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Abstract

Modern software systems are moving towards an on-line mode of operation where long down-
times due to maintenance problems are no more acceptable. With the shift towards an on-line
mode of operation the “minimal acceptable standard” for the quality of service of modern
software systems has been raised to a very high level.

One of the most challenging modern software systems are Free and Open Source Software
(FOSS) distributions. Even big companies such as Google and Linden Lab, or large public
bodies, like the French Ministry of Finance, base their information technology infrastructures
on FOSS components. FOSS systems are typically based on fine-grained units of software
deployment, called packages, which evolve in a non-centralized and controlled way and are
frequently released [Ray01].

The complexity of deploying a complete FOSS infrastructure has led to the development of
what are now called distributions (e.g., Mandriva, Ubuntu, Fedora, etc.), which are consistent
and functional sets of software components released together with the software that is necessary
to set up a complete operating system. This software includes also automated mechanisms for
managing the packages the distributions are made of. These automated mechanisms, called
package managers, make use of packages metadata in order to upgrade the distribution, i.e., to
handle package installations, removals and upgrades. The most important information that is
contained in packages metadata concerns the specification of dependencies (i.e., what a package
needs in order to be correctly installed and to function correctly), and conflicts (i.e., what should
not be present on the system in order to avoid malfunctioning). These packages are equipped
with maintainer scripts which are executed before and after upgrades to perform configuration
actions. Unlikely, by using existent package managers it is possible to easily make the system
unstable by installing, removing, or upgrading some packages that “break” the consistency and
coherence of what is installed in the system itself.

In the context of the Mancoosi project, a model-based framework called Evoss (EVolution
of free and Open Source Software) [DCDRP+10] has been conceived to support the upgrade of
FOSS systems. The approach promotes the simulation [DPD11] of upgrades to predict failures
before affecting the real system. Both fine-grained static aspects (e.g., configuration incoher-
ences) and dynamic aspects (e.g., the execution of configuration scripts) are taken into account,
improving over the state of the art of package managers. In order to make upgrade prediction
more accurate, Evoss considers both static and dynamic aspects of upgrades. Static aspects
have been modeled by enhancing the expressiveness of the representations with respect to the
state of the art of package managers, enabling the detection of a larger number of undesirable
configurations, such as the breakage of fine-grained dependencies among packages, currently
neglected by package managers [DP11]. The main dynamic aspects considered are those related
to the behavior of package configuration scripts which are executed during upgrade deployment.
The scripting languages in which such scripts are written have rarely been formally investigated,
thus posing additional difficulties in understanding their side-effects which are pervasive and
are currently ignored when planning upgrades. A notion of simulation is given and shown to
be realizable by means of a domain-specific language (DSL) that specifies maintainer script
behavior. The language includes a set of high level clauses with a well defined transformational
semantics expressed in terms of system state modifications: each system state is given as a
model and the script behavior is represented by corresponding model transformations. The
proposed semantics is designed to better understand how the system evolves in a new configu-
ration by simulating system upgrades: this allows system users to discover upgrade failures due
to fallacious maintainer scripts before deploying the upgrade on the real system.

Deliverable D2.3 Version 1.0 page 3 of 99



May 24, 2011

To sum up, Evoss represents an advancement, with respect to the state of the art of package
managers, in the following aspects: (i) it provides a homogeneous representation of the whole
system configuration in terms of models, including relevant system elements that are currently
not explicitly represented, (ii) it supports the upgrade simulation with the aim to discover
failures before they can affect the real system, (iii) it proposes a fault detector module able to
discover problems on the configuration reached by the simulation. Examples of these problems
are implicit dependencies, missing configuration files, dangling mime-type handlers, missing
services, and so on.

In this document, the upgrade simulator and the fault detector components of Evoss are de-
scribed in details. Their application on the Debian distribution is also discussed.

Conformance

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL
NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OP-
TIONAL” in this document are to be interpreted as described in RFC 2119 1.

1http://www.ietf.org/rfc/rfc2119.txt
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Chapter 1

Introduction

Component-based software engineering is seen as a way for simplifying software development. A
component-based software system is an assembly of software components, usually implemented
by means of third-party libraries, designed to meet the system requirements [IC02]. Software de-
velopment based on the use of existing components has origin in the 1960s [NR68] and practical
applications have been widely explored in practice [BW98, DW99].

Modern software systems increasingly require to undergo continuing evolution [LB85]. The
evolution management of a component-based system cannot neglect the numerous relation-
ships [VR02], implicit or explicit, among components which might be affected when performing
routine component management operations (e.g., additions, removals, or upgrades of compo-
nents) as this can easily lead to unusable and corrupted systems.

A consequence of this continuous evolution is that software systems are expected to become
more resilient, i.e., these systems are required to persistently deliver their services in a trust-
worthy way despite of changes. Despite the relevant body of research on software evolution (see
e.g., [MDe08]), there is still the need for better predictive models which are able to anticipate
the consequences of applying specific system changes [MWD+05]. Specifically, the evolution
management of component-based systems is intrinsically difficult and requires techniques, algo-
rithms, and methods which are both expressive and computationally convenient in order to be
used in practice.

When maintaining large component-based software systems, it is essential to manage the up-
grade in such a way that the good properties of the current system state are not disrupted.
We intend upgrade as the possibility to modify an existing system by replacing some of the
existing components with others, by adding new components or by deleting existing ones.
There is extensive literature on component-based software evolution in many specific cases
(e.g., [LR00, Vig01, BW98, DW99]); in the following we rather give a general abstract frame-
work to describe some of the fundamental issues that component ugprade poses, independent of
the specific component model or programming language involved. Then, we show how model-
driven techniques can help on practically realizing the proposed abstract framework by using
models, model transformations, and model elicitation techniques.

13



May 24, 2011

1.1 Component-based software evolution

At a very abstract level, a software system s can be seen as belonging to a set of states S,
equipped with a coherence relation Coher : S → Bool that identifies those states that are
coherent, according to some application-specific notion. A software unit u usually consists of a
pair 〈c, d〉, with c the software component and d a description of it. The latter typically contains
a brief description ranging from basic information, such as the unit name, to more structured
specifications of the component behavior and its dependencies on other components, such as a
model written in terms of some modeling language.

An upgrade operation upgrade(u, op) involving a single unit u modifies the system by performing
a particular operation op on u, such as addition, removal, or replacement by another version.
Upgrades, and in particular the ones we are interested in, may involve programmatic steps, that
can produce errors, so an upgrade is a system transformation of type:

upgrade(u, op) : S → S ] Err

1.1.1 Successful upgrades

According to the specific target application, the notion of “successful upgrade” may vary: at the
very minimum, one requires that an upgrade(u, op) performed on an initial state si completes
without execution errors, making the system evolve to a final state sf . This is shown in the
following Property 1.1.

upgrade(u, op)(si) = sf
si 7→u,op sf

(1.1)

In general, one would expect more than that. A successful upgrade, as shown in Property 1.2,
should only be one that makes the system evolve without errors to another coherent state.

upgrade(u, op)(si) = sf ∧ Coher(sf )

si 7→u,op sf
(1.2)

Additional conditions might be required on the state on which the upgrade is performed. Re-
ferring to Property 1.2 one might think to perform the upgrade only when the system is in a
coherent state: Coher(si). However, this is too restrictive since this abstract framework can be
also used to perform the upgrade when the system is in an incoherent state; in this case the
aim is to recover the system by performing some error recovery operation.

Ideally, one would also like to be able to check whether the upgrade will be successful before
actually executing the upgrade, to avoid disrupting the system and all the hassle of rolling it
back to a previous coherent state. Let us assume that there exists a precondition predicate pre
that satisfies the Property 1.3.

pre((u, op), si)

upgrade(u, op)(si) = sf ∧ Coher(sf )
(1.3)

Then, it is then possible to ensure that the upgrade operation will be successful by just checking
that the preconditions of Property 1.4 are satisfied.

pre((u, op), si)

si 7→u,op upgrade(u, op)(si)
(1.4)
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We notice that it is possible for a sequence of upgrades starting from a coherent state si and
ending into an coherent state sf , to pass through intermediate incoherent states. For example,
if a functionality offered by one component u0 is to be replaced by the same functionality offered
by the combination of two components u1 and u2, removing u0 and then adding u1 and u2 leads
to a new coherent state, but all the intermediate states are broken. It is then necessary to
perform this series of upgrade operations as a whole, and we write such operations:

upgrade(u, ops) = {upgrade1(u1, op1), . . . , upgraden(un, opn)}

1.1.2 Successful upgrades are not easy

In most component based deployment and maintenance systems it is possible to find some
sort of precondition predicate implemented. However, in practice the precondition predicate
pre previously introduced, is not computed on the full system state s and on the full upgrade
operation upgrade(u, op); it is only computed on abstract approximations of this information.
Typically, this information consists of the description d of the modified component u, and of
some limited part of the system state (e.g., the list of installed components, the file system,
etc.). Thus, Property 1.4 is not easily achievable, as it implies:

1. the correctness of the description d with respect to u, as this information is being used to
determine whether the preconditions is satisfied or not; and

2. the soundness of the precondition predicate pre with respect to the execution of the
upgrade(u, op) operation, which may contain arbitrary code.

1.2 Controlled upgrades via model transformation

To make progress towards establishing Property 1.4, we propose an iterative approach based on
models (representing system abstractions) and simulations, that will allow us to build approxi-
mations of the precondition predicate pre.

A state s ∈ S can be represented by a model Mod(s) ∈ M, where M is the set of all the
possible system abstractions. Then, to each upgrade(u, op) we can associate, using a mapping
A : U → P × T , a guarded model transformation consisting of a pair (P, T ) with P ∈ P a
predicate and T :M→M]Err a transformation capable of consistently transforming Mod(si)
into Mod(sf ) or eventually fail. The following diagram shows the relations among the upgrades
on states and their associated model transformations:

Mod(si)
A(upgrade(s, op))

> Mod(sf )

si

Mod
∧

upgrade(u, op)
> sf

Mod
∧

(1.5)

A strong simulation is then a mapping:

σ :M× (P × T )→M] Err

such that σ(Mod(si),A(upgrade(u, op))) = Mf implies upgrade(u, op)(si) = sf , with Coher(sf )
and Mf = Mod(sf ) for any upgrade(u, op) ∈ U and si ∈ S.
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If σ does not imply the coherence of the final state, we call it a weak simulation; in contrast
with the strong simulation, the weak one may give false positives, because successful simulation
of an upgrade does not guarantee that the actual upgrade will not fail.

A weak simulation σ2 can be more accurate than σ1, denoted by σ2 > σ1, if there exits a
coherent state si and failing upgrade(u, op)(si) ∈ Err such that:

σ2(Mod(si),A(upgrade(u, op))) ∈ Err but

σ1(Mod(si),A(upgrade(u, op))) ∈M

Thus, if σ is a simulation, then σ ◦ Mod is the precondition predicate pre, with the desired
Property 1.4. Moreover, it is possible to build better approximations of pre by iteratively
refining the models and the simulation: while obtaining a strong simulation appears unfeasible
today, we have already made significant progress refining weak simulations to enhance the overall
accuracy.
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Figure 1.1: Controlled upgrades via model transformations

Figure 1.1 shows the process involving all the actors: Mod and σ, composed of P and T . Real
components and real system are elicited by means of the Component Elicitation and System
Elicitation, respectively. These two functions realize Mod. The produced models are then taken
as input by the Upgrade Simulator (that executes T ), which produces a New System Model or
an Error Model. If no errors are found the coherence of the produced system model is checked
by means of the Fault Detector (that evaluates the predicate P). If the system model is coherent
the real Upgrade can be performed thus producing the Upgraded Real System.

