal of all schemas defined by #SCHEMAS# using gconf-schemas --unregister
#SCHEMAS#.

Icons

An icon theme directory is a location where Gnome can find an index.theme file. Using this the
cache-manager can traverse the directory in a structured manner to find icon files. Icons are normally
moved to /usr/share/icons/hicolor and then an memory map cache of the files is created 6. This
speeds up the look up time for icons commonly used in Gnome and certain other applications that
utilise the cache 7.

� update icons, this command is introduced to update the cache of the icons available in the system.
The Fedora implementation of this command is as follows

1 %post

2 touch −−no−create %{_datadir }/icons/hicolor
3 i f [−x %{_bindir }/gtk−update−icon−cache] ; then
4 %{_bindir }/gtk−update−icon−cache −−quiet %{_datadir }/ icons/hicolor | | :
5 f i

The previous Fedora template modifies the % datadir/icons/hicolor file to today’s time and date
if it exists. Then it checks for an executable file % bindir/gtk-update-icon-cache and if it is run
it silently (–quiet) for the file that has just been modified. If that file didn’t exist it will do nothing
instead.

Info

Info files are Texinfo files formatted to work with the info documentation program 8. They use a
combination of ASCII text and @-commands to instruct the reader program to format the text in
a particular way. When the command is run any menu entries in the Info files are merged into the
top-level Info file 9.

� inst info(info file location), installs a given info file in to a predefined directory of the system. In
Fedora, this command is implemented as follows:

1 /sbin/install−info %{_infodir}/%{name } . info %{_infodir }/dir | | :

In particular, it runs the /sbin/install-info command with the parameters defined in the spec file
as % infodir/%name.info and % infodir/dir. It installs the info file as defined into a directory of the
same name as the source but under the folder dir.

� rm-info(info file location), it removes the given info file from the predefined directory of the system.
In Fedora, this command is implemented as follows

1 %preun

2 i f [$1 = 0] ; then
3 /sbin/install−info −−delete %{_infodir}/%{name } . info %{_infodir }/dir | | :
4 f i

In particular, Fedora checks to see if the regular expression matches 0 and if so to run /sbin/install-info
and delete the info file from under the % infodir/dir directory, or if that fails do nothing.

6http://library.gnome.org/devel/gtk/unstable/gtk-update-icon-cache.html
7http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=369755
8http://gd.tuwien.ac.at/.vhost/xemacs.org/Documentation/21.5/html/texinfo_2.html#SEC2
9http://www.gnu.org/software/hello/manual/texinfo/Invoking-install_002dinfo.html

Deliverable D3.2 Version 1.0 page 49 of 91

http://library.gnome.org/devel/gtk/unstable/gtk-update-icon-cache.html
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=369755
http://gd.tuwien.ac.at/.vhost/xemacs.org/Documentation/21.5/html/texinfo_2.html#SEC2
http://www.gnu.org/software/hello/manual/texinfo/Invoking-install_002dinfo.html

November 2, 2009

Init

Linux services can be started, stopped and reloaded with the use of scripts typically stocked in
/etc/init.d/. When installing a new service under debian, the default is to enable it. So for instance,
if you just installed apache2 package, after you installed it, apache service will be started and so will it
be upon the next reboots. If you do not use apache all the time, you might want to disable this service
from starting up upon boot up and simply start it manually when you actually need it by running for
instance the command /etc/init.d/apache2 start. You could either disable this service on boot
up by removing any symbolic links in /etc/rcX.d/SYYapache2 or by using update-rc.d which will
take care of removing/adding any required links to /etc/init.d automatically. Hence if you want to
totally disable apache2 service by hand, you would need to delete every single link in /etc/rcX.d/.
Using update-rc.d it is as simple as update-rc.d -f apache2 remove. In the following a number
of command are proposed to manage the init configuration of the considered system.

� postinst init(service name), this command is used to update the initialization configuration and
start a service which have been previously installed. In Debian, to perform this task the following
code is provided

1 i f [−x "/etc/init.d/# SCRIPT#"] ; then
2 update−rc . d #SCRIPT# #INITPARMS# >/dev/null

3 i f [−x "‘which invoke -rc.d 2>/dev/null ‘"] ; then
4 invoke−rc . d #SCRIPT# start || #ERROR_HANDLER#

5 else
6 /etc/init . d/#SCRIPT# start || #ERROR_HANDLER#

7 f i
8 f i

In particular, this template checks to see if an excutable script file exists in /etc/init.d/ by the
name of #SCRIPT# and if so call update-rc.d on the script of the same name with the initialisation
parameters #INITPARAMS# and output all standard info to null. If invoke-rc.d is executable it then
runs the script by using the parameter start and if that fails it passes it to an error handler defined in
the script as #ERRORHANDLER#. Otherwise it will call /etc/init.d to start the script using the start
parameter and pass it to the same error-handler.

� postinst init nostart(service name), this command is provided in case the maintainer prefers to
update the initialization configuration without restarting all the default services. In Debian, the
implementation of this command is as follows

1 i f [−x "/etc/init.d/# SCRIPT#"] ; then
2 update−rc . d #SCRIPT# #INITPARMS# >/dev/null || #ERROR_HANDLER#

3 f i

Essentially, the Debian script checks for an executable file called #SCRIPT# under /etc/init.d/
and if it is found the script calls update-rc.d on the script and passes it initialisation parame-
ters #INITPARAMS# and if there are any errors it also provides an error handling mechanism, namely
#ERROR HANDLER#.

� postinst init restart(service name), this command is provided in case the maintainer prefers to
update the initialization configuration and restart all the default services. In Debian, the implemen-
tation of this command is as follows

1 i f [−x "/etc/init.d/# SCRIPT#"] ; then
2 update−rc . d #SCRIPT# #INITPARMS# >/dev/null

3 i f [−n "$2"] ; then
4 _dh_action=restart

5 else
6 _dh_action=start

7 f i
8 i f [−x "‘which invoke -rc.d 2>/dev/null ‘"] ; then
9 invoke−rc . d #SCRIPT# $_dh_action || #ERROR_HANDLER#

10 else
11 /etc/init . d/#SCRIPT# $_dh_action || #ERROR_HANDLER#

12 f i

Deliverable D3.2 Version 1.0 page 50 of 91

November 2, 2009

13 f i

The script first checks for an executable script #SCRIPT# under /etc/init.d and if so calls update-rc.d
on the script passing the initialisation parameters #INITPARAMS#. It then checks to see if a non-empty
string has been passed as the second command line parameter and if it is it creates an external vari-
able dh action=restart otherwise it sets the external variable to dh action=start. The next part
of the script checks to see if invoke-rc.d exists in the $PATH directories and if it is executable. If
it is then it is called with #SCRIPT# and performs the action as stated by the variable chosen before
$ dh action. If invoke-rc.d does not exist in the path and is not executable /etc/init.d/#SCRIPT#
is called instead with the same parameter as chosen before. If either of these methods fail then an
error handler is provided to deal with the failure #ERROR HANDLER#. The script basically tries to invoke
a script with either a start or restart method after installing it and if it can’t use an invoker tries to
run the script directly.

� postrm init(service name), this command deletes the init scripts of a given service which has been
deleted from the system. The Debian implementation of this command is as follows

1 i f ["$1" = "purge"] ; then
2 update−rc . d #SCRIPT# remove >/dev/null || #ERROR_HANDLER#

3 f i

This template looks to the see if the state is equal to “purge” and if so it calles update-rc.d on the
script #SCRIPT# with the action to remove it, namely remove.

� prerm init(service name), prior the removal of a given service, this command has to be executed
to stop the execution of such a service in the system. The Debian implementation of this command is
the following

1 i f [−x "/etc/init.d/# SCRIPT#"] && ["$1" = remove] ; then
2 i f [−x "‘which invoke -rc.d 2>/dev/null ‘"] ; then
3 invoke−rc . d #SCRIPT# stop || #ERROR_HANDLER#

4 else
5 /etc/init . d/#SCRIPT# stop || #ERROR_HANDLER#

6 f i
7 f i

This template checks for an executable script at /etc/init.d/#SCRIPT# and also checks the state
for “remove”. If both conditions are met then an executable invoke-rc.d is searched for in $PATH.
If it does exist then it is run with the parameter stop or otherwise /etc/init.d/#SCRIPT# is run
directly with the command stop. For both methods an error handler is provided in the form of
#ERROR HANDLER#

Install shared libraries

Shared libraries are libraries that are loaded by programs when they start. When a shared library is
installed properly, all programs that start afterwards automatically use the new shared library. Every
shared library has a special name called the “soname”. The soname has the prefix “lib”, the name of
the library, the phrase “.so”, followed by a period and a version number that is incremented whenever
the interface changes. Every shared library also has a “real name”, which is the filename containing the
actual library code. The real name adds to the soname a period, a minor number, another period, and
the release number. The last period and release number are optional. The minor number and release
number support configuration control by letting you know exactly what version(s) of the library are
installed. Note that these numbers might not be the same as the numbers used to describe the library
in documentation, although that does make things easier. The key to managing shared libraries is
the separation of these names. Programs, when they internally list the shared libraries they need,
should only list the soname they need. Conversely, when you create a shared library, you only create
the library with a specific filename (with more detailed version information). When you install a new
version of a library, you install it in one of a few special directories and then run the program ldconfig.

Deliverable D3.2 Version 1.0 page 51 of 91

November 2, 2009

ldconfig examines the existing files and creates the sonames as symbolic links to the real names, as
well as setting up the cache file /etc/ld.so.cache.

� update libs(), it is provided to update after library installations or removals the cache file containing
the references to the shared libraries which are installed in the system. A sample Debian implemen-
tation of this command is as follows

1 i f ["$1" = "configure"] ; then
2 ldconfig

3 f i

This Debian template runs ldconfig which configures the dynamic linker run time bindings. It creates
the necessary links and cache to the most recent shared libs found in the dirs specified to it and in
this case as no directories specified, all standard directories: /etc/ld.so.conf, /lib, and /usr/lib.

Menu

Once a package has been installed, or removed eventually it is necessary the updating of the window
manager configuration files to make the new program show up on. Debian exploits the update-menus
command to automatically generates menus of installed programs for window managers and other
menu programs. The following commands are provided for managing menus.

� update menu, is the command which is devoted to the updating of the menu entry files. The Debian
implementation of this command is as follows

1 i f ["$1" = "configure"] && [−x "‘which update -menus 2>/dev/null ‘"] ; then
2 update−menus
3 f i

Essentially it checks state for “configure” and also whether an executable file update-menus exists in
the $PATH and if so runs update-menus.

Mime

MIME (Multipurpose Internet Mail Extensions, RFC 1521) is a mechanism for encoding files and
datastreams and providing meta-information about them, in particular their type (e.g. audio or video)
and format (e.g. PNG, HTML, MP3). Registration of MIME type handlers allows programs like mail
user agents and web browsers to invoke these handlers to view, edit or display MIME types they don’t
support directly. Fedora provides the maintainers with the update-mime-database program which
allows packages to register programs that can show, compose, edit or print MIME types.

� update mime(directory), this command is provided to update the databases of the available mime
types handler installed in the given directory of the system. The Fedora implementation of this
command is the following

1 %postun

2 update−mime−database %{_datadir }/mime &> /dev/null | | :

Fedora runs update-mime-database without any checks but with the parameter % datadir/mime. If
the process signals a failure then instead the script does nothing.

Modules

Linux kernel modules can provide services (called “symbols”) for other modules to use. If a second
module uses this symbol, that second module clearly depends on the first module. These dependencies
can get quite complex. The depmod tool is used and it creates a list of module dependencies, by
reading each module under /lib/modules/version and determining what symbols it exports, and
what symbols it needs. By default this list is written to modules.dep in the same directory. If

Deliverable D3.2 Version 1.0 page 52 of 91

November 2, 2009

filenames are given on the command line, only those modules are examined (which is rarely useful,
unless all modules are listed).

� update modules(version), this command is a reincarnation of depmod since it aims at handling
dependencies among loadable kernel modules. This command has to be executed after an installation
or removal of kernel modules. A Debian implementation of the command is as follows

1 i f [−e /boot/System . map−#KVERS#]; then

2 depmod −a −F /boot/System . map−#KVERS# #KVERS# || true

3 f i

The template checks for the existence of a file /boot/System.map-#KVERS# and if so runs depmod with
parameters “a”, “F” and the link to the System.map-#KVERS# reference for the kernel version that the
module depends on. Otherwise the script returns true.

Scrollkeeper

ScrollKeeper is a cataloging system for documentation on open systems. It manages documentation
metadata (as specified by the Open Source Metadata Framework (OMF))10) and provides a simple
API to allow help browsers to find, sort, and search the document catalog. It will also be able to
communicate with catalog servers on the Net to search for documents which are not on the local
system11.