In the following we describe the main part composing the approach, namely the model elicita-
tion, see Section 1.2.1, the simulation, see Section 1.2.2, and the fault detector, see Section 1.2.3.

1.2.1 Model elicitation

The elicitation of models representing complex real systems cannot be performed manually, but
some automation must be provided. Many approaches have recently addressed the problem
of deriving partial behavioral models from implemented systems. For example, [BIPT09] is
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an attempt defined in the web-services domain, [UBC09] proposes a synthesis technique that
constructs partial behavioural models from safety properties and scenarios, [LMP08] describes
a technique to automatically generate behavioral models from object-oriented system execution
traces, and [DCDRP+10] presents tools and techniques to automatically derive models from
running open source software systems.

1.2.2 Simulation

Smith in [Smi00] defines simulation as “... the process of designing a model of a real or imagined
system and conducting experiments with this model to understand the behavior of the system or
to evaluate strategies for its operation.”. An important aspect of the simulation is its validity
in terms of fitness for purpose, as emphasized in [PAG+10, Sar86]. Model-driven techniques
might help realizing ‘trusted’ simulations. More specifically, the automation of the construction
of the system model on which the simulation is performed is a way to encode the trusting
relationship within the elicitation: it is in fact sufficient to largely test the elicitation function
for trusting on the built model. Moreover, the elicitation can be executed before each simulation
so to help on maintaining the ‘trust’ [PAG+10] on the models used for the simulation. Finally,
model-driven techniques might help in automatically validating the simulator itself. In fact the
model produced by the simulator can be compared with the model elicited by the real system
by means of a model elicitation technique [DPD11].

1.2.3 Fault detector

The fault detector can be used to check a system model for incoherences. Depending of the
nature of the model, different static analysis methods such as model checking [PPS08] or abstract
interpretation [CC77] can be applied. A particular class of formal methods are lightweight formal
methods, which promise to offer a cost-effective and pragmatic way of improving the quality of
software specifications [Jac02]. The Evoss fault detector is a sort of lightweight formal method.
It is fully automatic, focused in the specific domain, and effective. We use OCL1 instead of
using an existent lightweight approach, such as Alloy, since OCL can be directly used to query
any Meta-Object Facility (MOF) meta-model and search for model elements denoting fault.

1.3 The case of FOSS distributions

We then apply the general approach to the context of Free and Open Source Software (FOSS)
systems that suffer of the problems above discussed [MBC+06]: the community-centric manage-
ment of such systems is driven not only by the potential difference between current capabilities
and the demands of the environment, but also by (i) frequent releases of components [Ray01],
and (ii) security issues which require system administrators to immediately react to reduce
vulnerability windows [WLC01]. In particular, current upgrade management tools (e.g., the
package managers in Linux distributions) are only aware of some static dependencies that can
influence upgrades and completely ignore relevant dynamic aspects, such as potential failures of
configuration scripts that are executed during upgrade deployment. Thus, it is no surprise that
an apparently innocuous package upgrade can end up with a broken system state [CKK+07].

1OMG Object Constraint Language (OCL): http://www.omg.org/spec/OCL/
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1.4 Structure of the deliverable

This deliverable is structured in 8 chapters:

• Chapter 2 gives an overview of FOSS concepts and highlights limitations of current package
management solutions.

• Chapter 3 introduces Evoss and its composing parts.

• Chapter 4 presents the upgrade simulator component.

• Chapter 5 presents the fault detector component.

• Chapter 6 discusses related works.

• Chapter 7 concludes with final remarks and future research directions.

1.5 Glossary

This section contains a glossary of essential terms which are used throughout this specification.

Distribution A collection of software packages that are designed to be installed on a common
software platform. Distributions may come in different flavors, and the set of available
software packages generally varies over time. Examples of distributions are Mandriva,
Caixa Mágica, Pixart, Fedora or Debian, which all provide software packages for the the
GNU/Linux platform (and probably others). The term distribution is used to denote both
a collection of software packages, such as the lenny distribution of Debian, and the entity
that produces and publishes such a collection, such as Mandriva, Caixa Mágica or Pixart.
The latter are sometimes also referred to as distributors.

Still, the notion of distribution is not necessarily bound to FOSS package distributions,
other platforms (e.g. Eclipse plugins, LaTeX packages, Perl packages, etc.) have similar
distributions, similar problems, and can have their upgrade problems encoded in Common
Upgradeability Description Format (CUDF).

Installer The software tool actually responsible for physically installing (or un-installing) a
package on a machine. This task particularly consists in unpacking files that come as
an archive bundle, installing them on the user machine to persistent memory, probably
executing configuration programs specific to that package, and updating the global system
information on the user machine. Downloading packages and resolving dependencies be-
tween packages are in general beyond the scope of the installer and are what differentiates
a meta-installer from an installer. For instance, the installer of the Debian distribution is
dpkg, while the installer used in the RPM family of distributions is rpm.

Meta-installer , also known as a Package Management System. The software tool responsible
for organizing a user request to modify the collection of installed packages. This par-
ticularly involves determining the secondary actions that are necessary to satisfy a user
request to install or de-install packages. To this end, a package system allows the declara-
tion of relations between packages such as dependencies and conflicts. The meta-installer
is also responsible for downloading necessary packages. Examples of meta-installers are
apt-get, aptitude and URPMi.
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Package A bundle of software artifacts that may be installed on a machine as an atomic unit,
i.e. packages define the granularity at which software can be added to or removed from
machines. A package typically contains an archive of files to be installed on a machine,
programs to be executed at various stages of the installation or de-installation of a package,
and metadata.

Package status A set of metadata maintained by the installer about packages currently in-
stalled on a machine. The package status is used by the installer as a model of the software
installed on a machine and kept up to date upon package installation and removal. The
kind of metadata stored for each package varies between distributions, but typically com-
prises package identifiers (usually name and version), human-oriented information such as
a description of what the package contains and a formal declaration of the inter-package
relationships of a package. Inter-package relationships can usually state package require-
ments (which packages are needed for a given one to work properly) and conflicts (which
packages cannot coexist with a given one).

Package universe, is the collection of packages available through sources known to the meta-
installer in addition to those already known by the installer, which are stored in the local
package status. Packages belonging to the package universe are not necessarily available
on the local machine—while those belonging to the package status usually are—but are
accessible in some way, for example via download from remote package repositories.

Upgrade request A request to alter the package status issued by a user (typically the system
administrator) using a meta-installer. The expressiveness of the request language varies
with the meta-installer, but typically enables requiring the installation of packages which
were not previously installed, the removal of currently installed packages, and the upgrade
to newer version of packages currently installed.

Upgrade problem The situation in which a user submits an upgrade request, or any abstract
representation of such a situation. The representation includes all the information needed
to recreate the situation elsewhere, at the very minimum they are: package status, package
universe and upgrade request. Note that, in spite of its name, an upgrade problem is not
necessarily related to a request to “upgrade” one or more packages to newer versions, but
may also be a request to install or remove packages. Both Distribution Upgradeability
Description Format (DUDF) and CUDF documents are meant to encode upgrade problems
for different purposes.
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Chapter 2

FOSS distributions

Widely used FOSS distributions, like Debian, Ubuntu, Fedora, and Suse are based on the central
notion of software package. Packages are assembled to build a specific software system. The
recommended way of evolving such systems is to use package manager tools to perform system
modifications by adding, removing, or replacing packages. These operations are generically
called upgrades. Existent package managers integrate some preliminary checks, albeit extremely
weak: many unpredicted upgrade failures can happen. To better understand limitations of
existent package managers, Section 2.1 provides an overview of the typical elements composing
the packages of FOSS distributions, and in Section 2.2 we provide a classification of possible
upgrade failures, discussing their origins.

2.1 Packages and upgrades

In FOSS distributions, a package is a software unit u = 〈c, d〉 containing the software component
c and a description d of it, also known as metadata. More precisely, the structure of a package
u = 〈c, d〉 [DTZ08] is shown in Figure 2.1.

upgrade role

package


(c) file bundle ⊇ configuration files static

⊇ maintainer scripts dynamic

(d) metadata ⊇ inter-package relationships static

Figure 2.1: Structure of a package

The core of each package is a file bundle encoding the shipped component: executable binaries,
data, documentation, etc. A distinguished subset of those files consists of configuration files,
which affect the runtime behavior of the component and are meant to be customized. During
upgrade deployment, most files play a “static” role, in the sense that they are simply copied
over.

Packages also contain a set of executable maintainer scripts, used by package maintainers to
hook custom actions into the upgrade process. Several aspects of maintainer scripts are notewor-
thy: (i) they play a dynamic role as they are executed during upgrades; (ii) they are full-fledged
programs, usually written in POSIX shell language; (iii) they are run with sysadm rights and
then they may perform arbitrary changes to the whole system; (iv) they cannot be replaced by
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Figure 2.2: The upgrade process: main phases

just shipping extra files: they might need to access data which is available in the target instal-
lation machine, but not in the package itself; (v) they are expected to complete without errors:
their failures, usually signalled by non-0 exit codes, automatically trigger upgrade failures.

Metadata describe package aspects needed for upgrade planning. Common metadata contain
the package identifier, version, maintainer, and description. Most notably, metadata are also
used to declare inter-package relationships such as: dependencies (the need of other packages
to work properly), conflicts (the incompatibilities with other packages), and feature provisions
(an indirection layer over dependencies) [MBC+06]. This information is taken into account by
the package manager when performing the system upgrade.

A system configuration can be very complex: it is composed of the file system, running services
and processes, environment data, memory content, etc. In practice, the most relevant part
of the system state for upgrades is the package status, recording which packages are currently
installed. Changes to the package status are performed by package managers that are usually
separated into two types: low-level installers—which deploy individual packages on the system,
possibly aborting the operation if problems are encountered at deploy-time—and high-level
meta-installers—which first plan upgrades and then drive installers.

Figure 2.2 gives an overview of the overall upgrade process. The first phase—planning—tries
to find an upgrade plan that satisfies the user request. Planning poses challenging algorithmic
problems such as solving inter-package relationships (a NP-complete problem [MBC+06]) and
choosing the best configuration according to user preferences [TZ09]. Nowadays, planning is
entirely delegated to meta-installers. In a typical upgrade scenario, the system administrator
(or sysadm) requests a status change and the meta-installer devises a corresponding upgrade
plan to be deployed by the installer. The actual deployment phase alternates between unpacking
and configuration stages: during the former, static package files get installed on disk; during the
latter, maintainer scripts are executed at the appropriate hook points. Hook points encompass
pre-/post-installation hooks (i.e., before/after package unpacking), pre-/post-removal hooks,
etc.

In order to figure out the role of maintainer scripts during an upgrade, we report a simple
example of such scripts (see Example 2.1).

Example 1 A recent Debian php5 package—which ships a web scripting language—contains a post-
installation (postinst, on the left) and a pre-removal script (prerm, on the right):

1 #!/bin/sh

2 i f [−e /etc/apache2/apache2 . conf ] ; then
3 a2enmod php5 | | true
4 reload_apache

5 f i

1#!/bin/sh

2i f [−e /etc/apache2/apache2 . conf ] ; then
3a2dismod php5 | | true
4f i

postinst gets executed after unpacking and, in particular, after the Apache module php5 files have been

installed: it first takes care of enabling the module by invoking the a2enmod command on line 3, then it

reloads the Apache service (line 4) to activate it. Upon php5 removal, this module is disabled by invoking

a2dismod.
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2.2 Upgrade failures: reasons and discussion

Current tools are able to predict a very limited set of upgrade failures before deployment: most
notably, meta-installers can only detect broken dependencies by inspecting the metadata, before
calling the low-level installer, which would otherwise complain about them during deployment.
A meta-installer knows how to check a precondition that ensures that no broken dependencies
exist in the target configuration. If the precondition is not verified, no attempt will be made to
deploy the (broken) upgrade plan.

Unfortunately, when trying to predict upgrade failures, existing tools only consider static pack-
age metadata. In this way they do not take into account implicit dependencies among packages
that occur, for instance, because of their configuration files. For example, the package Apache

does not depend on php5 (and should not, because it is useful also without it), but while php5

is installed, Apache needs specific configuration to work in harmony with it. At the same
time, such configuration would inhibit Apache to work properly once php5 gets removed. The
bookkeeping of such configuration intricacies is delegated to the maintainer scripts shown in
Example 2.1.

Moreover, the behaviour of the maintainer scripts is completely ignored. This leaves a wide range
of failures unpredicted, some of which can be captured by using our model-driven approach.

Upgrade deployment can fail for several reasons [DTZ08]. Both experience and previous research
show that failures are not hypothetical, but rather the reality of sysadm life [CKK+07]. Upgrade
failures can be classified according to when a failure is detected: at deploy-time (usually by the
installer) or later on (usually by the user). Deploy-time failures can be refined according to the
specific upgrade phase in which they are detected and to whether they concern the static or
dynamic part of a package.

Static deploy-time failures occur when a static requirement is violated during the upgrade:
typical examples are file conflicts (two packages attempt to install the same file, violating an
explicit installation policy) and dependency errors (an attempt is made to install a package
violating package dependencies). In both cases, the low-level package manager fails at deploy-
time, aborting the upgrade process.

Dynamic deploy-time failures occur when a maintainer script fails. They are tricky to
deal with, given that shell script failures can originate from a wide range of errors, ranging
from syntax errors to failures in the invocation of external tools. Dynamic deploy-time failures
cannot be easily undone: scripts can alter the whole system (on purpose) and any non-trivial
property about them is undecidable (the language is Turing complete and difficult to treat
formally [XA06]), it is therefore impossible to determine before the execution of scripts which
part of the system will be affected by their execution. This kind of failures has not been
addressed by state of the art package managers.

Undetected failures are failures that remain undetected through upgrade deployment: ac-
cording to all involved tools, the upgrade has been completed successfully, but the obtained
system configuration contains incoherences. (i.e., ¬Coher(sf ) in Section 1). Undetected failures
are the most subtle kind of upgrade failures, and can take very long (days, or even weeks)
before being discovered, if they ever are. They can sometimes be fixed by configuration tuning
(e.g. changing configuration keys or values to match the requirements of new sofware versions),
but when this is not the case, an unsupported and error-prone manual rollback is the only
solution left. As an example of such a failure, consider again Example 2.1 and imagine that
postinst does not disable the php5 module (not an unlikely scenario, given that such snippets
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are often written by hand). After removing php5, an incoherence is created in the system,
as the Apache configuration still references a module which is no longer there. As Apache is
not restarted upon removal of the module, the error will go unnoticed during the upgrade. It
will show up at the next Apache reload, which can take place months later, when the sysadm
will most likely find out that Apache cannot be restarted, and will hardly relate it to the
past upgrade. Addressing dynamic and undetected failures is hence a major issue for FOSS
distributions.

Current package managers are able to detect only static deploy-time failures. The objective of
Evoss is to propose an approach able to detect also dynamic deploy-time failures and (current)
undetected failures. To this aim Evoss provides a simulator to predict the effect of main-
tainer script executions (see Section 3), to deal with deploy-time failures, and a fault detector
component, which is able to deal with undetected failures.
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Evoss: EVolution of free and Open
Source Software

To improve the failure prediction of FOSS system upgrades, we propose a model-driven engi-
neering (MDE) approach [B0́5] called Evoss [DCDRP+10] which relies on a model-based repre-
sentation of the current system configuration and of all packages that are meant to be upgraded.
This enables Evoss to simulate upgrades as model transformations before upgrade deployment.
To this end, we encode fine-grained configuration dependencies and abstract over maintainer
scripts. This way the models capture all the information needed to anticipate the inconsis-
tent configurations that current tools cannot detect, as they only rely on package metadata.
The abstraction of maintainer scripts is realized by defining a new domain specific language as
described in Section 3.5.
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Figure 3.1: Overview of the Evoss approach

An overview of Evoss is sketched in Figure 3.1. The simulation of a system upgrade is performed
by the Upgrade Simulator [DPD11] which takes a set of models as input produced by the
Injector : a System Configuration Model and Package Models corresponding to the packages
which have to be installed/removed/replaced. The output of Upgrade Simulator is a new System
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(c) file bundle ⊇ configuration files static

⊇ maintainer scripts dynamic

(d) model ⊇ inter-package relationships static

⊇ configuration dependencies static

⊇ maintainer scripts representation dynamic

Figure 3.2: Modeling packages

Configuration Model if no errors occur during the simulation, otherwise an Incoherences Report
is produced. The new System Configuration Model is queried and analyzed by the Fault Detector
component [DP11]. When Fault Detector discovers inconsistencies they are collected in the
Incoherences Report. The real upgrade is performed on the system only if the new system
configuration model is coherent.

The System Configuration Model describes the state of a given system in terms of installed pack-
ages, running services, configuration files, etc. The Package Model provides information about
all packages involved in the upgrade, including maintainer script behaviour. The abstraction
provided by Evoss is more expressive than current package metadata. In fact, the proposed
models also capture configuration dependencies and provide a representation of the maintainer
scripts which have to be executed, as shown in Figure 3.2.

The modeling constructs which can be used to define system and package models are defined
in the system configuration and package metamodels, respectively [DPPZ09]. Such metamodels
have been obtained by analyzing the FOSS system domain and by formalizing it, according to an
iterative process consisting of two main steps: (a) elicitation of new concepts from the domain
to the metamodel, and (b) validation of the formalization via instantiation to real systems. This
process may be iterated further in case we discover limitations in the failure prediction power
of the approach. These two metamodels are only briefly outlined in the rest of the section,
but the complete metamodels can be found on the web at: http://www.mancoosi.org/software/

mancoosi-metamodels.tar.gz.

System configuration metamodel Figure 3.3 shows a fragment of the system configuration
metamodel which contains the main concepts of FOSS system configurations. In particular,
the Environment metaclass enables the specification of loaded modules, shared libraries, and
running processes.

Figure 3.3: Fragment of the Configuration metamodel
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Figure 3.4: Fragment of the Package metamodel

All system services can be used once the corresponding packages have been installed (note
the association between the Configuration and Package metaclasses) and properly configured
(PackageSetting). Moreover, the metamodel allows the configuration of an installed package to
depend on other package configurations: this is a fundamental feature that allows us to capture
undetected failures, like the one that would arise if modifying the scripts of Example 2.1.

Package metamodel The metamodel shown in Figure 3.4 contains the modeling constructs
used to describe relevant package elements. In order to describe maintainer scripts behavior,
the package metamodel contains the Statement metaclass which represents an abstraction of
the commands that can be executed by a given script to affect the environment, the file system,
or the package settings of a given configuration.

Inside the Statement metaclass, we provide an abstract representation of maintainer scripts
which takes the form of a new domain specific language. We recall that “real” scripts are usually
written in POSIX shell language and that all non-trivial properties about them are undecidable,
including determining a priori their effects, for the purpose of reverting them upon failure. In
this respect, a new language is required to reliably specify and simulate the behaviour of the
scripts which are executed during package upgrades. In an ideal future scenario, all maintainer
scripts will be written in the new DSL. In the meantime, in order to enable the application of
the proposed upgrade simulation, specific support is required to translate the existing scripts in
statements of the DSL as discussed in Section 3.1. Section 3.2 describes the upgrade simulator
component, Section 3.3 describes the fault detector component, while Section 3.4 discusses the
integration of Evoss with legacy environments.

3.1 Model Injector

The first step to apply the proposed simulation approach is to build the system configuration
and package models. In MDE terminology we need model injectors, apt to extract models from
existing artifacts.

Evoss uses a specific model injection architecture [DPP10] that is implemented by using the
Eclipse Modeling Framework (EMF)1. As shown in Figure 3.5, this architecture has a layered

1Eclipse Modeling Framework: http://www.eclipse.org/emf
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Figure 3.5: The Evoss model injection architecture

Figure 3.6: Configuration model: an example
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structure. The most specialized layer, which is in charge of querying the concrete system
configuration, is distribution-specific and needs to be re-targeted to each new distribution; the
other two layers are distribution-independent. The Mancoosi Model Management consists of
Java code which provides the infrastructure necessary to manipulate models conforming to the
Configuration and Package metamodels shown in Figure 3.3 and in Figure 3.4. The Mancoosi
Injection Instractucture contains a set of Java classes devoted to gather specific aspects of
Linux distributions, like the file system, packages, alternatives, etc. This layer is distribution-
independent and makes use of distribution-dependent injectors defined in the uppermost layer
in Figure 3.5.

The outcome of the system injection is a model that represents, in a homogeneous form, different
aspects of a running system, such as installed packages, users and groups, mime type handlers,
alternatives, implicit dependencies, etc. Figure 3.6 shows a configuration model obtained as
output of the model injector. This model consists of an environment composed of the services
sendmail, and www (see the instances s1 and s2) corresponding to the running mail and web
servers, respectively.

The instances ps1 and ps2 of the metaclass PackageSetting represent the settings of the
installed packages apache2 and libapachemod-php5, respectively. The former depends on the
latter (see the value of the attribute depends of ps1 in Figure 3.6) and both are associated with
the corresponding files which store their configurations. Such a fine-grained, installation-specific
dependency is not currently expressible using package metadata only.

Static data

Maintainer scripts

Package

Static data injection

Maintainer scripts injection

Mancoosi Model

Figure 3.7: Overview of the package injection procedure

A particular attention is required for the injection of packages since they have both static
and dynamic parts. The outcome of package injection is shown in Figure 3.7, where the dis-
tinction between static and dynamic package parts can be appreciated. The resulting model
contains modeling elements encoding both the considered package and its scripts (as DSL state-
ments). The maintainer script injection requires specialized techniques and tools. We used
Gra2MoL [JJJ08] which is a language especially tailored to specify mappings between grammar
elements and target metamodel elements. A Gra2MoL transformation definition consists of
rules transforming grammar elements into model elements.

The Package Model provides information about the package involved in the upgrade, including
maintainer scripts behaviour. Figure 3.8 shows a fragment of the package swiprolog-5.7.59.
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Figure 3.8: Model of the sample package swiprolog-5.7.59

The model represents the files contained in the package, the dependencies with other packages
and the maintainer scripts which are executed during the upgrade. In Evoss, maintainer scripts
can be expressed by means of a DSL [DCDRP+10] that mainly provides macros representing
recurring script fragments. Moreover, the DSL contains limited control flow operations and
a tagging mechanism that allows us to specify the behavior of script parts that cannot be
completely specified with DSL macros. This way, script authors (usually package maintainers)
can specify how such parts affect the configuration model and enable their simulation. The
limited expressive power of the DSL is the price to be paid to have the DSL amenable to
automated analysis.

The postinst script of the package swiprolog-5.7.59 consists of four DSL statements (see Fig-
ure 3.8). The statement that can affect the system configuration during the package installation
is the if statement. Its then block contains the addAlternative statement that, once executed,
creates a new alternative called prolog, which points to the executable /usr/bin/swipl. In
particular, the alternative system used by FOSS aims to solve problems which can rise when
several programs fulfilling the same or similar functions are installed at the same time. For
example, a system may have several prolog engines at once. This permits users to choose the
engines to execute by means of the alternatives system. A generic name in the filesystem is
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Figure 3.9: Maintainer scripts injection

shared by all files providing the interchangeable functionality. For example, if both SWI-Prolog2

and AI::Prolog3 are installed on the system, the alternatives system can cause the generic name
/usr/bin/prolog (also named master link) to refer to /usr/bin/swipl (also named slave link)
by default. The system administrator can override this by changing the reference of the generic
name to link to /usr/bin/aiprolog.