� update scrollkeeper, once new documentation files have be copied in the OMF directory, the scrol-
lkeeper database have to be updated. This command is provided for this purposes and it searches
the scrollkeeper OMF directory to identify if any files were added, removed, or modified and updates
its internal database files to reflect any changes. This command exploits the scrollkeeper-update
command as for instance in the following Debian scripts

1 i f ["$1" = "configure"] && which scrollkeeper−update >/dev/null 2>&1; then
2 scrollkeeper−update −q
3 f i

It checks to see if the first argument passed to it is equal to the string “configure” and check whether
scroll-keeper is in the $PATH$ directories. If this is the case it runs scrollkeeper-update in quiet
mode, “-q”.

SGML catalog

The Standard Generalized Markup Language (SGML) is an ISO-standard technology for defining
generalized markup languages for documents 12. Almost any FOSS system support SGML catalogs
which can be installed and removed like any other software package. In this respect, a number of
commands have been introduced to support SGML catalog installations and removals. Catalogs in
this context are logical structures that contain links between Uniform Resource Identifiers (URIs) and
external SGML identifiers. Catalogs in this context exist in other markup languages including XML 13.
They provide a 2-way mapping of key-value pairs. Catalogs in this way can utilise resources that may
exist on an arbitrary system either locally or externally. Catalogs may physically exist across multiple
catalog entry files that contain a set of catalog link entries.

� postinst sgmlcatalog, this command updates the SGML catalog repository once a new catalog entry
has been installed. For instance, in Debian this operation is implemented as in the following scripts

1 i f ["$1" = "configure"] ; then
2 rm −f #CENTRALCAT#

10http://metalab.unc.edu/osrt/omf/
11http://scrollkeeper.sourceforge.net/
12http://en.wikipedia.org/wiki/Standard Generalized Markup Language
13http://www.oasis-open.org/committees/entity/spec.html#s.terminology

Deliverable D3.2 Version 1.0 page 53 of 91

http://metalab.unc.edu/osrt/omf/
http://scrollkeeper.sourceforge.net/
http://www.oasis-open.org/committees/entity/spec.html#s.terminology

November 2, 2009

3 for ordcat in #ORDCATS #; do

4 update−catalog −−quiet −−add #CENTRALCAT# ${ordcat}

5 done
6 update−catalog −−quiet −−add −−super #CENTRALCAT#

7 f i

This scripts checks to see if the state is “configure” and if so it force removes #CENTRALCAT#. The
#CENTRALCAT# is the location where the catalog entry files for packages and applications that wish
to use the catalog entries, reside. It is therefore specific to a package. It then looks in every #ORDCATS#
(an ordered list of all the catalog files that are monitored on the system 14) directory and calls
update-catalog in quiet mode to add #CENTRALCAT# to the folders specified by $ordcat. Once done it
calls update-catalog to add #CENTRALCAT# entries into the SGML super catalog /etc/sgml/catalog
which is akin to an index of the catalogs.

� postrm sgmlcatalog, this removes the catalog and the backup of the catalog for the package. Any
references to any variables in either of these catalogs will no longer be available.

1 i f ["$1" = "purge"] ; then
2 rm −f #CENTRALCAT# #CENTRALCAT #.old

3 f i

If the first argument passed to it is equal to “purge” then it forces the removal of #CENTRALCAT# and
#CENTRALCAT#.old files.

� prerm sgmlcatalog, on the removal or upgrade of a package that has an associated catalog it is
imperative that the super catalog database is refreshed so that the old catalogs are not refered to.
The entries for the package catalog file are thus removed. If the files are to be removed there will no
longer be an entry in the super catalog and if the script is an upgrade the reference to the new catalog
would have been created before so the old one no longer points to a valid catalog.

1 i f ["$1" = "remove"] | | ["$1" = "upgrade"] ; then
2 update−catalog −−quiet −−remove −−super #CENTRALCAT#

3 f i

This Debian template calls update-catalog to remove the file #CENTRALCAT# from the super
SGML catalog located at /etc/sgml/catalog.

udev

udev is a generic kernel device manager. It runs as a daemon on a Linux system and listens to uevents
the kernel sends out (via netlink socket) if a new device is initialized or a device is removed from
the system. The system provides a set of rules that match against exported values of the event and
properties of the discovered device. A matching rule will possibly name and create a device node and
run configured programs to set-up and configure the device.

For the following examples #OLD# refers to the old package configuration rule which may or may
not have been installed on the system. #RULE# refers to a symbolic link in the /etc/udev/rules.d
directory that links to a file with configuration settings such as what to name a device and which
additional commands to run 15.

� preinst udev, when installing or upgrading a package through a call from udev it is important to
check if the old package configuration exists and whether or not it is for the same version as the
package. If it is the same as the package to be installed, to avoid a file conflict the existing file is
removed. If there are any rules that exist for the device in /etc/udev/rules.d then they are similarly
overwritten.

1 i f ["$1" = install] | | ["$1" = upgrade] ; then
2 i f [−e "#OLD#"] ; then

14http://www.mail-archive.com/debian-sgml@lists.debian.org/msg00906.html
15http://reactivated.net/writing_udev_rules.html

Deliverable D3.2 Version 1.0 page 54 of 91

http://www.mail-archive.com/debian-sgml@lists.debian.org/msg00906.html
http://reactivated.net/writing_udev_rules.html

November 2, 2009

3 i f ["‘md5sum \"#OLD #\" | sed -e \"s/ .*//\" ‘" = \

4 "‘dpkg -query -W -f=’${Conffiles}’ #PACKAGE# | sed -n -e \" \\\\ ’ #OLD#’s

↪→/.* //p\"‘"]

5 then
6 rm −f "#OLD#"

7 f i
8 f i
9 i f [−L "#RULE#"] ; then

10 rm −f "#RULE#"

11 f i
12 f i

If the first parameter passed to the Debian template is either “install” or “upgrade” then two condi-
tional loops take place. The first checks for the existence of a file #OLD# and looks for the equivalence
of the old files md5sum with that of the latest package as provided by dpkg-query. If so it removes
the #OLD# file. The second loop checks that the file #RULE# exists and is a symbolic link and if
so removes it.

� postinst udev, this command checks if an old configuration exists and if so checks to see if a backup
has been made and if it does moves it to *.dpkg-new. The old configuration is then preserved to
#RULE#.

1 i f ["$1" = configure] ; then
2 i f [−e "#OLD#"] ; then
3 echo "Preserving user changes to #RULE# ..."

4 i f [−e "#RULE#"] ; then
5 mv −f "#RULE#" "#RULE#.dpkg -new"

6 f i
7 mv −f "#OLD#" "#RULE#"

8 f i
9 f i

If the first argument passed into this template is “configure” and there exists a file #OLD# then the
following commands are run. It firstly prompts the user as to what is happening, “Preserving user
changes to #RULE#...”. It then checks for the existence of the file #RULE# and if so moves that
file to #RULE#.dpkg-new. The old file, #OLD#, is then moved to #RULE#.

usrlocal

In general, the /usr/local hierarchy is for use by the system administrator when installing software
locally. It needs to be safe from being overwritten when the system software is updated. It may be
used for programs and data that are shareable amongst a group of hosts, but not found in /usr. In
fact, locally installed software must be placed within /usr/local rather than /usr unless it is being
installed to replace or upgrade software in /usr.

� postinst usrlocal, it looks through a file and at each line checks to see if a directory as defined in
that line exists. If not it creates a directory and changes the attributes of the directory to match that
found in the file listing. If other data is found then the script stops. This command is seldom run.

1 i f ["$1" = configure] ; then (
2 while read line ; do
3 set −− $line

4 dir="$1" ; mode="$2" ; user="$3" ; group="$4"

5 i f [! −e "$dir"] ; then
6 i f mkdir "$dir" 2>/dev/null ; then
7 chown "$user" : "$group" "$dir"

8 chmod "$mode" "$dir"

9 f i
10 f i
11 done
12) << DATA

13 #DIRS#

14 DATA

15 f i

Deliverable D3.2 Version 1.0 page 55 of 91

November 2, 2009

The Debian template reads all the lines and prserves whitespace,“set – $line”. The script then uses
the 4 parameters to define the directory, mode, user and the user’s group. If the directory $dir does
not exist then it is made and the user and group are set up for the folder and the permissions as well.

� prerm usrlocal This template is used to remove empty directories that are part of the the filesystem
that the maintainer believes should be removed.

1 (
2 while read dir ; do
3 rmdir "$dir" 2>/dev/null | | true
4 done
5) << DATA

6 #JUSTDIRS#

7 DATA

This template loops through a list of directories, dir, and removes the directories until the delimiter
DATA is found.

Users and Groups

Linux groups are a mechanism to manage a collection of computer system users. All Linux users have
a user ID and a group ID and a unique numerical identification number called a userid (UID) and
a groupid (GID) respectively. Groups can be assigned to logically tie users together for a common
security, privilege and access purpose. It is the foundation of Linux security and access. Files and
devices may be granted access based on a users ID or group ID. In the following a number of commands
are provided for managing users and groups

� user add(user name, group name, homedir), this command is used to add the given user to the
given group. If the user already exists in the system, it is simply added to the considered group. The
parameter homedir specifies the home directory of the added user. A sample implementation of this
script in Fedora is as follows

1 %pre

2 getent group GROUPNAME >/dev/null | | groupadd −r GROUPNAME getent

3 passwd USERNAME >/dev/null | | \ useradd −r −g GROUPNAME −d HOMEDIR

4 −s /sbin/nologin \ −c "Useful comment about the purpose of this

5 account" USERNAME exit 0

This template gets the current users GROUPNAME or gets the default username for a newly added group
GROUPNAME is it doesn’t exist. The user is then added to group GROUPNAME and the main directory for
that user is set as HOMEDIR. A comment to help describe the new user is also added as well as the
desired USERNAME.

� user remove(user name,group name), this command is used to remove a given user from an
existing group, or definitely remove it from the system. In particular, if the group parameter is
missing, the specified user will be removed from the system, otherwise user will be removed from
group. A sample implementation of user removal in Fedora is as follows

1 %postun

2 i f [$1 −eq 0] ; then
3 /usr/sbin/userdel USERNAME 2>/dev/null | | :
4 f i

If the first parameter is equal to 0 then /usr/sbin/userdel is used to delete the user USERNAME.

� group add(group name), this command is like the shell command groupadd used to adds a group
in the system.

� group remove(group name), this command is used to remove the specified group in the system.
It is like the shell command groupdel and a sample use of it in Fedora is as follows

Deliverable D3.2 Version 1.0 page 56 of 91

November 2, 2009

1 %postun

2 i f [$1 −eq 0] ; then
3 /usr/sbin/groupdel USERNAME 2>/dev/null | | :
4 f i

This template checks to see if paramater passed to it is equal to 0 and if so /usr/sbin/groupdel is
called to delete USERNAME from the group listings.

Windows manager

The X Window System, known simply as “X”, is a portable, network-transparent window system which
runs on many different computers. There have been numerous versions of the X Window System, but
it was not until the eleventh version, known simply as “X11”, that it was widely released and began
to gain the popularity it enjoys today. Since then there have been many further releases which added
extra functionality while attempting to remain largely backwards compatible. The current release is
the sixth one, and is known as “X11R6” or simply as “R6”. One of the guiding philosophies of The X
Window System (and also UNIX itself) is that its functionality is achieved through the co-operation of
separate components, rather than everything being entwined in one huge mass. The advantage of this
is that a particular part of the system can be changed simply by replacing the relevant component.
The best example of this is the concept of a window manager which is essentially the component which
controls the appearance of windows and provides the means by which the user can interact with them.
Virtually everything which appears on the screen in X is in a window, and a window manager quite
simply manages them. A large number of window managers have been developed, which between them
provide a large range of different appearances and different behaviours. Furthermore, most of these
window managers are themselves heavily customisable. This means that a newcomer to X has firstly
a choice of window manager, and then a choice of the precise configuration of the chosen window
manager.

In the following a number of commands are proposed to manage the installations and removals of
windows managers.

� postinst wm(wm location,manual location), once a given window manager has been installed in
the system, this command has to be used to update the alternatives 4.3.2 related to the x-window-manager
command. A sample implementation of this command in Debian is as follows

1 i f ["$1" = "configure"] ; then
2 update−alternatives −−install /usr/bin/x−window−manager \
3 x−window−manager #WM# #PRIORITY# \

4 −−slave /usr/share/man/man1/x−window−manager . 1 . gz \
5 x−window−manager . 1 . gz #WMMAN#

6 f i

If the parameter passed to the template is “configure” then update-alternatives is called to install
the x-window-manager #WM# to /usr/bin/x-window-manager and extracting the manual #WMMAN# to
/usr/share/man/man1/x-window-manager.1.gz.