The maintainer scripts injection process is depicted in Figure 3.9: GMS is the grammar we
defined for parsing the maintainer scripts. By means of ANTLR4 we produced a parser for
GMS . The parser takes as input the maintainer scripts and produces an abstract syntax tree
for the parsed scripts. The abstract syntax tree is taken as input by Gra2MoL transformations
which query it and generate target models. Further details about the whole injection process
can be found at [DTPP09].

3.2 Upgrade Simulator

The simulation of system upgrades is performed by the Upgrade Simulator component shown
in Figure 3.1. Given an upgrade plan consisting of a sequence of packages to be installed/re-
moved/replaced, the corresponding package models are retrieved by means of the model injector.
In particular for each package involved in the upgrade, the maintainer scripts injector retrieves
the maintainer scripts associated to the package and transforms them in DSL scripts. Then,
for each package model the simulator executes the four steps shown in Figure 3.10. Start-
ing with the simulation of pre-install(-removal) scripts (step a), if no errors are identified, a
new configuration model is obtained and the unpacking simulation is performed on it (step b).
Then post-installation scripts are simulated on the obtained model (step c), and if no errors
are encountered yet, the target configuration model is finalized by adding/removing/replacing
the representation of the involved packages (step d). When an error is encountered during the
simulation, specific error models are produced; they can be further queried and analyzed to
better understand the nature of the error.
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Figure 3.11: Script simulator

The most delicate part of the overall process is the simulation of the scripts which are executed
during the upgrade. Figure 3.11 shows an overview of the simulator which has been conceived
for such a purpose. The script simulator performs three subsequent activities. Given a main-
tainer script expressed in the DSL and composed of n statements St1, St2, . . . , Stn, the activity
a), namely Retrieval of Model transformations, retrieves, from the Repository of Model trans-
formations, the model transformations associated to the n statements composing the script. It
is important to recall that the model transformations provide the (operational) semantics of the
script statements. More precisely, the model transformations define how a source configuration
changes when DSL statements are executed. The activity b), namely Model transformation
orchestration generation, properly chains these model transformations. Finally, the activity c),
namely Model transformation orchestration execution, executes the chain of transformations on
the source configuration model and, if no error is encountered, a new configuration is generated.

2http://www.swi-prolog.org/
3http://cpan.uwinnipeg.ca/dist/AI-Prolog
4http://www.antlr.org
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3.3 Fault detector

Given the current configuration model, the system upgrade is simulated by taking into account
the packages that have to be upgraded. A fault detector is then used to check system configura-
tions for incoherences. The coherence of a configuration model is evaluated by means of queries
which are embodied in the fault detector. In particular, for each detectable classes of faults,
a corresponding OCL5 expression is defined and used to query models and search for model
elements denoting faults.

OCL is a declarative language that provides constraint and object query expressions on models
and meta-models. A sample OCL query is shown in Listing 3.1: given a configuration model
(IN conforming to the metamodel MM), all the instances of the MimeTypeHandler metaclass are
retrieved and those which do not have a handler specified are considered. When the result of this
query is greater than 0, an inconsistent configuration has been detected. These configurations
are considered to be inconsistent due to the existence of mime types without corresponding
handlers installed (e.g. the owning package has been deleted without un-registering the handler).

Listing 3.1: Fragment of the OCL query to detect missing mime type handlers
1 MM ! MimeTypeHandler . allInstancesFrom ( ’IN’ )
2 −>select ( e |
3 e . handler . oclIsUndefined ( )
4 )−>size ( )

The fault detector is extensible in the sense that when new incoherences are identified, a corre-
sponding OCL query can be defined and added to it. If incoherences are identified in either the
source or target configuration models, the upgrade cannot be performed; the sysadm can then
either fix the problems manually or avoid deploying the upgrade.

3.4 Integrating Evoss with legacy environments

The integration of Evoss with legacy environments is realized by suitably extending existing
meta-installers. Figure 3.12 shows both the static and dynamic views of the popular meta-
installer apt-get. Its architecture is very similar to other meta-installer architectures. As shown

5OMG Object Constraint Language (OCL): http://www.omg.org/spec/OCL/

Apt-get dpkg
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Apt-get dpkg
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(b) Dynamic view

Figure 3.12: The apt-get meta-istaller: current solution
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Figure 3.13: Meta-istallers enhanced by Evoss

in Figure 3.12(b), apt-get receives the upgrade request from the user, plans the upgrade to be
performed, retrieves the involved packages, and invokes dpkg for each package as needed. It is
important to note that each kind of upgrade can cause either the installation, the removal or
the upgrade of the involved packages. For each invocation of dpkg, apt-get checks the outcome
of dpkg by means of its exit code.

Figure 3.13 shows the enhancement of existing meta-installers by means of the Simulator and
the Fault Detector component provided by Evoss. The upgrade request is sent to the Simulator
component before performing the upgrade on the real system. Figure 3.13(b) shows the case in
which both the Simulator and the Fault Detector components have a success as outcome. In
this case the upgrade of the real system can be performed. In case the Simulator or the Fault
Detector components detect errors, then the upgrade is stopped and the user is informed about
the encountered problems.

3.5 Abstracting maintainer scripts

As discussed in Section 2.2, the main reason for unpredictability of failure upgrades is the
difficulty to analyze maintainer scripts in their full generality. Our solution to improve pre-
dictability is to find a way to limit the expressive power of the language used in maintainer
scripts, without reducing the functionality of the scripts themselves. Another possible way to
improve the system reliability is to use testing approaches and in particular integration testing.
However, while testing is able to spot failures only after upgrade deployment, Evoss aims at
predicting failures before upgrade deployment.

To address this challenge, we need to first understand which part of the full-fledged script-
ing language is actually used in practice. We have therefore performed an extensive analysis
of maintainer scripts used in two mainstream distributions: Debian6, a very large distribu-
tion [GRM+09] based on the dpkg installer, and Fedora7, based on the RPM installer.

This analysis allowed both the identification of recurring templates in maintainer scripts and

6http://www.debian.org
7http://fedoraproject.org
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the collection of them in a limited number of clusters. The adopted procedure and results
can be found in [DRPPZ09] and we summarize here the relevant results: for Debian, we have
analysed all the 25,440 maintainer scripts belonging to the Lenny release, discovering that 16,348
(64.3%) scripts are entirely generated by means of debhelper8 templates, and only 9,061 (35.6%)
contain snippets written by hand. After further investigations of the hand written snippets, we
discovered a few additional templates, reaching a coverage of 66% maintainer scripts that can be
entirely written using templates only. Concerning Fedora, we have considered all the available
2,038 maintainer scripts used in Fedora 11. The analysis has shown that 1,962 (93.6%) scripts
are automatically generated starting from recurring templates. Fedora templates turned out
not to be significantly different from Debian templates. At the end, we came up to 52 different
templates [DPPZ09]. Each one of those templates contains statements that are executed as a
whole. Listing 3.2 shows a template example consisting of statements which get executed after
the removal of GNOME9 components which ship GNOME configuration schemata.

Listing 3.2: Example of template
1 i f [ "$1" = purge ] ; then
2 OLD_DIR=/etc/gconf/schemas
3 SCHEMA_FILES="#SCHEMAS#"
4 i f [ −d $OLD_DIR ] ; then
5 for SCHEMA in $SCHEMA_FILES ; do
6 rm −f $OLD_DIR/$SCHEMA
7 done
8 rmdir −p −−ignore−fail−on−non−empty $OLD_DIR

9 f i
10 f i

Another example of templates is the management of alternatives which allow distribution and
package owners to group and categorize packages that provide similar functionalities. For in-
stance, different Java virtual machines installed on a same system are managed by means of
an alternative named java which can point to a java executable among all the java executa-
bles registered within the alternative framework. This way the sysadm can freely chose which
virtual machine will be launched by default. Due to the frequency of alternative management
snippets, it would be profitably to have high-level statements to mimic alternative management
functionalities during simulation.

We have then defined a DSL that captures all the recurring templates and contains limited
control flow operations. The limited expressive power of the DSL is the price to be paid to have
the DSL amenable to automated analysis. However, the DSL has also a tagging mechanism
that allows us to specify the behaviour of script parts which cannot be completely specified with
DSL statements. This way, script authors (usually package maintainers) can specify how such
parts affect the configuration model and enable their simulation.

As usual for a programming language, our DSL has both abstract and concrete syntaxes. The
abstract syntax of the DSL is part of the metamodel shown in Figure 3.4. The Statement

metaclass represents an abstraction of the commands that can be executed by a given script to
affect the environment, e.g. the file system or the package settings of a given configuration. A
fragment of the concrete syntax is shown in Figure 3.14: we can see that programs are built by
composing primitive statements, which include both the 52 templates identified during script
analysis and a few other primitive operations on the system model. All syntax details can be
found in Chapter 4 of [DTPP09].

8Debhelper is a suite of utilities to streamline the maintenance of Debian-like packages. For more information
please refer to http://packages.debian.org/sid/debhelper.

9GNOME: The Free Software Desktop Project - http://http:www.gnome.org
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Figure 3.14: Fragment of the DSL grammar

Besides simple command sequencing, compound statements can use a very limited set of control
and iterator constructs. Control statements consist of a simple case instruction and a few
instructions to abort script execution, but no other tests, jumps or loops are allowed. To
counter the absence of general control flow operations, we provide various kinds of iterators,
specialised on the data structures typically manipulated by maintainer scripts: (i) directory
iterator, which enables to iterate on the files contained in a given directory, (ii) line iterator,
which specifies iterations on the lines of a given file, (iii) enumeration iterator, which takes an
enumeration iterator to work on an ordered set of indexes, (iv) argument iterator, which iterates
through each command line argument, and (v) word iterator, which takes a string as input and
repeats a set of statements for each word contained in the string.

Most of the code snippets found in maintainer scripts can be captured directly using the DSL
constructs. Nevertheless there are still a few scripts containing commands that are not cov-
ered by templates represented in the DSL (as we remarked above, a tiny number of Fedora
and a certain amount of Debian scripts are not covered by our 52 templates). To circum-
vent this limitation, we have included in our DSL a set of extra primitive statements (the
OTHER_PRIM_STATEMENT in Figure 3.14), which allows us to describe arbitrary modifications of
the system model, and can be used to capture the behavior of those commands that cannot be
recoded in the DSL using the standard templates. These other primitive statements are clas-
sified into additions and deletions and can be used to specify the deltas [CDP07] between two
configuration models, encoding the semantics of script snippets that escape standard templates.

Example 2 Let us suppose the maintainers write the following code:

1 i f [ −e /etc/apache2/apache2 . conf ] ; then
2 a2enmod php5 >/dev/null | | true
3 reload_apache

4 f i

The current version of the DSL does not allow to directly recode this snippet, as we did not find it
relevant enough to justify the need for a specific metaclass. Still, maintainers can specify its behavior as
follows:

1 #<%

2 addPackageSetting dependences ( apache2 , php5 ) ;
3 addEnvironment runningServices ( env , apache2 ) ;
4 #%if [ -e /etc/apache2/apache2.conf ] ; then

5 #% a2enmod php5 >/dev/null || true

6 #% reload_apache

7 #%fi
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8 #%>

In Example 3.5, the maintainer specifies the behaviour of the script code by enclosing it in
a #<%. . . #%> block. Immediately after #<%, a sequence of statements are given in order to
specify how the configuration model changes if the considered script code is executed. Here, the
execution of a2enmod php5 >/dev/null || true modifies the configuration model by adding a
new dependency between the package settings of the apache2 and php5 packages (line 2 above).
Then apache2 is reloaded and this entails the addition of apache2 as a running service in the
environment (line 3 above).