� postinst wm noman(wm location, if the maintainer does not want to provide the manual of the
installed window manager, this command can be used. A sample implementation in Debian is the
following

1 i f ["$1" = "configure"] ; then
2 update−alternatives −−install /usr/bin/x−window−manager \
3 x−window−manager #WM# #PRIORITY#

4 f i

If the parameter passed to this template equals “configure” then update-alternatives is called to
install an x-window-manager named #WM# to the window manager /usr/bin/x-window-manager with
priority #PRIORITY#.

� prerm wm(wm location), in order to remove a window manager, it has to be firstly deleted in

Deliverable D3.2 Version 1.0 page 57 of 91

November 2, 2009

the alternatives. This command is provided for this purpose as also shown in the following Debian
implementation

1 i f ["$1" = "remove"] ; then
2 update−alternatives −−remove x−window−manager #WM#

3 f i

The template checks to see if the first parameter sent to it is equal to “remove”. If so update-
alternatives is run to remove the x-window-manager named #WM#.

Xfonts

X includes two font systems: the original core X11 fonts system, which is present in all implementations
of X11, and the Xft fonts system, which may not be distributed with implementations of X11 that are
not based on X11R6.8.2

The core X11 fonts system is directly derived from the fonts system included with X11R1 in 1987, which
could only use monochrome bitmap fonts. Over the years, it has been more or less happily coerced
into dealing with scalable fonts and rotated glyphs. Xft was designed from the start to provide good
support for scalable fonts, and do so efficiently. Unlike the core fonts system, it supports features
such as anti-aliasing and sub-pixel rasterisation. Perhaps more importantly, it gives applications full
control over the way glyphs are rendered, making fine typesetting and WYSIWIG display possible.
Finally, it allows applications to use fonts that are not installed system-wide for displaying documents
with embedded fonts.16.

Fonts are located in a set of well-known directories that include all of X11R6.8.2’s standard font
directories (/usr/X11R6/lib/X11/lib/fonts/*) by default) as well as a directory called .fonts/
in the user’s home directory. Installing a font is as simple as copying a font file into one of these
directories. However, there is a cache to be maintained always updated which refers to the installed
fonts.

To support the installation and the removal of fonts the following command is provided

� update xfonts, once a new font has been installed or removed from the system, this command has
to be executed in order to updated the cache which maintain the status of the directory containing
the installed fonts. A sample implementation in Debian of this command is as follows

1 i f which update−fonts−dir >/dev/null 2>&1; then
2 #CMDS#

3 f i

The template checks for a file in the $PATH named update-fonts-dir and if found it runs the com-
mands set by #CMDS#. #CMDS# are a list of commands that the package maintainer would like to run
after the font cache has been updated. It is a mechanism by which the package manager can use user
preferences to keep their configurations. The risk with updating the fonts is that by updating the
values incorrectly it could lead to a non-functioning GUI from which the user would have to recover.

4.2.5 Tagging statements

As said at the beginning of this chapter, the DSL we are proposing derives from a deep analysis of
many Linux distributions. This analysis aimed at finding in maintainer scripts the parts which are
automatically generated and discovering common recurrences. For instance, concerning Debian Lenny
we analyzed all the 25’440 available maintainer scripts. We discovered that about 2/3 of them are
composed only of lines generated using autoscript mechanisms. In particular, 16’348 (64,3%) scripts are
generated, and 9’061 (35,6%) are written by hand. We have further investigated the hand written scripts
in order to find additional commonalities that can give place to further commands in the DSL. We came
up with additional templates by covering in total the 66% of the existing 25’440 scripts. Concerning

16http://www.x.org/X11R6.8.2/doc/fonts.html

Deliverable D3.2 Version 1.0 page 58 of 91

http://www.x.org/X11R6.8.2/doc/fonts.html

November 2, 2009

RPM based distributions, we analyzed Fedora and we considered all the available 2’038 maintainer
scripts. Our analysis has shows that 1’962 (93,6%) scripts are automatically generated starting from
recurring templates.

In this respect, according to the analysis just summarized the DSL commands we provided until now is
not able yet to specify 100% of the maintainer scripts. There are scripts which contains specific commands
with unique occurrences which are not covered by the DSL. However, to enable the simulation of those
scripts which contain also such kind of commands, we provide a tagging mechanism which can be used
by maintainers to describe the behavior of the commands which are not in the DSL. In particular,
maintainers have the possibility to specify how the configuration model changes once a given command
(not yet captured by the DSL) is executed.

The tagging commands which are provided for this purpose permit the specification of additions, deletions
of the configuration models and are based on the following syntax

1 −− Addition and deletion of metaclass instances

2 add<metaclassName>(<metaclass feature values>)
3 delete<metaclassName>(<metaclass feature values>)
4

5 −− Addition and deletion of attribute values

6 add<metaclassName>_<attribute>(<element>,<attribute value>)
7 delete<metaclassName>_<attribute>(<element>)
8

9 −− Addition and deletion of references

10 add<metaclassName>_<reference>(<source element>,<target element>)
11 delete<metaclassName>_<reference>(<source element>,<target element>)

In other words, maintainer has the means to specify the differences [CDP07] between two configuration
models which occur because of the execution of the considered scripts. For instance, if maintainers want
to specify the following code

1 i f [−e /etc/apache2/apache2 . conf] ; then
2 a2enmod php5 >/dev/null | | true
3 reload_apache

4 f i

the DSL does not have a template statement to directly specify it. In fact, the analysis we performed did
not detect enough occurrences of the snippet of code above to justify the need for a specific metaclass.
However, maintainers can specify its behavior as follows

1 #<%

2 addPackageSetting dependences (apache2 , php5) ;
3 addEnvironment runningServices (env , apache2) ;
4 #%if [-e /etc/apache2/apache2.conf] ; then

5 #% a2enmod php5 >/dev/null || true

6 #% reload_apache

7 #%fi

8 #%>

In this case, the maintainer specifies the behaviour of the script code by enclosing it in a #<% ... #%>
block. Immediately after its open tag, a sequence of tag commands are given in order to specify how the
configuration model changes if the considered script code is executed. In this example, the execution of
’a2enmod php5 >/dev/null || true’ modifies the configuration model by adding a new dependency
between the package settings of the apache2 and php5 packages (see line 2 above). Then apache2 is
reloaded and this implies the addition of apache2 as a running service in the environment (see line 3
above). In other words, maintainers has the possibility to specify the semantics of script codes (which
no templates are available for) in terms of changes which occur in the configuration model.

4.3 MANCOOSI DSL: Semantics

In this section we provide the semantics of the MANCOOSI DSL. The semantics of a DSL captures the
effect of “sentences” of the language. As previously said, here we are interested in dynamic semantics

Deliverable D3.2 Version 1.0 page 59 of 91

November 2, 2009

which deals with the behavior expressed by a language term (what something does), contrarily to the
static semantics which express the structural meaning of a language term (what something is). Speci-
fying the semantics of languages is a difficult task and there is not a generally accepted formalism for it.
Over the last decades several semantics formalisms have been proposed but none emerged as universal
and commonplace, as for instance happened to the EBNF for context-free syntaxes. Depending on the
application purpose (formalization, simulation, verification, consistency checking, etc.) a number of for-
malisms are available (Object-Z [Smi00], ASMs [B0̈2], Structured Operational Semantics (SOS) [Plo81],
etc.). In general, there are at least four ways in which we can describe the semantics of a software
language (see [ZX04] for a survey of semantic description frameworks) [Kle07]:

– Denotational, that is by constructing mathematical objects (called denotations or meanings) which
represent the meaning of the program/model;

– Operational, that is by describing how a valid program is interpreted as sequences of computational
steps. The sequence of computational steps is often given in the form of a state transition system,
which shows how the runtime system progresses from state to state;

– Translational, that is by translating the program into another language that is well understood;

– Pragmatic, that is by providing a tool that executes the program/model. This tool is often called
a reference implementation.

Concerning the MANCOOSI DSL, the semantics is specified in an operational way in terms of model-
to-model transformations. In particular, for each command introduced in the previous section, a corre-
sponding model transformations is given in order to describe exactly the behavior of each statement of
the language when executed or simulated. Hence, the execution of the scripts involved into an upgrade
implies the application of model transformations on the source configuration model.

The remaining of the section is organized as follows: next section provides the reader with preliminary
concepts related to model transformations and ATL which is the language which has been used for
implementing transformations. Section 4.3.2 uses such preliminary concepts and defines the semantics
of all the DSL commands presented in the previous section.

4.3.1 Model transformations and ATL in a nutshell

The MDA guide [OMG03] defines a model transformation as “the process of converting one model to
another model of the same system”. Kleppe et al. [KW03] defines a transformation as the automatic
generation of a target model from a source model, according to a transformation definition. A trans-
formation definition is a set of transformation rules that together describe how a model in the source
language can be transformed to a model in the target language. A transformation rule is a description
of how one or more constructs in the source language can be transformed to one or more constructs in
the target language.

Rephrasing these definitions by considering Figure 4.3, a model transformation programs take as input
a model conforming to a given source meta-model and produces as output another model conforming to
a target meta-model. The transformation program, composed of a set of rules, should itself considered
as a model. As a consequence, it is based on a corresponding meta-model, that is an abstract definition
of the used transformation language.

Many languages and tools have been proposed to specify and execute transformation programs. In
2002 OMG issued the Query/View/Transformation request for proposal [OMG02] to define a standard
transformation language. Even though a final specification has been adopted at the end of 2005, the area
of model transformation continues to be a subject of intense research. Over the last years, in parallel to
the OMG process a number of model transformation approaches have been proposed both from academia
and industry. The paradigms, constructs, modeling approaches, tool support distinguish the proposals
each of them with a certain suitability for a certain set of problems.

In this document ATL (ATLAS Transformation Language) [JK05] will be considered. It is a hybrid
model transformation language containing a mixture of declarative and imperative constructs. The

Deliverable D3.2 Version 1.0 page 60 of 91

November 2, 2009

Figure 4.3: Basic Concepts of Model Transformation

former allows to deal with simple model transformations, while the imperative part helps in coping with
transformation of higher complexity. ATL transformations are unidirectional, operating on read-only
source models and producing write-only target models. During the execution of a transformation source
models may be navigated but changes are not allowed. Target models cannot be navigated.

Transformation definitions in ATL form modules. A module contains a mandatory header section,
import section, and a number of helpers and transformation rules. Header section gives the name of
a transformation module and declares the source and target models (lines 1-2, Figure 4.4). The source
and target models are typed by their meta-models. The keyword create indicates the target model,
whereas the keyword from indicates the source model. In the example of Figure 4.4 the target model
bound to the variable OUT is created from the source model IN. The source and target meta-models, to
which the source and target model conform, are PetriNet and PNML [BCvH+03] respectively.

Helpers and transformation rules are the constructs used to specify the transformation functionality.
Declarative ATL rules are called matched rules. They specify relations between source patterns and

1 module PetriNet2PNML ; create OUT : PNML from IN : PetriNet ;
2 . . .
3 rule Place {
4 from
5 e : PetriNet ! Place
6 --(guard)

7 to
8 n : PNML ! Place
9 (

10 name <− e . name ,
11 id <− e . name ,
12 location <− e . location
13) ,
14 name : PNML ! Name
15 (
16 labels <− label

17) ,
18 label : PNML ! Label
19 (
20 text <− e . name
21)
22 }

Figure 4.4: Fragment of a declarative ATL transformation

target patterns. The name of a rule is given after the keyword rule. The source pattern of a rule (lines
5-7, Figure 4.4) specifies a set of source types and an optional guard given as a Boolean expression in
OCL. A source pattern is evaluated to a set of matches in source models. The target pattern (lines
8-22, Figure 4.4) is composed of a set of elements. Each of these elements (e.g. the one at lines 9-14,

Deliverable D3.2 Version 1.0 page 61 of 91

November 2, 2009

Figure 4.4) specifies a target type from the target meta-model (e.g. the type Place from the PNML meta-
model) and a set of bindings. A binding refers to a feature of the type (i.e. an attribute, a reference
or an association end) and specifies an expression whose value is used to initialize the feature. In some
cases complex transformation algorithms may be required and it may be difficult to specify them in a
declarative way. For this issue ATL provides two imperative constructs: called rules, and action blocks.
A called rule is a rule called by other ones like a procedure. An action block is a sequence of imperative
instructions that can be used in either matched or called rules. The imperative statements in ATL are
the well-known constructs for specifying control flow such as conditions, loops, assignments, etc.