These specific statements allow us to define rules capable of checking if the removal of a package
leads to an inconsistent state. For instance, in this example, a rule can be defined to check if
the removal of the php5 package does not forget to disable the php5 in the Apache configuration.

This class of statements is intended to ensure full compatibility with existing distributions, and
ease translation of maintainer scripts to the DSL. During the transition, the set of templates will
grow to accommodate all the needs of package maintainers. As soon as all maintainer scripts
will be written in terms of templates, it will be possible to remove these special statements from
the DSL.

The semantics of the DSL is specified in an operational way in terms of model-to-model trans-
formations (given in ATL10). For each command, a corresponding transformation is given to
describe the exact command behavior when executed on the source configuration. In particular,
each statement consists of a precondition to be evaluated on the source configuration and of a
model transformation to be performed if the precondition is satisfied to produce an updated
configuration (e.g., see Example 3.5).

Example 3 The semantics of the statement rm alternative is shown in Listing 3.3: the exe-
cution of the rm alternative(name, location) removes the executable in location from the
alternative name. If the alternative being removed does not exist in the source configuration, an
error is raised (see lines 3-5), otherwise the alternative is not copied to the target configuration
model.

Listing 3.3: Fragment of the rm alternative semantics
1 rule rm_alternative ( name , location ) {
2 do {
3 i f ( INConfiguration ! Alternative . allInstances ( ) −> select ( a | a . name = name ) −>

↪→isEmpty ( ) ) {
4 ’ERROR: The alternative ’ + name + ’ does not exist’ . println ( ) ;
5 } else {
6 -- The action block is empty , no action is executed and hence

7 -- the Alternative name is not copied to target configuration

8 }
9 }

10 }

10Atlas Transformation Language: http://www.eclipse.org/m2m/atl/
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Chapter 4

Upgrade Simulator

In this chapter we look into the simulator of Evoss by presenting its structure, its constituting
elements, its implementation and by discussing the kind of errors the simulator is able to
predict before they affect the real system. The architecture of the simulator is distribution
independent so that it can be easily instantiated to the specific distribution. The simulator is
based on model-driven techniques and makes use of a model-based description of the system
to be upgraded. The simulator is able to simulate also pre and post installation scripts that
equip each distribution package. This is possible thanks to a domain specific language (DSL),
which has been conceived within Evoss to specify maintainer scripts behavior [DTPP09]. In
particular, the language includes a set of high level clauses with a well-defined transformational
semantics expressed in terms of system configuration modifications: each system configuration is
given as a model and the script behavior is represented by corresponding model transformations.

Real experiences show how the simulator works in practice by highlighting its efficacy, i.e., how
it improves the state of the art of package managers, and its performance while integrated in
real Linux distribution installations.

This chapter is organized as follows. Section 4.1 provides an overview of the upgrade simulator.
Section 4.2 presents three upgrade scenarios that the simulator is able to perform. Section 4.3
presents the simulation of maintainer scripts. Section 4.4 describes how the simulator has
been implemented by using model-driven technologies. The simulator can be integrated with
current Linux distributions and this is presented in Section 4.5. Section 4.6 presents a large
experimentation which has the aim of validating the approach and of showing its applicability
in practice.

4.1 Overview

The Upgrade Simulator is part of the Evoss approach and its integration with the other com-
ponents of Evoss is shown in Figure 3.1. This section has the aim of providing an overview of
the upgrade simulator.

As shown in Figure 4.1 the upgrade simulator gets as input both an upgrade plan, which is
produced by a planner and consists of a sequence of packages with associated the operation
to be performed (i.e., installation and removal of a package), and a configuration model. The
upgrade simulator invokes the Evoss package injector that gets as input a compiled package
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Figure 4.1: Upgrade simulator within Evoss

and automatically produces a model representing both static aspects of the package, i.e., the
information contained into the package metadata, and dynamic aspects, i.e., maintainer scripts.
The models, one for each package, that are produced by the Evoss package injector are provided
to the upgrade simulator. Then the upgrade simulator performs the upgrade simulation and
produces as output a new configuration model or an error model if some errors are discovered.

Figure 4.2: Upgrade simulator

As shown in Figure 4.2, the upgrade simulator, given an installation plan {(p1, u1),(p2, u2),· · · ,
(pn, un)}, retrieves the state of each package pi, 1≤i≤n. It is important to note that the
installation plan provides an ordered set of pairs, composed of a package and the operation to
be performed; then the upgrade simulator simulates the configuration upgrade by respecting the
installation plan order. Simulating the upgrade plan corresponds to simulating different upgrade
scenarios according to the states that the considered packages can have in the configuration
model. In particular, the possible states of a package, which are relevant for the simulation
purposes, are1:

1According to the Debian policy http://www.debian.org/doc/debian-policy and the manpage of dpkg
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• Installed: the package is installed.

• Not installed: the package is not installed and the configuration files are not present in
the system.

• Half-installed: when installing or removing the package some error has been experienced
and then the package is left in a half-installed state. This state can also have a Reinst

required flag meaning that the package needs to be reinstalled even if we want to remove
it.

• Config-files: when removing a package that was previously installed, if everything goes
well, the package will be left in the Config-files state since the configuration files of the
package have not been deleted. The purge operation must be performed to delete also the
configuration files and then to reach the Not installed state.

• Halfconfigured: indicates that the package has been unpacked, but its configuration
scripts have failed.

• Unpacked: The package is unpacked, but not configured.

The output of the selected simulation scenario is a New Configuration Model and an Error
Model if some errors are found while simulating the scenario. More precisely, a simulation is
valid if no failures are experienced during the simulation journey. Note that, even when the
simulation is not valid a new configuration model is produced; this might help in identifying
the error (the exact script and statement that raised it) and understanding it.

4.2 Upgrade scenarios

In this section we present three upgrade scenarios that the simulator is able to perform:

• Install - this scenario can be performed in six different states:

– Not installed state described in Section 4.2.1;

– Config-Files state described in Section 4.2.2;

– Half-installed or Half-configured state described in Section 4.2.3;

– Installed V1 state described in Section 4.2.4. This is a particular install scenario in
which we perform the installation of a package already installed (version V1).

• Remove - this scenario can be performed in three different states:

– Installed state described in Section 4.2.5;

– Half-installed or Half-configured states described in Section 4.2.6).

• Purge - this scenario can be performed in four different states:

– Config-Files state described in Section 4.2.7;

– Half-installed or Half-configured states described in Section 4.2.8;

– Installed state described in Section 4.2.9.

http://man.cx/dpkg#sec5
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4.2.1 Install performed in a Not installed state:

Figure 4.3 shows the operations that are performed when an installation has to be performed
and the considered package is in the Not installed state. The preinst maintainer script of
the package is invoked with install as parameter. If the script is simulated with no errors,
the unpacking of the files is simulated. This simulation consists of adding in the configuration
model the representation of the files contained in the package. Then the postinst script is
invoked with configure as parameter. If the simulation of this script fails then an error model
is produced and the package transits in the Failed config state. In case of the simulation of
the preinst script fails then the simulation of the postrm script with parameter abort-install

is invoked with the aim of removing the effect of the failed preinst script invoked before. If the
simulation of the postrm script successfully terminates then the Not installed state is reached
and an error model, which describes what caused the failure of the preinst script, is produced.
If the simulation of the postrm script fails a Half installed state is reached with associated
the Reinst required flag meaning that the package needs to be reinstalled even if we want to
remove it.

Figure 4.3: Install performed in a Not installed state

4.2.2 Install performed in a Config-Files state:

Figure 4.4 shows the operations that are performed when an installation has to be performed
and the considered package is in the Config-Files state. This scenario is very similar to the
previous one: the involved scripts, which are obviously of the new version of the script (version
V2), are invoked with V1 as parameter, where V1 is the version of the package previously installed
and then removed. This makes the scripts aware of the existence of the configuration files of
the package version V1.
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Figure 4.4: Install performed in a Config-files state

4.2.3 Install performed in a Half-installed or Half-configured state:

The scenario of installation of a package that is in a Half-installed or Half-configured state is
somehow in between the scenario described in Section 4.2.1 and the one described in 4.2.2. In
fact, we cannot exclude that configuration files of the package are present in the system, but on
the other side we are not sure that these files are present. Moreover, configuration files might
be of different package versions.

4.2.4 Install performed in an Installed state (V1):

This concerns the upgrade of an installed package. In particular the existing version V1 is
updated with the new version V2. The upgrade of an installed package is more complicated
since involves both the scripts of the installed version and those of the version to be installed.
The overall scenario is shown in Figure 4.5 that describes a particular installation in which a
previous version of the package to be installed in already present in the system.

The basic actions that are performed are the invocation of maintainer scripts in the following
order:

1. Execute the prerm script of the package V1 with parameters upgrade and V2;

2. Execute the preinst script of the package V2 with parameters upgrade and V1;

3. Files are unpacked;

4. Execute the postrm script of the package V1 with parameters upgrade and V2;

5. Execute the postinst script of the package V2 with parameters upgrade and V1.
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Figure 4.5: Install of a package performed in an Installed state

4.2.5 Remove performed in an Installed state:

Figure 4.6 shows the operations that are performed when a package in the Installed state has
to be removed. The prerm script of the package is invoked with remove as parameter. If the
script is simulated with no errors, files associated to the package, but not configuration files,
are removed. Then the postrm script is invoked with remove as parameter. The reached state is
Config-files meaning that configuration files of the package are still present on the system, i.e.,
they are not removed. If the simulation of this script fails then an error model is produced and
the package transits to the Half-installed state. In case of the simulation of the prerm script
fails then the simulation of the postinst script with parameter abort-remove is invoked with
the aim of removing the effect of the prerm script invoked before and failed. If the simulation
of the postinst script successfully terminates then the Installed state is reached and an error
model, which describes the motivations of the failure of the prerm script, is produced. If the
simulation of the postinst script fails a Half installed state is reached.

4.2.6 Remove performed in a Half-installed or Half-configured state:

Removing a package that is in a Half-installed or Half-configured state consists of reinstalling
and then of removing the package.
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Figure 4.6: Remove performed in an Installed state

4.2.7 Purge performed in a Config-Files state:

Figure 4.7 shows the purging of a package performed in a Config-Files state. A Config-Files

state may be reached when an installed package has been removed and, as explained in Sec-
tion 4.2.5, the configuration files of the package are not removed. Therefore, the simulation of
the postrm script is performed with purge as parameter. If the script terminates without errors,
the files are removed and the state of the package is set to Not-installed. If the script fails,
then an error model is produced and the state of the package does not change, i.e., it remains
in the Config-Files state.

Figure 4.7: Purge performed in a Config-files state
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4.2.8 Purge performed in a Half-installed or Half-configured state:

Purging a package that is in a Half-installed or Half-configured state consists of reinstalling
and then of purging the package.

4.2.9 Purge performed in an Installed state:

Figure 4.8 shows the removal and purging scenario that consists of the union of the removal
and purging scenarios.

Figure 4.8: Purge performed in an Installed state

4.3 Maintainer scripts simulation

As shown in each scenario described in Section 4.2, an important and relevant part of the
configuration upgrade simulation is the simulation of maintainer scripts. As described before
and shown in Figure 4.1, for each package involved in the upgrade, the package injector retrieves
the maintainer scripts associated to the package and transforms them in DSL scripts. Then
the idea is to execute the model transformation that is associated to the DSL statements, in
order to understand how the execution of the statements composing the script affects a source
configuration model.