4.3.2 Operational Semantics using ATL

The operational semantics of a software language describes what happens in a system when a program
of that language is executed. It can be done in the form of a set of rules that govern an abstract
machine that is able to execute any syntactically correct sentence of the language. Execution means the
processing of data. Therefore a semantics description should explain (1) the data being processed, (2)
the processes handling the data, and (3) the relationship of these two with the possible sentences of the
language [Kle07]. Typically, (1) and (2) are the runtime system, (3) is called the semantic mapping.

Figure 4.5: Operational Semantics using ATL

The runtime system can be described using the formalism of metamodeling. For instance, to define an
Object-Oriented execution semantics a proper metamodel can be defined to describe what in compiler
terminology is known as the heap, the data part of the runtime system, and the stack, the process part of
the runtime system. The semantic mapping can be given in terms of model transformation rules. Each
rule can be applied only when a certain syntactic construction is present in the program and when at
the same time a certain runtime state has been reached. For example, the rule describing assignment is
executed only when the program counter has reached an assignment statement in the (abstract syntax
graph of the) program and the value of the expression in the right hand side of the assignment is available
on the heap simultaneously.

In our case, the runtime system is given in terms of a configuration model which represents the current
state of the system in which a given maintainer script has to be executed. Both the configuration and the
script models conform to the MANCOOSI metamodel (see Figure 4.5) already presented in the Deliver-
able D2.1 17. The semantic mappings are given in terms of ATL transformations. In particular, for each
command of the DSL a corresponding transformation rule is defined. In general, concerning commands
which imply the addition of new configuration elements (e.g. add alternatives), or the deletion of al-
ready existing ones (e.g. rm alternatives), specific ATL called rules are defined. In fact, as previously
said called rules are transformation rules which are invoked by other rules and lack source patterns. This
characteristics fits well with the semantics of addition or deletion of configuration elements, since no
source patterns have to be considered for their application. On the contrary, concerning the commands

17http://www.mancoosi.org/deliverables/d2.1.pdf

Deliverable D3.2 Version 1.0 page 62 of 91

http://www.mancoosi.org/deliverables/d2.1.pdf

November 2, 2009

Figure 4.6: Fragment of the Configuration Metamodel

which implies the update of existing configuration elements, normal matched rules are specified since
source and target patterns have to be specified. For instance, the update desktopdb command considers
the desktop db of the old configuration, and update it leading to the new configuration.

ATL has been adopted for specifying the semantics of the proposed DSL for many reasons, even though
it is not the unique choice. It is worth mentioning at least two main motivations:

– in a Model Driven Engineering setting, ATL is the “natural” choice to specify model manipulations
and transformations. More and more people is adopting this technology which is supported by a
large and active community;

– we could have specified the semantics of our language by means of other technologies even more
formal. However, the simulator and the failure detector (which will be provided by the end of the
project and will be the focus of the deliverable D2.3) exploit ATL for implementing and executing
the configuration model modifications. This means that a big part of the semantic specification
that will be provided in this document will be refined and reused in the remaining of the project.

In the following the fragment of the MANCOOSI metamodel devoted to the configuration representation
is summarized in order to better understand the DSL semantics specification which is provided in the
rest of the section. In particular, maintainer scripts act on a configuration model which contains the
elements reported in Figure 4.6. The Environment metaclass enables the specification of loaded modules,
shared libraries, and running process as in the sample configuration reported in Figure 4.7. In such a
model the reported environment is composed of the services www, and sendmail (see the instances s1
and s2) corresponding respectively to the running web and mail servers.

Note that Figure 4.6 depicts a fragment of the Configuration metamodel. The semantic specification
of the DSL that will be given in the rest of the section, will exploit further metaclasses and structural
features which are reported in the Appendix A.

All the services provided by a system can be used once the corresponding packages have been installed
(see the association between the Configuration and Package metaclasses in Figure 4.6) and properly
configured (PackageSetting). Moreover, the configuration of an installed package might depend on
other package configurations. For example, considering the PHP5 upgrade mentioned in the previous
section, the instances ps1 and ps2 of the PackageSetting metaclass in Figure 4.7 represent the settings
of the installed packages apache2, and libapache-mod-php5, respectively. The former depends on the
latter (see the value of the attribute depends of ps1 in Figure 4.7) and both are also associated with the
corresponding files which store their configurations. Note that at the level of package meta-information

Deliverable D3.2 Version 1.0 page 63 of 91

November 2, 2009

Figure 4.7: Sample Configuration model

such a dependency should not be expressed, in spite of actually occurring on real systems. The ability
to express such fine-grained and installation-specific dependencies is a significant advantage offered by
metamodeling.

The other concepts of the metamodel in Figure 4.6 will be described throughout this section during the
presentation of the ATL transformations which relies on them.

The rest of the section specifies the semantics of the identified template commands and the discussion is
organized with respect to the command categorization already done for presenting the concrete syntax of
the DSL. For each command, ATL transformation rules are given in order to explain how the execution
of the considered command changes the source configuration.

Alternatives

� add alternative(name, location), this command adds a new alternative in the system configuration.
In particular, name is the name of the considered alternative (e.g. java) and location refers to the
real executable in the file system (e.g. /usr/j2se/bin/java). If name already exists in the source
configuration, a new reference from the existing name alternative to the location file is created (see
lines 7-8), otherwise, a new alternative is also created (see lines 8 and 16-25). Two specific helpers are
used, existsAlternative, and getAlternative. The former queries the source configuration and
checks if exists an alternative which has the name passed as parameter (see line 7). The latter returns
the alternative which has the name passed as parameter (see line 8).

1 rule add_alternative (name : Str ing , location : File) {
2 using {
3 newAlternative : OUTConfiguration ! Alternative = OclUndefined ;
4 }
5

6 do {
7 i f thisModule . existsAlternative (name) {
8 thisModule . getAlternative (name) . location <− location ;
9 } else {

10 newAlternative <− thisModule . createAlternative (name , location) ;
11 }
12 t ;
13 }
14 }

Deliverable D3.2 Version 1.0 page 64 of 91

November 2, 2009

15

16 rule createAlternative (name : Str ing , location : File) {
17 to
18 t : OUTConfiguration ! Alternative (
19 name <−name ,
20 location <− location

21)
22 do {
23 t ;
24 }
25 }

� rm alternative(name, location), this commands remove an alternative in the source configuration.

1 rule rmAlternative{
2 from
3 s : INConfiguration ! Alternative (
4 s . name = name and s . location = location

5)
6 do {
7 -- The action block is empty , no action is executed and hence

8 -- the Alternative s is not copied to the target configuration

9 }
10 }

� update alternative(name, location), this command is provided in order to change the current
executable that we want to assign to a given alternative. For instance, we have two alternative Java
virtual machines in our configuration and we want to change that which has to be executed when we
execute the java command.

1 rule update_alternative (name , location) {
2 using {
3 alternative : OUTConfiguration ! Alternative = OclUndefined ;
4 }
5 do {
6 alternative <− thisModule . getAlternative (name) ;
7 alternative . current <− location ;
8 }
9 }

Desktop

� update desktopdb(location), this command updates the cache which maintains the references to
the installed applications. If no parameters are passed default locations are considered. The desktop
db is maintained by means of the DesktopDB elements which has the reference applications (see
Figure 4.6) to maintain the references to the installed desktop applications. In this respect, the helper
getDesktopApplicationFiles is used. It searches in location of the file system for all the .desktop
files.

1 rule update_desktopdb (location) {
2 from
3 s : INConfiguration ! DesktopDB
4 to
5 t : OUTConfiguration ! DesktopDB (
6 applications <− thisModule . getDesktopApplicationFiles (location) ;
7)
8 }

Doc-base

� inst doc(package, doc file location, target doc file location), this command installs a docu-
mentation file for the given package. The execution of this command creates a new instance of the

Deliverable D3.2 Version 1.0 page 65 of 91

November 2, 2009

metaclass DocumentationFile and update the documenationFiles relation in the given package to
include the new file. In the following transformation, the new documentation file is created by means
of the createDocumenationFile called rule (see line 8) which takes the location of the document as
parameter and create a new instance of the DocumentationFile metaclass. The helper getPackage
is used to query the configuration model and select the passed package whose documentationFiles
relation will be updated by adding the file newDocumentationFile as specified in line 9

1 rule inst_doc (package , doc_file_location) {
2 using {
3 newDocumentationFile : OUTConfiguration ! DocumentationFile = OclUndefined ;
4 package : OUTConfiguration ! Package = OclUndefined ;
5 }
6 do {
7 package<−thisModule . getPackage (package) ;
8 newDocumentationFile <− thisModule . createDocumentationFile (doc_file_location ,

↪→target_doc_file_location) ;
9 package . documentationFiles <− newDocumentationFile ;

10 }
11 }

� rm doc(package, doc file location), this command removes from the configuration model the con-
sidered documentation file.

1 rule rm_doc (package , doc_file_location) {
2 from
3 s : INConfiguration ! DocumenationFile (
4 s . location = doc_file_location

5)
6 do {
7 -- The action block is empty , no action is executed and hence

8 -- the DocumenationFile s is not copied to the target configuration

9 }
10 }
11 %

Emacs

� inst emacs package(package name), this commands install a new emacs package. In particular,
it creates a new instance of the metaclass EmacsPackage which is part of the system configuration.

1 rule inst_emacs_package (package_name) {
2 using {
3 newEmacsPackage : OUTConfiguration ! EmacsPackage = OclUndefined ;
4 }
5 do {
6 newEmacsPackage <− thisModule . createEmacsPackage () ;
7 newEmacsPackage . name <− package_name ;
8 }
9 }

� rm emacs package(package name), once the files of an emacs package have been remove from the
system, the configuration model has to be updated by means of this commands which removes the
corresponding EmacsPackage instance.

1 rule rm_emacs_package (package_name) {
2 from
3 s : INConfiguration ! EmacsPackage (
4 s . name = package_name

5)
6 do {
7 -- The action block is empty , no action is executed and hence

8 -- the EmacsPackage s is not copied to the target configuration

9 }
10 }

Deliverable D3.2 Version 1.0 page 66 of 91

November 2, 2009

GConf

� preinst gconf , this command creates the GConf element which will be used to manage all the
gconf configuration files and create the directory /etc/gconf/schemas. In this respect, the helper
thisModule.createGConf is invoked and the command addFile(’/etc/gconf/schemas’) is exe-
cuted.

1 rule preinst_gconf{
2 using {
3 newGConf : OUTConfiguration ! GConf = OclUndefined ;
4 }
5 do {
6 newGConf <− thisModule . createGConf () ;
7 }
8 }

� postinst gconf , this command registers the schema files contained in the directory /etc/gconf/schemas.
For this purpose the helper getGConfSchema is used.

1 rule postinst_gconf{
2 from
3 s : INConfiguration ! GConf
4 to
5 t : OUTConfiguration ! GConf (
6 schemas <− thisModule . getGConfSchema ()
7)
8 }

� prerm gconf , it removes all the schemas from the default directory. At this stage all the GConf files
registered in the GConf element will be removed as follows

1 rule postinst_gconf{
2 from
3 s : INConfiguration ! GConf
4 to
5 t : OUTConfiguration ! GConf (
6 schemas <− OclUndefined

7)
8 }

� postrm gconf , this command is used to remove all schema files within the default schema direc-
tory, /etc/gconf/schemas. The default directory is also then deleted. For this purpose, for each
file f in /etc/gconf/schemas, the command delFile(f) is executed. Then also the command
delFile(/etc/gconf/schemas) is invoked.

Icons

� update icons, this commands updates the mtime of the abstract representation we provide for the
icon cache. In particular, it considers the instance of the IconCache metaclass and updates the mtime
attribute. This update exploits the helper Mtime which returns a string which encodes the time of
invocation.

1 rule update_icons{
2 from
3 s : INConfiguration ! IconCache
4 to
5 t : OUTConfiguration ! IconCache (
6 mtime <− thisModule . getMtime ()
7)
8 }

Deliverable D3.2 Version 1.0 page 67 of 91

November 2, 2009

Info

� inst info(info file location), this command installs an information file in the system. The execu-
tion of this command creates a new instance of the metaclass InformationFile. In the following
transformation, the new information file is created by means of the createInformationFile called
rule (see line 6) which takes the location of the file as parameter and creates a new instance of the
InformationFile metaclass.

1 rule inst_info (info_file_location) {
2 using {
3 newInformationFile : OUTConfiguration ! InformationFile = OclUndefined ;
4 }
5 do {
6 newInformationFile <− thisModule . createInformationFile (info_file_location) ;
7 }
8 }

� rm info(info file location), this command removes from the configuration model the considered
information file.