Figure 4.9 shows an overview of the maintainer script simulator. The script simulator performs
three subsequent activities. Given a package model that contains some maintainer scripts ex-
pressed in the DSL, it selects the script to be simulated. Let the script be composed of n
statements st1, st2, . . . , stn. The first activity, namely Retrieval of Model transformations, re-
trieves, from the Repository of Model transformations, the model transformations associated to
the n statements composing the script. It is important to recall that the model transformations
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Figure 4.9: Maintainer script simulator

provide the (operational) semantics of the script statements. More precisely, the model trans-
formations define how a source configuration changes when DSL statements are executed. The
second activity, namely Model transformation orchestration generation, properly chains these
model transformations. Finally, the last activity, namely Model transformation orchestration
execution, executes the chain of transformations on the source configuration model and, if no
error is encountered at any step, generates a new configuration model. In case of error, an error
model is produced.

Figure 4.10: Orchestration of maintainer script statements

Figure 4.10 details the orchestration of the n statements st1, st2, · · · , stn composing the con-
sidered maintainer script. As previously said, the maintainer script is written in the Evoss
DSL and then each statement has its semantics expressed in terms of model transformations.
Then, for each i, 1≤i≤n, let Tsti be the transformation associated to the statement sti. The
transformation Tst1 gets as input the initial configuration model and produces as output the
configuration CM1 if no errors are found, otherwise an error model is produced, the simula-
tion of the script is stopped, and the control is passed to the upgrade scenario that invoked
the script. The execution of each statement is suitably orchestrated and finally (if no errors
are found) after the simulation of Tstn with input CMn−1 produces New Configuration Model.
It is important to note that even in case of errors, the maintainer scripts simulation returns,
together with an error model, the last configuration model that has been produced during the
simulation.
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Figure 4.11: Simulator architecture

4.4 Implementing the Upgrade Simulator

In this section we present an implementation of the Upgrade Simulator discussed in the previous
section. The simulator has been conceived by using different model-driven techniques and
tools based on the Eclipse Modeling Framework (EMF) [BSM+03]. The implementation of the
simulator together with the implementation of the whole Evoss approach is freely available at
http://evoss.di.univaq.it. Section 4.4.1 presents the architecture of the simulator, whereas
Section 4.4.2 describes more insights related to the execution of the simulator on concrete
scenarios.

4.4.1 Overview

The architecture of the upgrade simulator is shown in Figure 4.11. The Simulator component
mainly consists of three sub-components named StatesController, ManagersController, and
ATLTransformationRepository.

The StatesController component provides elements to maintain the state of the simulator
during the simulation of a given upgrade scenario. In this respect, the StatesController imple-
ments the State design pattern [GHJV95], which provides a solution to the problem of having
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different behaviors each depending on the state. According to such design pattern, the abstract
class SimulatorState is defined and the different states are specified as derived classes of the
simulator state base class. Such derived classes provide state-specific behaviors for the methods
defined in the base class. In other words, StatesController permits to maintain finite state ma-
chines each representing the execution of an upgrade scenario. For instance, the class InitState

represents the initial state of any upgrade scenario being simulated. Therefore, the implemen-
tation of the install method in InitState has a different behaviour of that, for instance, of
PostinstState. In fact, as expected, it is not possible to execute the install transition in the
PostinstState, which, on the contrary, can accept the execution of methods like configure to
configure a package just installed. The current state of the finite state machine is maintained
by the SimulatorContext class by means of the current relation.

The ManagerController component consists of managers able to interact with the external com-
ponents devoted to the management of all the models which are manipulated during the sim-
ulation. For instance, the SystemModelManager is an intermediate layer to interact with the
SystemModel component, which provides user with facilities to modify and query configuration
models. For instance, the method isInstalledPackage in SystemModelManager checks if a given
package is installed or not according to the information available in the considered system
configuration model. The ErrorModelManager is an entry point to the ErrorModel component,
which is used by the simulator to create error models in case of simulation failures. The mod-
els of the packages that are considered in the upgrade plans are manipulated by means of the
PackageModelManager which has methods to interact with the PackageModel component. For
instance, given a package model, the execution of the method getStatementPostInstScript of
PackageModelManager returns the statements that should be executed after any package instal-
lation simulation.

It is worth mentioning that the SystemModel, ErrorModel, and PackageModel components have
been developed starting from the specification of three different Ecore models. Then, by using
the Java code generation facilities provided by EMF, starting from such Ecore models three
corresponding Java components have been generated. Such components provide the means to
manage in a programmatic way models conforming to the defined Ecore models.

The simulator is able to simulate also the maintainer scripts which are executed during the
upgrades. In this respect, the simulator is able to create and execute the chain of model trans-
formations each representing the operational semantics of a single statement of the script to be
simulated. The upgrade simulator contains the ATLTransformationRepository that provides all
the model transformations that have to be executed during the upgrade scenarios. Such trans-
formations are implemented in ATL, a QVT compliant language that is part of the AMMA
platform [JABK08]. Listing 4.1 contains a fragment of the model transformation that defines
the semantics of the addAlternative statement of the Evoss DSL used in the maintainer script
of the package in Figure 3.8. Such a transformation consists of a module specification containing
a header section (line 1), transformation rules (lines 8-48) and a number of helpers (lines 3-6),
which are used to navigate models and to define complex calculations on them. In particular,
the header specifies the source models, the corresponding metamodels, and the target ones.
According to line 1 of Listing 4.1, the addAlternative transformation generates a target config-
uration model (and possibly an error model) starting from (i) the source configuration model,
and (ii) the package model representing the package that is involved in the upgrade scenario to
be simulated.

Helpers and rules are the constructs used to specify the transformation behaviour. The trans-
formation in Listing 4.1 consists of a set of rules each devoted to copying elements of a given
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type (e.g., Configuration and Environment) from the source configuration model to the target
one. For instance, in the fragment shown in Listing 4.1 the Configuration rule is able to copy
the configuration maintained in the source configuration model to the target one. As outlined
in the previous section, a configuration consists of many elements like the installed packages,
the configuration files, and the environment. For each of them a corresponding transformation
rule is provided, like the rule Environment (see lines 23-48) that copies the environment data
from the source configuration model to the target one.

Besides such a copy operation, the rule specifies the key semantics of addAlternative in the
action block specified in lines 36-46. In particular, if the location of the alternative being added
(e.g., /usr/bin/swiprolog in Figure 3.8) does not exist in the source configuration model, an
error model is created to notice the user about the occurred failure (see line 45). If such a
location is available and the alternative system is managing an alternative named as the value
of the nameAlt variable (e.g., prolog in Figure 3.8) then the new alternative is added (see line
41). In case of the sample package in Figure 3.8 the new alternative /usr/bin/swiprolog will
be added to the alternative named prolog.

1 create OUT : OUTConfiguration , OUTERR : MMError from IN : INConfiguration , INPACK :
↪→INPackage , INPOS : INCurrentPosition ;

2

3 helper def : existsAlternative ( n : S t r ing ) : Boolean = . . . ;
4 helper def : getAlternative ( n : S t r ing ) : INConfiguration ! Alternative = . . . ;
5 helper def : existsFile ( n : S t r ing ) : Boolean = INConfiguration ! File . allInstancesFrom ( ’IN’

↪→)−>collect ( e | e . location )−>exists ( e | e = n ) ;
6 helper def : getFile ( n : S t r ing ) : INConfiguration ! File = INConfiguration ! File .

↪→allInstancesFrom ( ’IN’ )−>select ( e | e . location = n )−>first ( ) ;
7 . . .
8 rule Configuration {
9 from s : INConfiguration ! Configuration

10 to t : OUTConfiguration ! Configuration (
11 name <− s . name ,
12 creationTime <− s . creationTime ,
13 systemType <− s . systemType ,
14 installedPackages <− s . installedPackages ,
15 fileSystem <− s . fileSystem ,
16 environment <− s . environment ,
17 . . . )
18 do {
19 ( ’Execution: add_alternative_deb.atl’ ) . println ( ) ;
20 }
21 }
22 . . .
23 rule Environment {
24 from s : INConfiguration ! Environment
25 using {
26 nameAlt : S t r ing = thisModule . getStatement . master . name ;
27 locationAlt : S t r ing = thisModule . getStatement . master . path ;
28 }
29 to t : OUTConfiguration ! Environment (
30 name <− s . name ,
31 runningServices <− s . runningServices ,
32 . . .
33 )
34 . . .
35 do {
36 i f ( thisModule . existsFile ( locationAlt ) ) {
37 i f ( thisModule . existsAlternative ( nameAlt ) ) {
38 thisModule . getAlternative ( nameAlt ) . current <− thisModule . getFile ( locationAlt ) ;
39 t . alternatives <− INConfiguration ! Alternative . allInstancesFrom ( ’IN’ )−>collect (

↪→e | thisModule . Alternative ( e ) ) ;
40 } else {
41 t . alternatives <− INConfiguration ! Alternative . allInstancesFrom ( ’IN’ )−>collect (

↪→e | thisModule . Alternative ( e ) ) . asSequence ( ) . including ( thisModule .
↪→createAlternative ( nameAlt , thisModule . getFile ( locationAlt ) ) ) ;

42 }
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43 } else {
44 t . alternatives <− INConfiguration ! Alternative . allInstancesFrom ( ’IN’ )−>collect ( e

↪→ | thisModule . Alternative ( e ) ) ;
45 thisModule . createErrorModel ( ’add_alternative ’ , ’The file ’+ locationAlt + ’ does

↪→ not exist!’ ) ;
46 }
47 }
48 }

Listing 4.1: Fragment of the ATL transformation defining the semantics of the addAlternative

statement

ATL does not provide a native support to compose different transformations; they are typically
composed by means of Ant [Apa] scripts that are difficult to manage. To overcome such difficul-
ties, the upgrade simulator adopts Wires* [RRGLR+09] a domain specific language that enables
the high-level orchestration of model transformations. Wires* has also an execution engine able
to load models and execute transformation chains according to the source Wires* model. Thus
to simulate the execution of a maintainer script, by means of the OrchestrationModelManager

component in Figure 4.11, the simulator (i) creates at run-time a Wires* model representing
the composition of the ATL transformations related to the statements to be simulated, and (ii)
executes the composed model transformations according to the created Wires* model (see the
method runOrchestrationModel of the OrchestrationModelManager component).

The SimulatorController in Figure 4.11 is in charge of controlling the overall simulation process
by enacting the proper upgrade scenario according to the current configuration. Listing 4.2
shows a fragment of the start method of SimulatorController that manages the simulation
phases according to the provided upgrade plan and the current configuration. In particular, for
each package specified in the upgrade plan (see line 3 of Listing 4.2) a number of checks are
performed.

If the action to be simulated is the installation of the package (see line 9) then the SimulatorCon-

troller checks the current state of the package in the configuration model. If the package is
already installed then the package upgrade scenario (shown in Appendix A) is simulated (see
lines 10-11). If the package is in the Config-files state, the install scenario shown in Figure 4.4
is simulated (see lines 12-13). If the package is in the Half Installed state the reinstallation of
the package is simulated (see Section 4.2.3). If the package is in the Half-Configured state, the
reinstallation of the package is simulated (see line 17-19). Finally, if the package is not installed,
the upgrade scenario in Figure 4.3 is simulated (see lines 20-21). If the install action is not
allowed in the current state of the considered package an error is raised (see lines 22-24).

If the action to be simulated is the removal of the considered package (see line 26), the upgrade
scenario in Figure 4.6 is simulated if the considered package is in the InstalledPackage state
(see lines 27-28). If the package is in the Half Installed or Half-Configured states the package
reinstallation and then its removal are simulated (see lines 29-33). In all the other cases an
error is raised (see lines 34-35).