1 rule rm_info (package , info_file_location) {
2 from
3 s : INConfiguration ! InformationFile (
4 s . location = info_file_location

5)
6 do {
7 -- The action block is empty , no action is executed and hence

8 -- the InformationFile s is not copied to the target configuration

9 }
10 }

Init

� postinst init(service name), this command modifies the configuration model by adding the service
named service name in the services relation of the Boot metaclass. This metaclass is used to model
the typical /etc/init.d location which maintains the services which has to be started when the system
is booted. In the following called rule, the helper getServiceByName is used in order to retrieve from
the source configuration the service named service name

1 rule postinst_init (service_name) {
2 from
3 s : INConfiguration ! Boot
4 to
5 t : OUTConfiguration ! Boot (
6 services <− s . services−>union (thisModule . getServiceByName (service_name))
7)
8 }

� postinst init nostart(service name), this command is used to update the Boot instance in order
to do not start the service named service name when the system is booted.

1 rule postinst_init (service_name) {
2 from
3 s : INConfiguration ! Boot
4 to
5 t : OUTConfiguration ! Boot (
6 services <− s . services−>excluding (thisModule . getServiceByName (service_name

↪→))
7)
8 }

� postinst init restart(service name), this command performs the same operations of the command
postinst init and starts all the services which are specified in the Boot element of the current envi-

Deliverable D3.2 Version 1.0 page 68 of 91

November 2, 2009

ronment. In this respect, for each service maintained in the services relation of Boot the following
called rule is executed

1 rule runService (service) {
2 using {
3 environment : OUTConfiguration ! Environment = OclUndefined ;
4 }
5 do {
6 environment <− thisModule . getEnvironment () ;
7 environment . runningServices <− service ; -- service is added as

8 -- running

9 }

� prerm init(service name), prior the removal of a service from the Boot instance, such a service has
to be stopped. In this respect, the following called rule is executed. In particular, the set of running
services in the system environment is modified by excluding the service named service name

1 rule prerm_init (service_name) {
2 using {
3 environment : OUTConfiguration ! Environment = OclUndefined ;
4 }
5 do {
6 environment <− thisModule . getEnvironment () ;
7 environment . runningServices <− environment . runningServices−>excluding (

↪→thisModule . getServiceByName (service_name)) ;
8 }

� postrm init(service name), this command modifies the Boot element to exclude the service named
service name from the services to be executed when the system is booted as specified in the following
called rule

1 rule postrm_init (service_name) {
2 using {
3 boot : OUTConfiguration ! Booot = OclUndefined ;
4 }
5 do {
6 boot <− thisModule . getBoot () ;
7 boot . services <− boot . services−>excluding (thisModule . getServiceByName (

↪→service_name) ;
8 }
9 }

Make shared libraries

� update libs, this command updates the configuration model by searching for new shared libraries
in the modeled file /etc/ld.so.conf, and in the trusted directories (/lib and /usr/lib). The
execution of this commands considers the reference locations of the Library instance and updates
its sharedLibraries reference to maintain all the shared libraries which are located in such locations.

1 rule update_libs {
2 from
3 s : INConfiguration ! Library
4

5 to
6 t : OUTConfiguration ! Library (
7 locations <− s . locations
8 sharedLibraries <− thisModule . getSharedLibraries (s . locations) ;
9)

10 }

Menu

� update menu, this command causes the cache of menu entries to be refreshed as specified in the
following

Deliverable D3.2 Version 1.0 page 69 of 91

November 2, 2009

1 rule update_menu {
2 from
3 s : INConfiguration ! Menu
4

5 to
6 t : OUTConfiguration ! Menu (
7 entries <− thisModule . getMenuEntries ()
8)
9 }

The class Menu is used to maintain the menu cache which refers to all the installed entries which are
represented by means of the metaclass MenuEntry. The helper getMenuEntries searches for all the
menu entries installed on the system.

� postinst menu, this command checks to see if a file on the filesystem has been installed of the same
name as expected and if it is executable. For us we will use the file-system meta-class to analyse
whether or not a file has been registered in this location. If so the update menu script is run and is
defined above.

� postrm menu, this command iterates through a list of packages provided to the script and makes
the files non-executable. Update menu script is then run afterwords which is defined above. Non-
executable files are not restored by the update menu command.

Mime

� update mime(directory), this command updates the cache of the mime type handlers installed in
the system. In the configuration model, the metaclasses MimeTypeHandlerCache and MimeTypeHandler
are used for this purpose. In particular, the command checks the existence of mime type handlers in
the directory passed as parameter and for each new handler found, a new MimeTypeHandler instance
is created. Being more precise, the following called rule defines the semantic of this command

1 rule update_mime (directory) {
2 from
3 s : INConfiguration ! File (
4 s . isMimeTypeHandler () and s . isIn (directory)
5)
6

7 to
8 t : OUTConfiguration ! MimeTypeHandler (
9 handler <− s ,

10 type <− thisModule . getMimeType (s)
11)
12 }

Different helpers are used in the previous called rule. In particular, isMimeTypeHandler returns true
is the considered file is a mime type handler, false otherwise. The helper isIn returns true if the
given file is in the directory passes as parameter. Finally, given an handler s, the helper getMimeType
returns the mime type managed by the handler s (e.g. application/vnd.openxmlformats, and
application/x-java-archive).

Modules

� update modules(version), it updates the cache of the installed modules in the system for the kernel
version passed as parameter. In this respect, the environment representation contains also instances
of the ModuleCache metaclass. Each instance refers to the modules of a specific kernel version. The
execution of the update modules command will update such references as specified in the following.
The helper getModules is used in the following called rule in order to search for the modules in the
location /lib/modules/version

1 rule update_modules (version) {

Deliverable D3.2 Version 1.0 page 70 of 91

November 2, 2009

2 from
3 s : INConfiguration ! ModuleCache (
4 s . version = version

5)
6

7 to
8 t : OUTConfiguration ! ModuleCache (
9 version <− s . version ,

10 modules <− thisModule . getModules (version)
11)
12 }

Scrollkeeper

� update scrollkeeper, this command updates the model elements which maintain the catalog of the
scrollkeeper documents. The metaclasses which are involved in this operation are SkeeperCatalog
and SkeeperDocument. The former maintains the references to all the installed documents, the latter
specifies each of them. The semantics of this command is specified in the following called rule. The
helper getSkeeperDocumet is used to search for new scrollkeeper documents in the system.

1 rule update_scrollkeeper {
2 from
3 s : INConfiguration ! SkeeperCatalog
4

5 to
6 t :
7 OUConfiguration ! SkeeperCatalog
8 do {
9 t . documents<−thisModule . getSkeeperDocument (s . documents) ;

10 }
11 }

SGML catalog

� postinst sgmlcatalog, once SGML documents have be installed the SGML catalog has to be updated.
The metaclasses which are involved in this operation are SGMLCatalog and SGMLDocument. The former
maintains the references to all the installed SGML documents, the latter specifies each of them. The
semantics of this command is specified in the following called rule. The helper getSGMLDocumet is
used to search for new SGML documents in the system.

1 rule update_scrollkeeper {
2 from
3 s : INConfiguration ! SGMLCatalog
4

5 to
6 t :
7 OUConfiguration ! SGMLCatalog (
8 documents<−thisModule . getSGMLDocument (s . documents)
9)

10 }

� prerm sgmlcatalog, this command updates the SGMLCatalog which maintains the SGML catalog of
the given system. In particular, this command removes all the references to the existing documents
even though they are not deleted from the filesystem. This operation is performed by means of the
following called rule. The helper getSGMLCatalog is used to query the configuration model and retrieve
the existing SGML catalog element. Once retrieved, its reference documents is nullified.

1 rule prerm_sgmlcatalog{
2 using {
3 sgmlCatalog : OUTConfiguration ! SGMLCatalog = OclUndefined ;
4 }
5

Deliverable D3.2 Version 1.0 page 71 of 91

November 2, 2009

6 do {
7 sgmlCatalog <− thisModule . getSGMLCatalog () ;
8 sgmlCatalog . documents <− OclUndefined ;
9 }

10 }

� postrm sgmlcatalog, this command removes from the filesystem all the documents of the SGML
catalog. In the following rule the helper isSGMLDocument is used in order to check if a given file is an
SGML document or not.

1 rule postrm_sgmlcatalog {
2 from
3 s : INConfiguration ! File (
4 s . isSGMLDocument ()
5)
6 do {
7 -- The action block is empty , no action is executed and hence

8 -- the File s which is an SGML document is not copied to

9 -- the target configuration

10 }
11 }

udev

udev provides the link between software commands and hardware devices. As it is such a critical element
it has its own set of configuration files to make sure that any new changes in the configuration do not
over-write the user provided scripts. Rather than disable the user’s preference, new configurations are
downloaded but recorded as a new file for the user to merge at a later point.

� preinst udev, this command is for preserving local modifications for reasons related to udev adoption.
This command checks to see if the local configuration has been changed by using MD5SUM.

� postinst udev, this command then takes the result of the preinst script and if there has been a change
in the local configuration, rather than ovewriting the local configuration which is avoided by package
maintainers, instead the new configuration is preserved using a different suffix for the file name.

usrlocal

These scripts pertain to the creation and removal of the /usr/local directory. Maintaining the local con-
figuration files is one of the highest priorities for package maintainers so these scripts relate to preserving
any that might exist.

� postinst usrlocal, this command is used to make sure that the creation of the /usr/local directory
has only just occurred and was not there before the installation of /usr/local occurred. Adhering to
the FileSystem Hierarchy Standard that was last updated in 2004, local preferences and modifications
should be stored in this directory. As such the script makes sure to check that the directory did not
already exist and therefore possibly be removing the local configurations.

� prerm usrlocal, is a command that checks to see if the /usr/local directory is empty and if so there
is no risk of deleting local configuration files. If the directory is non-empty there is a risk of deleting
local configurations and hence the command is aborted and the user is informed during the simulation.

Users and Groups

� user add(user name, group name, homedir), this command adds a new user in the configuration.
In particular, a new User instance is created as specified in the following called rule.

Deliverable D3.2 Version 1.0 page 72 of 91

November 2, 2009

1 rule user_add (user_name , group_name , homedir) {
2 using {
3 newUser : OUTConfiguration ! User = OclUndefined ;
4 }
5 do {
6 i f thisModule . userExists (user_name) then

7 OclUndefined ;
8 else {
9 newUser<−thisModule . createUser (user_name) ;

10 newUser . groups <− thisModule . getGroupByName (group_name) ;
11 newUser . home <− thisModule . getLocationByString (homedir) ;
12 }
13 }
14 }

The getGroupByName and getLocationByString helper are used. The former queries the configuration
model to retrieve the group which has the name passed as parameter. The latter retrieves from the
configuration model the File instance which represents the location homedir.

� user remove(user name,group name), this command is used to remove a user from a group or,
if the second parameter is not given, to completely delete the user from the system. This behavior is
specified in the following called rules.

1 rule user_remove (user_name) {
2 from
3 s : INConfiguration ! User (
4 s . name = user_name

5)
6 do {
7 -- The action block is empty , no action is executed and hence

8 -- the User s is not copied to the target configuration

9 }
10 }
11 rule user_remove (user_name , group_name) {
12 from
13 s1 : INConfiguration ! User ,
14 s2 : INConfiguration ! Group (
15 s1 . name = user_name and s2 . name = group_name

16)
17 to
18 t : OUTConfiguration ! User (
19 name <− user_name ,
20 groups <− s1 . groups−>excluding (s2) ,
21 home <− s1 . home
22)
23 }

� group add(group), this command adds a new group in the configuration. In particular, a new Group
instance is created as specified in the following called rule.

1 rule group_add (group_name) {
2 using {
3 newGroup : OUTConfiguration ! Group = OclUndefined ;
4 }
5 do {
6 i f thisModule . groupExists (group_name) then

7 OclUndefined ;
8 else
9 newGroup<−thisModule . createGroup (group_name) ;

10 }
11 }

� group remove(group name), it removes a given group from the system. The removal can be
performed only if no users belong to the group being deleted. This check is performed by means of
the helper isEmpty.

1 rule group_remove (group_name) {

Deliverable D3.2 Version 1.0 page 73 of 91

November 2, 2009

2 from
3 s : INConfiguration ! Group (
4 s . name = group_name and s . isEmpty ()
5)
6 do {
7 -- The action block is empty , no action is executed and hence

8 -- the Group s is not copied to the target configuration

9 }
10 }

Windows manager

� postinst wm(wm location, manual location), this command exploits the add alternative and
inst doc commands previously presented in order to add a new alternative for the x-window-manager
command and a new corresponding manual. In particular the commands will induce the execution of
add alternative(x-window-manager,wm location) and then inst doc(x-window-manager,
manual location, ’/usr/share/man/man1/x-window-manager.1.gz’)

� postinst wm noman(wm location), if the maintainer does not want to provide the manual of the
installed window manager, this command can be used. In this respect, this command is similar to the
previous one. The main difference is that it induces the execution of add alternative(x-window-manager,
wm location) and do not install any manual file.

� prerm wm(wm location), in order to remove a window manager, it has to be firstly deleted in the al-
ternatives. The execution of this command implies the execution of rm alternative(x-window-manager,
wm location)

Xfonts

� update xfonts, the execution of this command implies the cache update of the installed fonts. In
particular, all the XFontCache instances have to be updated by considering the fonts contained in the
specified locations as described in the following. The helper createXFonts is used to search for all
the fonts which are installed in the given location and create corresponding XFont instances.

1 rule update_xfonts {
2 from
3 s : INConfiguration ! XFontCache
4 to
5 t : OUTConfigration ! XFontCache (
6 location <−s . location
7 xfonts <− thisModule . createXFonts (s . location)
8)
9 }

Tagging statements

The tagging statements are provided to enable the behavior specification of those scripts which contain
commands and statements not covered by the DSL. Since we are interested in reasoning on the con-
figuration model, the provided tagging statements are crucial to still enable the simulation and failure
detection possibilities.

The semantics of the tagging statements is quite simple. In fact, tag statements can be considered as
atomic actions which change the configuration models. Each tagging statement has a corresponding ATL
transformation which can be generally described as follows.

� add<metaclassName>(<metaclass feature values>), this kind of commands are used to add in
the configuration new element. For instance, if we consider the metaclass File, the command addFile

Deliverable D3.2 Version 1.0 page 74 of 91

November 2, 2009

is available and maintainers can specify sentences like (addFile("/home/user/foo",’644’)). By
executing this sample statement, a new file named foo with ’644’ as access rules, will be created
in the configuration model. In general, given a metaclass MC in the configuration metamodel, the
corresponding addMC(feature values) command has the following semantics

1 rule addMC {
2 using {
3 newMC : OUTConfiguration ! MC = OclUndefined ;
4 }
5 do {
6 newMC<−thisModule . createMC (feature values) ;
7 }
8 }

� delete<metaclassName>(<metaclass feature values>), this kind of commands are used to
delete elements in the configuration model. In the case of the metaclass File, the command deleteFile
can be used by maintainers to delete files in the abstract representation of the file system. For instance,
the command deleteFile("/home/user/foo") will delete the file foo the directory /home/user.
Generally speaking, given a metaclass MC, the corresponding deleteMC(feature values) command
is available and it has the following semantics

1 rule deleteMC (feature values) {
2 from
3 s : INConfiguration ! MC (
4 <feature values>
5)
6 do {
7 -- The action block is empty , no action is executed and hence

8 -- the MC s is not copied to the target configuration

9 }
10 }

Note that the feature values passed to the called rule will be used to select the proper instance of the
MC metaclass (see line 4 above) in the source configuration model. In the previous example, the name
of the file and its extension will be used to select the right instance of the metaclass File.

� add<metaclassName> <attribute>(<element>,<attribute value>), this kind of command is
used to add attribute values for existing elements in the configuration model. For instance, if we
consider again the metaclass File, the command addFile extension("/home/uer/foo","txt") can
be executed in order to specify the extension for the already existing file /home/user/foo. In general,
given a metaclass MC and an attribute att, the command addMC att(element,attributeValue) is
available and it has the following semantics

1 rule addMC_att (element , attributeValue) {
2 from
3 s : INConfiguration ! MC (
4 <element>
5)
6 to
7 t : OUTConfiguration ! MC (
8 att <− attributeValue

9)
10 }

� delete<metaclassName> <attribute>(<element>), this kind of command is used to nullify the
value for attributes of existing elements in the configuration model. For instance, if we want change the
file /home/user/foo.txt by deleting the ’txt’ extension, the deleteFile extension(/home/user/foo)
command can be used in order to delete the value for the attribute extension of the model element
which represents the file /home/user/foo. In general, given a metaclass MC and an attribute att, the
command deleteMC att(element) is available and it has the following semantics

1 rule addMC_att (element) {
2 from

Deliverable D3.2 Version 1.0 page 75 of 91

November 2, 2009

3 s : INConfiguration ! MC (
4 <element>
5)
6 to
7 t : OUTConfiguration ! MC (
8 att <− OclUndefined

9)
10 }

� add<metaclassName> <reference>(<source element>,<target element>), this kind of com-
mand is used to establish references between existing elements in the configuration model, with respect
to the configuration metamodel. In particular, if we consider the PackageSetting metaclass, it has the
reference depends to refer to other package settings. In this respect, the addPackageSetting depends
command can be used in order to establish a reference between two existing package settings. For in-
stance, if apache2 and php5 are the package settings of the installed Apache Web server and the PHP5
module, respectively, the execution of the addPackageSetting depends(apache2, php5) command
changes the configuration model by adding a reference between the two package settings. In general,
given a metaclass MC and a reference ref, the command addMC ref(source, target) is available and
it has the following semantics

1 rule addMC_ref (source , target) {
2 using {
3 sourceMC : OUTConfiguration ! MC = OclUndefined ;
4 targetMC : OUTConfiguration ! MC = OclUndefined ;
5 }
6 do {
7 sourceMC <− thisModule . getMC (source) ;
8 targetMC <− thisModule . getMC (target) ;
9 sourceMC . ref <− targetMC ;

10 }
11 }

The helper getMC is used to query the configuration model and retrieve the source and target
elements for updating the reference ref.

� delete<metaclassName> <reference>(<source element>,<target element>), this kind of
command is used to nullify a reference between existing elements in the configuration model. For
instance, if we consider again the PackageSetting metaclass, the deletePackageSetting depends
command is available to delete the existing dependency between two existing package settings. If
apache2 and php5 are the package settings of the installed Apache Web server and the PHP5 mod-
ule, respectively, and there exists a dependency among them, then the execution of the command
deletePackageSetting depends(apache2, php5) changes the configuration model by nullifying such
a dependency. In general, given a metaclass MC and a reference ref, the command deleteMC ref(source,
target) is available and it has the following semantics

1 rule deleteMC_ref (source , target) {
2 from
3 s : INConfiguration ! MC (
4 s = thisModule . getMC (source)
5)
6 to
7 t : OUTConfiguration ! MC (
8 ref <− s . ref−>excluding (thisModule . getMC (target))
9)

10 }

Deliverable D3.2 Version 1.0 page 76 of 91

Chapter 5

Sample DSL applications

In this chapter we look at how to counter-act some of the failure types identified in Chapter 2 by using
a model based approach that was explained in Chapter 3 and described in detail through the creation
of a DSL in Chapter 4. The creation of a DSL had a specific purpose in mind which was to provide a
mechanism in which we could identify and possibly fix invalid configuration states for packaging systems.
We must identify that the DSL is an evolutionary language that can incorporate changes as they are
found. The reasons why we selected this approach have been discussed in depth in Chapter 3 and also
in the deliverable D2.1.

Current meta-installers are capable of detecting a sub-set of the configuration failures which are static
failures and are identified manually or using helper utilities such as deb helper and rpm-helper. Once
package maintainers know that there is a problem with the interoperability of their package and another,
they can use meta-description tools to encode information such as creating conflicts and other meta-info
to suggest to the meta-installer when a possible problem might occur. There are however times when
such meta-info is insufficient as it is not expressive enough to detect certain types of known errors.

In this chapter we discuss how the proposed DSL and the model driven approach can be used to support
some representatives of the upgrade failures identified in Chapter 2.

5.1 Apache2 and libapache-mod-php5

In this section we describe how the proposed simulation approach and how the DSL can be used to
discover failures. These failures can occur when the maintainer scripts of the libapache-mod-php5
package are not complete and are missing some statements which are required to obtain a valid target
configuration. The problem we discovered is that the prerm script of libapache-mod-php5 does not
disable the reference to the PHP5 module in Apache2 prior to the removal of PHP5. The problem can be
detected once the target configuration is reached and the transformation vector to the model is evaluated
to check if some of the possible failures identified in Chapter 2 occur.

As said in the previous chapters, a system configuration is composed of artifacts necessary to make
computer systems perform their intended functions. In this respect, the Configuration metamodel has
been provided to specify the main concepts which make up the configuration of a FOSS system. In
particular, the Environment metaclass enables the specification of loaded modules, shared libraries, and
running process as in the sample configuration reported in Figure 5.1. In such a model the reported envi-
ronment is composed of the services apache2, and sendmail (see the instances s1 and s2) corresponding
respectively to the running web and mail servers.

All the services provided by a system can be used once the corresponding packages have been installed
and have a properly configured (PackageSetting). Moreover, the configuration of an installed package
might depend on other package configurations.

77

November 2, 2009

Figure 5.1: Sample configuration model

Considering the case of the PHP5 upgrade, the instances ps1 and ps2 of the PackageSetting metaclass
in Figure 4.6 represent the settings of the installed packages apache2, and libapache-mod-php5, respec-
tively. The former depends on the latter (see the value of the attribute depends of ps1 in Figure 5.1)
and both are also associated with the corresponding files which store their configurations.

Note that at the level of inter-package relationships such a dependency should not be expressed, in spite
of actually occurring on real systems. The ability to express such fine-grained and installation-specific
dependencies is a significant advantage offered by the proposed metamodels which embody domain
concepts which are not taken into account by current package manager tools.

Figure 5.2: Not valid configuration model after libapache-mod-php5 removal

Figure 5.2 reports the configuration model which is obtained after the removal of the libapache-mod-php5
package supposing that its prerm scripts does not disable PHP5 in Apache2. The problem in such a model
is that the package setting of the Web server still depends on PHP5 even though such a module is not
available in the file system.

Once the problem has been detected, maintainers can solve the problem by adding the following script
as prerm of libapache-mod-php5

1 #<%

2 delPackageSetting dependences (apache2 , php5) ;
3 #%if [-e /etc/apache2/apache2.conf]; then

Deliverable D3.2 Version 1.0 page 78 of 91

November 2, 2009

4 #% a2dismod php5 || true

5 #%fi

6 #%>

In particular, the dependency between the package settings of Apache2 and PHP5 has to be deleted
in order to lead to a valid configuration. In this respect, the delPackageSetting dependences DSL
tagging command has been used to wrap the corresponding script which will be executed on the real
system once the simulation phase has success.

5.2 A sample use-before-define failure: Freeradius-2.1.3

In this section we discuss the adoption of the proposed approach to detect a sample use-before-define
failure. In this respect, we will consider the Freeradius-2.1.3 package which is affected by this kind
of problem. In particular, as described in Section 2.3, the package Freeradius-2.1.3 depends on the
freeradius-libs. If the library is installed before the freeradius package then it would expect a
user to be present that is only created by the configuration file in the freeradius package. Although the
package maintainer has correctly identified that freeradius depends on freeradius-libs the package
maintainer cannot then add a dependency from freeradius-libs back without creating a nested loop.

The information contained in the configuration model, is enough to detect this kind of failure even during
upgrade simulations. In fact, according to the configuration metamodel presented in Chapter 4, the User
and Group metaclasses are provided to model the users and the groups of a given system.

Before accessing the elements of a configuration model, the simulator checks for their existence and if they
are not available, the simulation stops and the user is informed about the problem. In the freeradius
example the freeradius-libs installation does not fail if the radius user and group are already in the
system otherwise the installation fails. Vice-versa, if the installation of freeradius is performed first,
the configuration model changes since the following scripts is executed

1 #<%

2 addGroup(radius) ;
3 addUser(radius , radius) ;
4 #% getent group radiusd >/dev/null || /usr/sbin/groupadd -r -g 95 radiusd

5 #% getent passwd radiusd >/dev/null || /usr/sbin/useradd -r -g radiusd -u 95 -c "radiusd

↪→ user" -s /sbin/nologin radiusd > /dev/null 2>&1

6 #%>

In particular, new instances of the User and Group metaclass are added and the simulator can check
their existence to install freeradius-libs without problem. The proposed solution is able to detect
such problems even if users adopt meta-installers which cannot resolve the circular dependency.

By using the general approach of checking the metaclasses when the configuration script looks for com-
monly referred data and seeing if it is present, we can stop the simulation and inform the user before
any actual installation has occurred. Currently, depending on the meta-installer, the installation may
or may not fail. If it does not fail then the fall-back mechanism as used by RPM is to use root for the
User and Group IDs (UID, GID). The installation will succeed in this case but the user and group is not
as specified in the configuration file. In this case a “not valid” configuration has been reached. What
is particularly dangerous about this is the potential security problems as there is little or no warning
except in the log files that any deviation from that outlined by the script has happened. By using the
DSL on the other hand we are able to detect this configuration problem and stop the installation from
occurring. Further modification of the simulator and the DSL will allow for the automatic recovery of
this type of error if another package contained in the manifest has a configuration script that would set
up these values.