Finally, if the action to be simulated is purge (see line 37), the upgrade scenario in Figure 4.8 is
simulated if the considered package is in the Installed state (see lines 38-39). If the package is
in the state Config-files the scenario in Figure 4.7 is simulated (see lines 40-41). If the package
is in the Half installed state the package reinstallation and its purge are simulated (see lines
42-46). In all the other cases, an error is raised.

1 public void start ( ) throws Exception {
2 . . .
3 for ( int i = 0 ; i < sequencePkg . getSizePackageSequence ( ) ; i++) {
4

5 String action = sequencePkg . getPackageAction ( i ) ;

Deliverable D2.3 Version 1.0 page 51 of 99



May 24, 2011

6 SystemModelManager sysModel = new SystemModelManager ( ) ;
7 SimulatorContext p ;
8

9 i f ( action . equals ( "install" ) ) {
10 i f ( sysModel . isInstalledPackage ( sequencePkg . getPackageName ( i ) ) ) {
11 // upgrade + reinstall

12 } else i f ( sysModel . isConfigFilesPackage ( sequencePkg . getPackageName ( i ) ) ) {
13 // install from configFiles state

14 } else i f ( sysModel . isHalfInstalledReinstRequiredPackage ( ( sequencePkg .
↪→getPackageName ( i ) ) ) ) {

15 // reinstall from half -installed state

16 // (Reinst -Required)

17 } else i f ( sysModel . isHalfConfiguredReinstRequiredPackage ( ( sequencePkg .
↪→getPackageName ( i ) ) ) ) {

18 // reinstall from half -configured

19 // (= Config -failed) state (Reinst -Required)

20 } else i f ( sysModel . isNotInstalled ( sequencePkg . getPackageName ( i ) {
21 // simple case: install from NotInstalledState

22 } else {
23 // The requested selection -state is not allowed

24 // on the current state of the package

25 }
26 } else i f ( action . equals ( "remove" ) ) {
27 i f ( sysModel . isInstalledPackage ( sequencePkg . getPackageName ( i ) ) ) {
28 // Remove from Installed state

29 } else i f ( sysModel . isHalfInstalledReinstRequiredPackage ( ( sequencePkg .
↪→getPackageName ( i ) ) )

30 | | sysModel . isHalfConfiguredReinstRequiredPackage ( ( sequencePkg .
↪→getPackageName ( i ) ) ) ) {

31 // reinstall from half -installed/half -configured

32 // state + remove (Reinst -Required)

33 } else {
34 // The requested selection -state is not allowed

35 // on the current state of the package

36 }
37 } else i f ( action . equals ( "purge" ) ) {
38 i f ( sysModel . isInstalledPackage ( sequencePkg . getPackageName ( i ) ) ) {
39 // Purge from Installed state

40 } else i f ( sysModel . isConfigFilesPackage ( sequencePkg . getPackageName ( i ) ) ) {
41 // Purge from ConfigFiles state

42 } else i f ( sysModel . isHalfInstalledReinstRequiredPackage ( ( sequencePkg .
↪→getPackageName ( i ) ) )

43 | | sysModel . isHalfConfiguredReinstRequiredPackage ( ( sequencePkg .
↪→getPackageName ( i ) ) ) ) {

44 // reinstall from half -installed/

45 // half -configured state + purge

46 // (Reinst -Required)

47 } else {
48 // The requested selection -state is not allowed

49 // on the current state of the package

50 }
51 } else {
52 // The requested selection -state is not allowed

53 // on the current state of the package

54 }
55 }
56 }

Listing 4.2: Fragment of the SimulatorController

Next section provides more insights about the execution of the simulator on real examples by
considering the building blocks previously described.

4.4.2 Running the Upgrade Simulator

As said in the previous section, given a source configuration model the simulator is able to
simulate a given upgrade plan to notice possible problems in advance without affecting the
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real system. The system configuration and the package models are automatically retrieved
by the simulator by using the ConfigurationInjector and the PackageInjector components,
respectively (see Figure 4.11). This section discusses in detail how the upgrade plan is given
(see Section 4.4.2), and how it is simulated (see Section 4.4.2). Section 4.4.2 provides more
insights about the simulation of the maintainer scripts involved in the considered upgrades.

Specification of the upgrade plan

The upgrade plan that has to be simulated is represented in terms of an XML document, like the
one reported in Listing 4.3. This XML document for the upgrade plan is automatically produced
by MPM (Mancoosi Package Manager) [ACTZ11], which is a modular package manager realized
within the Mancoosi project . It allows the user to specify high-level user-defined optimization
criteria, which are used to choose an installation solution well adapted to the user needs, and
which is computed by resorting to an efficient external solver.

Essentially, the document contains a sequence of operations (install/remove/ purge) executed
on packages each represented by means of name, version, and target architecture. For instance,
the first operation in the document in Listing 4.3 is the installation of the package swi-prolog

- version 5.6.58, which is usable on any architecture. The removal of the same package is
represented at lines 8-12 of Listing 4.3 that induces the removal of the swi-prolog package
while maintaining its configuration files. Such files will be considered when re-installing the
package as done at lines 13-17. In case of a purge operation also the configuration files of the
considered package are removed. Lines 18-22 show the installation of the package swi-prolog

of version 5.7.59; this corresponds to the upgrade of the already installed version 5.6.58. It
is important to note that having the upgrade plan specified as an XML document permits the
simulator to be independent from the planner that has been adopted to satisfy the upgrade
request. More information about this aspect will be provided in Section 4.5 where we present
the integration of the simulator with real Linux distributions.

1 <?xml version="1.0" encoding="UTF -8"?>
2 <s e l e c t i o n S t a t e s xmlns :x s i="http://www.w3.org /2001/ XMLSchema -instance">
3 <s e l e c t i o n S t a t e type="install">
4 <param name="package" value="swi -prolog"/>
5 <param name="version" value="5.6.58"/>
6 <param name="architecture" value="all"/>
7 </ s e l e c t i o n S t a t e>
8 <s e l e c t i o n S t a t e type="remove">
9 <param name="package" value="swi -prolog"/>

10 <param name="version" value="5.6.58"/>
11 <param name="architecture" value="all"/>
12 </ s e l e c t i o n S t a t e>
13 <s e l e c t i o n S t a t e type="install">
14 <param name="package" value="swi -prolog"/>
15 <param name="version" value="5.6.58"/>
16 <param name="architecture" value="all"/>
17 </ s e l e c t i o n S t a t e>
18 <s e l e c t i o n S t a t e type="install">
19 <param name="package" value="swi -prolog"/>
20 <param name="version" value="5.7.59"/>
21 <param name="architecture" value="all"/>
22 </ s e l e c t i o n S t a t e>
23 </ s e l e c t i o n S t a t e s>

Listing 4.3: Sample upgrade plan
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Figure 4.12: States of the swi-prolog package during the sample upgrade plan in Listing 4.3

Simulation of the upgrade plan

Simulating upgrade plans, like the one in Listing 4.3, consists of executing the sequence of the
specified operations on the source configuration model. The execution of each operation de-
pends on the state that the considered package has in the source configuration. For instance,
the different states of the sample package swi-prolog during the execution of the upgrade plan
in Listing 4.3 are reported in Figure 4.12. In particular, by referring to the upgrade scenarios
discussed in the previous section, the first install operation corresponds to the Installation
performed in a Not installed state in Figure 4.3, since the package swi-prolog is not installed in
the considered source configuration. Then the remove operation corresponds to the Removal per-
formed in an Installed state in Figure 4.6 and leads the package swi-prolog in the Config-files

state. The re-installation of the just removed package corresponds to the Installation performed
in a Config-Files state scenario shown in Figure 4.4. The last install operation, which takes
into account the version 5.7.59 of the swi-prolog package, corresponds to the Package upgrade
scenario discussed in Section 4.2.4 and shown in Figure 4.5. In fact, the swi-prolog package is
in the Installed state and the installation of a newer version corresponds to the upgrade of the
already installed one.

Figure 4.13 shows a sequence diagram which provides details about the messages which are
exchanged between the simulator components to simulate the installation of a package that is
in the Not installed state.

Simulation of the maintainer scripts

As previously said, during the simulation of upgrade plans also the maintainer scripts of the
considered packages are simulated. For instance, Figure 3.8 shows a fragment of the swi-prolog

5.7.59 package model. Besides the files which will be added in the configuration model when
the package will be installed, also the statements of the maintainer scripts are represented. For
instance, the package model in Figure 3.8 contains a post-installation script consisting of four
commands of the Evoss DSL, specifically: Message, If, Message, and Message. As said in the
previous section, the execution of the maintainer scripts encompasses (i) the generation of a
Wires* model that orchestrates the model transformations corresponding to the statements to
be simulated, and (ii) the execution of the generated Wires* model.

1 <?xml version="1.0"?>
2 <c on f i g>
3 <mapping elementModel="PostinstAddAlternative" t r an s f o rmat i onF i l e="add_alternative.atl

↪→"/>
4 <mapping elementModel="Message" t r an s f o rmat i onF i l e="default_copy.atl"/>
5 <mapping elementModel="If" t r an s f o rmat i onF i l e="conditionHOT.atl"/>
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Figure 4.13: Simulation of a package installation from the Not installed state
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Figure 4.14: Fragment of the generated Wires* model

6 . . .
7 </ c on f i g>

Listing 4.4: Fragment of the mapping document

In order to generate the Wires* model, the simulator takes as input a mapping document like the
one in Listing 4.4; this specification relates each statement of the Evoss DSL with a correspond-
ing model transformation that provides its semantics. For instance, according to Listing 4.4,
the semantics of the statement PostinstAddAlternative is given by the add alternative.atl

transformation. The DSL statement Message does not affect the source configuration model;
thus in line 4 of Listing 4.4 the default copy.atl transformation is specified. It generates a tar-
get configuration model, which is exactly the same of the source one. The If statement has the
conditionHOT.atl transformation associated (see line 5). Such a transformation is higher-order
since it generates a target ATL query whose evaluation corresponds to the expression evaluation
of the source If statement. According to the outcome of the evaluation, the add alternative.atl

transformation might be executed because of the first branch of the If.

Figure 4.14 shows a fragment of the Wires* model that has been automatically generated by
the simulator starting from the postinst script of the sample package in Figure 3.8. The model
consists of boxes that represent source and target models; they are the input and the output,
respectively, of transformations or queries, which are represented with rounded boxes. For
instance, the simulation of the If statement is performed by executing the If transformation
that generates a query named out in the model. Such a query is evaluated on the configuration
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Figure 4.15: Modified input package and sample simulation outcome
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model generated by the transformation related to the Message statement. If the query returns
true the transformation related to PostinstAddAlternative is executed by generating a new
configuration model and possibly an error model. If the query returns false, the other branch
of the If is simulated.

A sample error model that can be generated during the upgrade simulation is shown in Fig-
ure 4.15.c. Such a model has been generated by the execution of addAlternative.atl trans-
formation because of an error that we intentionally injected in the post installation script of
the sample package swi-prolog 5.7.59. In particular, as shown in the package model in Fig-
ure 4.15.a that has been generated after the modification, the prolog alternative (which the
script should add) refers to the executable /usr/bin/testError. This executable is not existing
in the source configuration model, thus the simulation creates the configuration model in Fig-
ure 4.15.b and the error model in Figure 4.15.c. Because of the error in the maintainer script,
after its simulation the state of the swi-prolog package is set as Half-configured.

(a) Successful simulation

(b) Failed simulation

Figure 4.16: Meta-installers enhanced by the Evoss simulator
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4.5 Integrating the simulator with real distributions

In this section we describe how the Evoss simulator can be integrated with real distributions.
Since the simulator is part of the Evoss approach it is obvious that other modules of Evoss
concur on the integration of the simulator in real environments. In this section we focus on the
simulation part while providing the information that is needed in order to have a clear idea of
the applicability in practice of the simulator. However, we refer to [DCDRP+10] for a discussion
of the application in practice of the overall Evoss approach.