Deliverable D3.2 Version 1.0 page 79 of 91

November 2, 2009

Deliverable D3.2 Version 1.0 page 80 of 91

Chapter 6

Conclusion

In this deliverable we presented a DSL to specify the behavior of maintainer scripts and to predict several
of their effects on package upgrades. In fact, the present generation of package managers only rely on
package meta-information which is not expressive enough to predict, detect, and eventually manage
upgrade failures which can occur because of erroneous or incomplete scripts.

The model-driven approach outlined in this Deliverable rely on maintaining a model-based description
of the system and simulating upgrades in advance on top of it, to detect predictable upgrade failures
and notify the user before the actual installation occurs and the system is affected. More generally, the
models are expressive enough to isolate inconsistent configurations (e.g., situations in which installed
components rely on the presence of missing sub-components), which are currently not expressible as
inter-package relationships.

Going into more detail, the main contributions of this deliverable are:

1. we have proposed a classification of common failures which can occur during the case of system
upgrades (see Chapter 2);

2. we have defined a DSL for specifying maintainer scripts with respect to the upgrade failure clas-
sification (see Chapter 4);

By developing the DSL we have provided a sound framework from which to develop tools that will
be able to track changes and merge with the results of Work Packages 2 and 4. This is also the first
milestone of the Work Package, M3.1 and provides a basis from which the other Work Packages within
the MANCOOSI project can rely on.

Concerning contribution 1, currently only a small sub-set of the failures identified in Chapter 2 are being
detected and even then they are related to dynamic failures only. With a lack of quantative analysis on
the subject we had to suggest certain potential failures through experience of distribution of a system.

As we have mentioned before, the approach outlined in Chapter 3 is designed to be performed using
an evolving language, the DSL. If new failure types are identified then through a combination of using
the tagging system and viewing failures that have not been detected by either the simulator or failure
detector we will refine the DSL to incorporate these identified failure types. Through the refinement of
the model using injection mechanisms that will be specified completely in Deliverable 2.3 we are able
to increase the number of failures that we are able to detect, so even if the initial set of failures seems
retrospectively quite limited we provide a mechanism in which to incorporate changes.

This is in contrast to the static nature of dependencies that are written on the update of a package by an
individual or set of maintainers but that do not reflect the changes of the package universe. The model
proposed and described in Chapter 4 will take an overview of the package universe and as such will be
able to detect a set of failures that are currently very difficult or impossible to detect using individual
meta-information stored in packages and the current generation of meta-installers.

81

November 2, 2009

By considering the identified failures, and the proposed DSL we briefly discussed the application of
our approach to deal with some types of package upgrade failures. In particular, we considered a
sample failure which involved the Apache Web server and the PHP5 module. This is an example of
an incomplete set of configuration files. Although each of the configuration files can be run and do not
have any syntactical failures the overall result of installing and removing the package in question, leaves
certain configurations in situ. These changes that were introduced by the installer maintainer script are
not fully removed and this has the result in leaving the configuration in an undefined state.

This failure as identified in Chapter 2 is a “slow failure” in that it may not be detected instantly by a
user of the system and can take an indeterminate time before it is discovered or has a consequence on the
operation of part of the system. During this time other packages may be installed, removed, upgraded
and only when the application uses the erroneous configuration that the problem occurs. It may be
very difficult to track down this type of failure as a long time may have elapsed between the upgrade of
the local machine’s packages and the current error. This is where the approach of using a model of the
system can help assist in finding the problems.

In the first instance the simulator may be able to pick up this sort of failure as indicated in Chapter 5
and warn the user of the potential problem. If the failure is not detected at this stage the transactional
log that stores the changes to package configurations can be analysed to see what may have affected the
system.

If these mechanisms fail or otherwise it may be important to revert the changes performed by the
simulator and the actual system. By having stored the selection of the mechanism of what choice was
made in the case of a 1-many choice as it happened in the transaction log it will be possible to indicate
what the reverse action might be.

Instead of having to perform a complete state refresh and going back to a saved configuration like certain
systems identified in Chapter 1 instead it will be possible to roll-back an individual package to a certain
state. In the case of the identified example the meta-class will record the changed variables and the
simulator will notice that a value has had a state changed but not reverted. For trivial commands that
have one to one mappings it may be possible to even resolve these problems using the simulator. If
unable to solve the failure case it hopefully will be able to at least identify the problem and prompt the
user for action.

We have considered another example related to the use- use-before-define failure type. It is a failure
that occurs when a maintainer script refers to a variable in the system that hasn’t been set up yet but
would be provided in a transaction set. It differs from a missing resource in that another package would
set up the missing variable but because of the order the transaction set is handled, the definition occurs
after the first use. This is a new term as described in 2 and is derived from programming languages.
The problem is a dormant, widespread in GNU/Linux systems in that there are missing dependecies
but because the current-breed of meta-installers order the packages in a fairly uniform method that
these failures never come to light. In the scope of the MANCOOSI project where we will be looking at
modifying the ordering of the packages as well as generating tools to decide which packages to install to
meet various criteria it would inevitably have uncovered this sort of problem. By identifying the problem
at this stage, the DSL can help track down what are generally seen as more subtle failures as well as
allowing the tools that will be generated in Work Package 4 to modify the ordering and transaction set
by uncovering possible failures using the simulator.

During our research we also examined one of the potential benefits of a DSL. Through the research we
have postulated that there are likely many more positive advantages provided by the DSL than the types
of failure case that it will identify. One generic type of advantage we explored was that of the cache-
rebuilders and in particular ldconfig. From the research carried out it was apparent that a lot of the
maintainer scripts had lots of elements in common and most of the frequently shared templates related
to cache-rebuilding of some sort or another. The process is quite similar for most of the scripts in that
they would copy a file to the default directory and then call the associated cache-rebuilder. The issue of
optimising the number of times a cache-rebuilder has been addressed before but one of the advantages of
a system that overviews package meta-installers is that it can perform analysis on the maintainer scripts
and minimise the number of times a cache-rebuilder has to be called. This is not the main reason that a
DSL was considered but as one of the advantages brought forward it helps the overall aim of managing

Deliverable D3.2 Version 1.0 page 82 of 91

November 2, 2009

evolving, complex, packaging systems and could possibly reduce the amount of information that would
need to be stored as meta-data within current packages.

The proposed DSL and the overall simulation approach will be integrated with tools produced in later
tasks in this Work Package, which are able to keep track of the changes which occur on real system
configurations, in order to be able to roll them back, restoring previous safe system states.

Deliverable D3.2 Version 1.0 page 83 of 91

November 2, 2009

Deliverable D3.2 Version 1.0 page 84 of 91

Part A

Fragment of the MANCOOSI
metamodel

The metaclasses which have been considered for the DSL semantic specification are reported in the
following. They are given in KM3 which is a lightweight textual metamodel definition language allowing
easy creation and modification of metamodels 1. KM3 is based on the same core concepts used in
OMG/MOF and EMF/Ecore that are classes, attributes and references. The use of KM3 is mainly
justified by its simplicity and flexibility to write metamodels and to produce domain-specific languages.

A graphical representation of the full MANCOOSI metamodel is available at http://www.mancoosi.org.

1 -- Description of settings , environment , files , services , devices that can be modified

↪→by means script statements , set of modules or shared libraries available in a given

↪→ configuration

2 class Environment {
3 reference runningServices [0−∗] : Service oppositeOf env ;
4 reference alternatives [0−∗] container : Alternative oppositeOf env ;
5 reference users [1−∗] container : User oppositeOf env ;
6 reference groups [1−∗] container : Group oppositeOf env ;
7 reference emacspkg container : EmacsPackage oppositeOf env ;
8 reference iconCache container : IconCache oppositeOf env ;
9 reference desktopDb container : DesktopDB oppositeOf env ;

10 reference mimeTypeHandlerCache container : MimeTypeHandlerCache oppositeOf env ;
11 reference libraryCache [1−1] container : LibraryCache oppositeOf env ;
12 reference skeeperCatalog container : SkeeperCatalog oppositeOf env ;
13 reference sgmlCatalog [1−1] container : SGMLCatalog oppositeOf env ;
14 reference configuration : Configuration oppositeOf environment ;
15 reference moduleCache [1−∗] container : ModuleCache oppositeOf env ;
16 reference xfontCaches [1−∗] container : XFontCache oppositeOf env ;
17 reference gconf container : GConf oppositeOf env ;
18 reference menu container : Menu oppositeOf env ;
19 reference init container : Boot oppositeOf env ;
20 }
21

22 class FileSystem {
23 reference root container : File oppositeOf fs ;
24 reference configuration : Configuration oppositeOf fileSystem ;
25 }
26

27 -- This class is defined to model the services which has to be started when the

↪→system is started

28 class GConf {
29 reference confFiles [0−∗] : File ;
30 reference schemas [0−∗] : File ;
31 reference env : Environment oppositeOf gconf ;
32 }
33

1http://www.sciences.univ-nantes.fr/lina/atl/www/papers/KM3-FMOODS06.pdf

85

http://www.mancoosi.org
http://www.sciences.univ-nantes.fr/lina/atl/www/papers/KM3-FMOODS06.pdf

November 2, 2009

34

35 -- This metaclass models the catalog of all the possible menu entries which might be

↪→ intalled

36 class ApplicationMenuCatalog {
37 attribute executable : S t r ing ;
38 reference menu : Menu oppositeOf catalog ;
39 }
40

41 class Menu {
42 reference entries [0−∗] container : MenuEntry oppositeOf menu ;
43 reference catalog container : ApplicationMenuCatalog oppositeOf menu ;
44 reference env : Environment oppositeOf menu ;
45 }
46

47 class MenuEntry {
48 reference menu : Menu oppositeOf entries ;
49 reference executable : File ;
50 reference parent : MenuEntry ;
51 }
52

53 class Boot {
54 reference services [1−∗] : Service ;
55 reference env : Environment oppositeOf init ;
56 }
57

58 class Service {
59 reference executable : File ;
60 reference env : Environment oppositeOf runningServices ;
61 }
62

63 class File {
64 attribute extension : S t r ing ;
65 attribute description : S t r ing ;
66 attribute size : I n t eg e r ;
67 attribute checkSum : S t r ing ;
68 attribute isDirectory : Boolean ;
69 attribute suid : Boolean ;
70 attribute giud : Boolean ;
71 attribute permission : S t r ing ; -- This string will contain the permission policy

↪→ of files in the classical UNIX form

72 attribute location : S t r ing ;
73 reference fs : FileSystem oppositeOf root ;
74 reference childs [0−∗] container : File oppositeOf parent ;
75 reference parent : File oppositeOf childs ;
76 }
77

78 class DocumentationFile extends File {
79 reference pkg : Package oppositeOf documentationFiles ;
80 }
81

82 class InformationFile extends File {
83 }
84

85 class Alternative {
86 reference current : File ;
87 reference location : File ;
88 reference env : Environment oppositeOf alternatives ;
89 }
90

91 class PackageSetting {
92 reference services [0−∗] : Service ;
93 reference files [0−∗] : File ;
94 reference configuration : Configuration oppositeOf packageSettings ;
95 reference pkg : "Package" ;
96 reference dependences [0−∗] : PackageSetting ;
97 }
98

99 class IconCache {
100 attribute mtime : S t r ing ;
101 reference env : Environment oppositeOf iconCache ;

Deliverable D3.2 Version 1.0 page 86 of 91

November 2, 2009

102 reference icons : File ;
103 }
104

105 class DesktopDB {
106 reference env : Environment oppositeOf desktopDb ;
107 reference applications : File ;
108 }
109

110

111 class MimeTypeHandlerCache {
112 reference env : Environment oppositeOf mimeTypeHandlerCache ;
113 reference handlers [0−∗] : MimeTypeHandler ;
114 }
115

116 class MimeTypeHandler {
117 reference type : S t r ing ;
118 reference handler : File ; -- refer to the executable file

119 }
120

121

122 class XFontCache {
123 reference xfonts [1−∗] container : XFont oppositeOf xfontCache ;
124 attribute location : S t r ing ;
125 reference env : Environment oppositeOf xfontCaches ;
126 }
127

128 class XFont {
129 reference xfontCache : XFontCache oppositeOf xfonts ;
130 reference file [1−∗] : File ;
131 }
132

133 -- This class models the typical /etc/ld.so.conf content and the found shared

↪→libraries in the referred locations

134 class LibraryCache {
135 reference locations [0−∗] : File ;
136 reference sharedLibraries [0−∗] container : SharedLibrary oppositeOf libraryCache

↪→ ;
137 reference env : Environment oppositeOf libraryCache ;
138 }
139

140 class SharedLibrary {
141 attribute name : S t r ing ;
142 reference file : File ;
143 attribute version : S t r ing ;
144 reference libraryCache : LibraryCache oppositeOf sharedLibraries ;
145 }
146

147 class ModuleCache {
148 attribute version : S t r ing ;
149 reference modules [0−∗] container : Module oppositeOf moduleCache ;
150 reference env : Environment oppositeOf moduleCache ;
151 }
152

153 class Module {
154 reference file : File ;
155 reference moduleCache : ModuleCache oppositeOf modules ;
156 }
157

158 -- This metaclass is used to specify SGML catalogs

159 class SGMLCatalog {
160 reference env : Environment oppositeOf sgmlCatalog ;
161 reference documents [0−∗] : SGMLDocument ;
162 }
163

164 class SGMLDocument {
165 reference location : File ;
166 reference document : File ;
167 }
168

169 -- This metaclass is used to specify Scrollkeeper catalogs

Deliverable D3.2 Version 1.0 page 87 of 91

November 2, 2009

170 class SkeeperCatalog {
171 reference env : Environment oppositeOf skeeperCatalog ;
172 reference documents [0−∗] : SkeeperDocument ;
173 }
174

175 class SkeeperDocument {
176 --reference location : File;

177 --reference document : File;

178 }
179

180 -- Description of EmacsPackage

181 class EmacsPackage {
182 reference files [1−∗] container : File ;
183 reference env : Environment oppositeOf emacspkg ;
184 }
185 -- End of Description of EmacsPackage

186

187

188 -- Description of User and Group concepts

189 class User {
190 reference env : Environment oppositeOf users ;
191 reference groups [1−∗] : Group oppositeOf users ;
192 reference home : File ;
193 }
194

195 class Group {
196 reference env : Environment oppositeOf groups ;
197 reference users [0−∗] : User oppositeOf groups ;
198 }
199 -- End of Description of User and Group concepts

200

201 -- End Description of settings , environment , files , services , devices

202 -- that can be modified by means script statements

Deliverable D3.2 Version 1.0 page 88 of 91

Bibliography

[AGRH05] Juan-José Amor-Iglesias, Jesús M. González-Barahona, Gregorio Robles-Mart́ınez, and Is-
rael Herráiz-Tabernero. Measuring Libre Software Using Debian 3.1 (Sarge) as A Case
Study: Preliminary Results. Upgrade Magazine, August 2005.

[AKB02] M. Aksit, I. Kurtev, and J. Bézivin. Technological Spaces: an Initial Appraisal. Interna-
tional. Federated Conf. (DOA, ODBASE, CoopIS), Industrial Track, Los Angeles, 2002.

[B0̈2] E. Börger. The Origins and the Development of the ASM Method for High Level System
Design and Analysis. J. Universal Computer Science, 8(1):2–74, 2002.

[B0́5] J. Bézivin. On the Unification Power of Models. SOSYM, 4(2):171–188, 2005.

[BCvH+03] Jonathan Billington, Søren Christensen, Kees M. van Hee, Ekkart Kindler, Olaf Kummer,
Laure Petrucci, Reinier Post, Christian Stehno, and Michael Weber. The Petri Net Markup
Language: Concepts, Technology, and Tools. In ICATPN, pages 483–505, 2003.

[Béz05] Jean Bézivin. On the Unification Power of Models. J. Software and Systems Modeling,
4(2):171–188, 2005.

[BG01] J. Bézivin and O. Gerbé. Towards a Precise Definition of the OMG/MDA Framework.
In Automated Software Engineering (ASE 2001), pages 273–282, Los Alamitos CA, 2001.
IEEE Computer Society.

[CDP07] A. Cicchetti, D. Di Ruscio, and A. Pierantonio. A Metamodel Independent Approach to
Difference Representation. Journal of Object Technology, 6(9):165–185, October 2007.

[CGI+08] Betty H. C. Cheng, Holger Giese, Paola Inverardi, Jeff Magee, and Rogerio de Lemos et al.
08031 – software engineering for self-adaptive systems: A research road map. In Betty H. C.
Cheng, Rogerio de Lemos, Holger Giese, Paola Inverardi, and Jeff Magee, editors, Software
Engineering for Self-Adaptive Systems, number 08031 in Dagstuhl Seminar Proceedings,
Dagstuhl, Germany, 2008. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In STOC ’71: Proceedings
of the third annual ACM symposium on Theory of computing, pages 151–158, New York,
NY, USA, 1971. ACM.

[Cou06] Patrick Cousot. Abstract interpretation. ACM Computing Surveys, 28(2), 2006.

[CRP+09] Antonio Cicchetti, Davide Di Ruscio, Patrizio Pelliccione, Alfonso Pierantonio, and Stefano
Zacchiroli. Towards a model driven approach to upgrade complex software systems. In
proceedings of the 4th International Working Conference on Evaluation of Novel approaches
to Software Engineering (ENASE 2009), Milan - Italy, 6 - 10 May 2009.

[DH07] Eelco Dolstra and Armijn Hemel. Purely functional system configuration management. In
HOTOS’07: Proceedings of the 11th USENIX workshop on Hot topics in operating systems,
pages 1–6, Berkeley, CA, USA, 2007. USENIX Association.

[DTZ08] Roberto Di Cosmo, Paulo Trezentos, and Stefano Zacchiroli. Package upgrades in FOSS
distributions: Details and challenges. In HotSWup’08, 2008. To appear.

89

November 2, 2009

[ea06] Linda Northrop et al. Ultra-Large-Scale Systems - The Software Challenge of the Future.
SEI Institute, Carnegie Mellon University, 2006.

[Ecl] Eclipse. Modisco project. Available: http://www.eclipse.org/gmt/modisco/.

[EDO06] EDOS Project. Report on formal management of software dependencies. EDOS Project
Deliverable D2.1 and D2.2, March 2006.

[Eff06] S. Efftinge. openarchitectureware 4.1 xtext language reference, August 2006.
http://www.eclipse.org/gmt/oaw/doc/4.1/r80 xtextReference.pdf.

[JBK06] Frédéric Jouault, Jean Bézivin, and Ivan Kurtev. TCS: a DSL for the specification of textual
concrete syntaxes in model engineering. In Proceedings of GPCE’06, pages 249–254. ACM,
2006.

[JJJ08] J.L.C. Izquierdo, J.S. Cuadrado, and J.G. Molina. Gra2MoL: A domain specific transfor-
mation language for bridging grammarware to modelware in software modernization. In
Workshop on Model-Driven Software Evolution, 2008.

[JK05] Frédéric Jouault and Ivan Kurtev. Transforming Models with ATL. In Jean-Michel Bruel,
editor, MoDELS Satellite Events, volume 3844 of LNCS, pages 128–138. Springer, 2005.

[JS08] Ian Jackson and Christian Schwarz. Debian policy manual. http://www.debian.org/doc/
debian-policy/, 2008.

[Kle07] A.G. Kleppe. A language description is more than a metamodel. 2007.

[KW03] A. Kleppe and J. Warmer. MDA Explained. The Model Driven Architecture: Practice and
Promise. Addison-Wesley, 2003.

[MBdC+06] Fabio Mancinelli, Jaap Boender, Roberto di Cosmo, Jerome Vouillon, Berke, Xavier Leroy,
and Ralf Treinen. Managing the complexity of large free and open source package-based
software distributions. International Conference on Automated Software Engineering, pages
199–208, 2006.

[MCF03] S. J. Mellor, A. N. Clark, and T. Futagami. Guest Editors’ Introduction: Model-Driven
Development. IEEE Software, 20(5):14–18, 2003.

[MZ07] Karl Mazurak and Steve Zdancewic. Abash: finding bugs in bash scripts. In PLAS ’07,
pages 105–114. ACM, 2007.

[Obj03a] Object Management Group (OMG). Meta Object Facility (MOF) 2.0 Core Specification,
OMG Document ptc/03-10-04. http://www.omg.org/docs/ptc/03-10-04.pdf, 2003.

[Obj03b] Object Management Group (OMG). UML 2.0 Infrastructure Final Adopted Specification,
2003. OMG document ptc/03-09-15.

[Obj03c] Object Management Group (OMG). XMI 2.0 XML Metadata Interchange, 2003. OMG
document formal/2003-05-02.

[OMG02] OMG. MOF 2.0 Query/Views/Transformation RFP, 2002. OMG document ad/2002-04-10.

[OMG03] OMG. MDA Guide version 1.0.1, 2003. OMG Document: omg/2003-06-01.

[Plo81] G. D. Plotkin. A Structural Approach to Operational Semantics. Technical Report DAIMI
FN-19, University of Aarhus, 1981.

[RPPZ09] Davide Di Ruscio, Patrizio Pelliccione, Alfonso Pierantonio, and Stefano Zacchiroli. Towards
Maintainer Script Modernization in FOSS Distributions. In proceedings of the IWOCE2009
- Open Component Ecosystems International Workshop - colocated with ESEC/FSE 2009,
Amsterdam, The Netherlands, 24 August 2009.

[Sch06] Douglas C. Schmidt. Guest Editor’s Introduction: Model-Driven Engineering. Computer,
39(2):25–31, 2006.

[Sel03] B. Selic. The Pragmatics of Model-driven Development. IEEE Software, 20(5):19–25, 2003.

Deliverable D3.2 Version 1.0 page 90 of 91

http://www.debian.org/doc/debian-policy/
http://www.debian.org/doc/debian-policy/

November 2, 2009

[Smi00] G. Smith. The Object-Z specification language. Kluwer Academic Publishers, Norwell, MA,
USA, 2000.

[Swa76] E. Burton Swanson. The dimensions of maintenance. In ICSE ’76: Proceedings of the 2nd
international conference on Software engineering, pages 492–497, Los Alamitos, CA, USA,
1976. IEEE Computer Society Press.

[The09a] The Free Software Foundation. Bash shell. http://www.gnu.org/software/bash/, 2009.

[The09b] The Perl Foundation. The perl directory. http://www.perl.org/, 2009.

[TK05] Juha-Pekka Tolvanen and Steven Kelly. Defining Domain-Specific Modeling Languages to
Automate Product Derivation: Collected Experiences. In SPLC, volume 3714 of LNCS,
pages 198–209. Springer, Oct 2005.

[TZ08] Ralf Treinen and Stefano Zacchiroli. Description of the CUDF format. Mancoosi project
deliverable D5.1, November 2008.

[WK06] M. Wimmer and G. Kramler. Bridging grammarware and modelware. In Satellite Events
at the MoDELS 2005 Conference, volume 3844 of LNCS, pages 159–168. Springer-Verlag,
2006.

[Wor] World Wide Web Consortium (W3C). Web Ontology Language (OWL).
http://www.w3.org/2004/OWL.

[XA06] Yichen Xie and Alex Aiken. Static detection of security vulnerabilities in scripting languages.
In USENIX-SS’06, pages 179–192, 2006.

[ZX04] Yingzhou Zhang and Baowen Xu. A survey of semantic description frameworks for pro-
gramming languages. SIGPLAN Notices, 39(3):14–30, 2004.

Deliverable D3.2 Version 1.0 page 91 of 91

http://www.gnu.org/software/bash/
http://www.perl.org/

	Introduction
	Background
	Related Works
	Structure of the deliverable
	Glossary

	Classification of upgrade failures
	General Description of a Failure
	Failure Classification
	Examples of upgrade failures
	How Meta-Installers deal with upgrade failures

	Model-driven approach for supporting FOSS system upgrades
	FOSS system upgrades
	Model Driven Engineering
	Models and Meta-models
	Model Transformations

	Simulating system upgrades
	Role of the DSL in the upgrade scenario

	DSLs supporting the upgradeability of GNU/Linux systems
	MANCOOSI DSL: Abstract syntax
	MANCOOSI DSL: Concrete syntax
	Grammar Definition
	Control statements
	Iterator statements
	Template statements
	Alternatives
	Desktop
	Doc-base
	Emacs
	GConf
	Icons
	Info
	Init
	Install shared libraries
	Menu
	Mime
	Modules
	Scrollkeeper
	SGML catalog
	udev
	usrlocal
	Users and Groups
	Windows manager
	Xfonts

	Tagging statements

	MANCOOSI DSL: Semantics
	Model transformations and ATL in a nutshell
	Operational Semantics using ATL
	Alternatives
	Desktop
	Doc-base
	Emacs
	GConf
	Icons
	Info
	Init
	Make shared libraries
	Menu
	Mime
	Modules
	Scrollkeeper
	SGML catalog
	udev
	usrlocal
	Users and Groups
	Windows manager
	Xfonts
	Tagging statements

	Sample DSL applications
	Apache2 and libapache-mod-php5
	A sample use-before-define failure: Freeradius-2.1.3

	Conclusion
	Fragment of the MANCOOSI metamodel