The elementary operations performed by the simulator are model transformations that are
executed to simulate the effect of script statements. Therefore, a key enabler for using in
practice the simulator is writing the maintainer scripts in the Evoss DSL. In a future scenario
we can envision a Linux distribution whose maintainer scripts are natively written in the Evoss
DSL. However, in order to promote the integration with current distributions, Evoss makes
use of the package injector component; this component gets as input a package together with
its maintainer scripts and automatically produces a model of the package in which maintainer
scripts are represented as Evoss DSL scripts.

The simulator might be invoked from command line and the upgrade plan is provided as an XML
file. Figure 4.5 shows the enhancement of existing meta-installers. The figure contains three
different scenarios. Figure 4.16(a) shows a successful simulation that will be followed by the
real system upgrade. Figure 4.16(b) shows a failed simulation, i.e., a simulation that discovers
some errors and that consequently produces an error model together with a new configuration.
In this case the user is notified about the simulation result and he can then decide to continue
with the upgrade or not.

4.6 Experiments

In this section we discuss some experiments we have done to validate the upgrade simulator.
The aim of such experiments is to verify that the outcomes of the upgrade simulators are
correct, i.e., they do not differ from the system configurations that are obtained after the
concrete applications of the simulated upgrades. Section 4.6.1 discusses how we have selected
the subjects that have been considered in the validation. Section 4.6.2 describes the setup
process we followed to perform the simulation. Section 4.6.3 reports and discusses the results of
the experimentation. Finally, Section 4.6.4 discusses the threats of validity of our experiments.

4.6.1 Case study subjects

The case study subjects have been selected by covering the upgrade scenarios described in
Section 4.2, i.e., each upgrade scenario is covered by at least one case study subject. Moreover,
we considered upgrades involving upgrade plans of different dimension. Table 4.1 shows some
information on the case study subjects. In particular, Table 4.1 shows package name, upgrade
operation, and package state.
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Figure 4.17: Validator architecture
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Package Upgrade operation Package state

1 amule install Not installed

2 compiz install Not installed

3 filezilla install Not installed

4 gnome-utils install Not installed

5 mysql-admin install Not installed

6 remmina install Not installed

7 stardict install Not installed

8 vino install Not installed

9 alsa-oss install Config-Files

10 freeglut3 install Config-Files

11 libxdot4 install Half-installed (reinst-required)

12 libspeex1 install Half-configured (reinst-required)

13 libgadu3 install Installed

14 libdiscid0 remove Installed

15 libcln6 remove Installed

16 iptables remove Half-installed (reinst-required)

17 konq-plugins remove Half-configured (reinst-required)

18 libgeoclue0 purge Installed

19 libgpgme++2 purge Installed

20 libsrtp0 purge Installed

21 mtr purge Half-Configured (reinst-required)

22 bug-buddy purge Config-Files

23 reportbug purge Half-configured (reinst-required)

Table 4.1: Case study subjects

4.6.2 Experimental setup

In order to perform the experiment we implemented the Validator component shown in Fig-
ure 4.17 that helped us to automatize the overall validation process. Such a component gets as
input an upgrade request (like the ones shown in Table 4.1) composed of a package name and
an upgrade operation and, according to Figure 4.18, performs the following steps:

1. Invokes the UpgradePlanner component to obtain an upgrade plan which satisfies the
upgrade request. More specifically it makes use of apt-get package manager2 executed
with the option --simulate that calculates the upgrade plan without affecting the real
system.

2. By means of the PackageInjector component generates the models of the packages involved
in the upgrade plan if they are not already available.

3. By means of the SystemInjector component Validator generates the model of the running
system (named CM1).

4. The upgrade is simulated by using the UpgradeSimulator component and the new config-
uration model CM2 is generated.

2http://linux.die.net/man/8/apt-get
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Figure 4.18: Experimental setup

5. The real upgrade of the system is performed, thus producing a new Upgraded Real System.

6. The SystemInjector component is used again to obtain from the upgraded system a new
configuration model CM3.

7. Finally, the EMFCompare3 component is used to check if CM2 and CM3 represent exactly
the same configuration. To this purpose the Validator component generates a delta model
containing the difference between the two models. If the delta model is empty then the
two models are equal. It is worth mentioning that the comparison step has been performed
by using the generic matching algorithm of EMFCompare without the need to customize
it.

The experiment has been performed on an Intel Core2 Duo CPU P8600 - 2.40 GHz, 4 GB of
RAM, with installed a Debian Squeeze distribution.

4.6.3 Results

Table 4.2 reports the results of the validation. As can be seen, the validation reports a valid
result for any case study subject. This means that the configuration model produced by the
simulator (when the simulation has been performed) is equal, according to the differencing
operation performed by EMFCompare, to the configuration model obtained by injecting the
upgraded system. For each upgrade we show also the number of upgrade plan operations
required (as produced by apt-get). As can be seen some upgrades involve many operations;

3http://wiki.eclipse.org/index.php/EMF_Compare
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Case study Experiment # of upgrade # of involved Execution time
subject result plan operations maint. scripts (simulator)

1 Valid 4 3 11.84 s

2 Valid 13 6 24.13 s

3 Valid 6 5 15.1 s

4 Valid 14 11 32.45 s

5 Valid 8 7 19.8 s

6 Valid 5 4 13.5 s

7 Valid 3 1 12.13 s

8 Valid 2 2 8.18 s

9 Valid 1 1 4.05 s

10 Valid 1 1 4.13 s

11 Valid 1 1 4.22 s

12 Valid 1 1 3.53 s

13 Valid 1 2 8.12 s

14 Valid 3 4 10.34 s

15 Valid 4 3 11.33 s

16 Valid 1 2 6.54 s

17 Valid 1 2 6.89 s

18 Valid 9 2 28.16 s

19 Valid 8 14 72.35 s

20 Valid 7 14 68.61 s

21 Valid 1 3 11.43 s

22 Valid 1 1 3.56 s

23 Valid 1 3 10.21 s

Table 4.2: Experiment results

for example, the upgrade plan for installing gnome-utils - case study subject n.4 - (when the
package is in a Not installed state) involves 14 operations. Listing 4.5 reports the upgrade
plan for the installation of the package gnome-utils when it is in the Not installed state.

1 <?xml version="1.0" encoding="UTF -8"?>
2 <s e l e c t i o n S t a t e s
3 xmlns="http://www.w3.org /2001/ XMLSchema -instance">
4 <s e l e c t i o n S t a t e type="install">
5 <param name="package" value="gnome -utils -common"/>
6 <param name="version" value="2.30.0 -2"/>
7 <param name="architecture" value="all"/>
8 </ s e l e c t i o n S t a t e>
9 <s e l e c t i o n S t a t e type="install">

10 <param name="package" value="baobab"/>
11 <param name="version" value="2.30.0 -2"/>
12 <param name="architecture" value="i386"/>
13 </ s e l e c t i o n S t a t e>
14 <s e l e c t i o n S t a t e type="install">
15 <param name="package" value="libgdict -1.0 -6"/>
16 <param name="version" value="2.30.0 -2"/>
17 <param name="architecture" value="i386"/>
18 </ s e l e c t i o n S t a t e>
19 <s e l e c t i o n S t a t e type="install">
20 <param name="package" value="libpanel -applet2 -0"/>
21 <param name="version" value="2.30.0 -2"/>
22 <param name="architecture" value="i386"/>
23 </ s e l e c t i o n S t a t e>
24 <s e l e c t i o n S t a t e type="install">
25 <param name="package" value="gnome -dictionary"/>
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26 <param name="version" value="2.30.0 -2"/>
27 <param name="architecture" value="i386"/>
28 </ s e l e c t i o n S t a t e>
29 <s e l e c t i o n S t a t e type="install">
30 <param name="package" value="libtdb1"/>
31 <param name="version" value="1.2.1 -2+b1"/>
32 <param name="architecture" value="i386"/>
33 </ s e l e c t i o n S t a t e>
34 <s e l e c t i o n S t a t e type="install">
35 <param name="package" value="libvorbisfile3"/>
36 <param name="version" value="1.3.1 -1"/>
37 <param name="architecture" value="i386"/>
38 </ s e l e c t i o n S t a t e>
39 <s e l e c t i o n S t a t e type="install">
40 <param name="package" value="libcanberra0"/>
41 <param name="version" value="0.24-1"/>
42 <param name="architecture" value="i386"/>
43 </ s e l e c t i o n S t a t e>
44 <s e l e c t i o n S t a t e type="install">
45 <param name="package" value="libcanberra -gtk0"/>
46 <param name="version" value="0.24-1"/>
47 <param name="architecture" value="i386"/>
48 </ s e l e c t i o n S t a t e>
49 <s e l e c t i o n S t a t e type="install">
50 <param name="package" value="gnome -screenshot"/>
51 <param name="version" value="2.30.0 -2"/>
52 <param name="architecture" value="i386"/>
53 </ s e l e c t i o n S t a t e>
54 <s e l e c t i o n S t a t e type="install">
55 <param name="package" value="gnome -search -tool"/>
56 <param name="version" value="2.30.0 -2"/>
57 <param name="architecture" value="i386"/>
58 </ s e l e c t i o n S t a t e>
59 <s e l e c t i o n S t a t e type="install">
60 <param name="package" value="gnome -system -log"/>
61 <param name="version" value="2.30.0 -2"/>
62 <param name="architecture" value="i386"/>
63 </ s e l e c t i o n S t a t e>
64 <s e l e c t i o n S t a t e type="install">
65 <param name="package" value="gnome -utils"/>
66 <param name="version" value="2.30.0 -2"/>
67 <param name="architecture" value="all"/>
68 </ s e l e c t i o n S t a t e>
69 <s e l e c t i o n S t a t e type="install">
70 <param name="package" value="libcanberra -gtk -module"/>
71 <param name="version" value="0.24-1"/>
72 <param name="architecture" value="i386"/>
73 </ s e l e c t i o n S t a t e>
74 </ s e l e c t i o n S t a t e s>

Listing 4.5: Upgrade plan for the oparation Install of the package gnome-utils when it is in
the Not installed state

It is important to note that this validation involves also other components of the Evoss ap-
proach, namely the package injector and the system injector. However, the performance eval-
uation, as shown in table, only refers to the Evoss simulator. We report also the involved
maintainer scripts4 since this can help understanding the performance of each upgrade. As can
be seen the most expensive upgrade, i.e., the upgrade of libgpgme++2 - case study subject n.18,
requires 1 minute and 12 seconds. This upgrade is quite complex since it involves 8 operations
and requires the execution of 14 maintainer scripts. Typically upgrades are more simple. We
considered these cases to show that it is reasonable to use the upgrade simulator in practice.

4We recall that a package is not obliged to define a maintainer script if it is not necessary. For instance, as
shown in Table 4.2, the installation of amule - case study subject n.1 - while involving 4 operations, requires the
execution of only 3 maintainer scripts.
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4.6.4 Threats to Validity

The results of our experiments are subjects to the following threats of validity:

• The packages we have investigated comes from a real distribution; while this is a large case
study, we cannot claim that the results of our experimental evaluation are generalizable.
The evaluation should be considered as investigating the potential of the technique rather
than providing a statement of effectiveness. However, the performed validation provide
us an acceptable confidence of the accuracy and correctness of the simulator.

• The entire Evoss approach and then also its simulator component are engineered to be
easy generalizable to other distributions. We are instantiating the approach to the Caixa
Maǵıca RPM distribution5.

• The tools we have used or implemented could be defective. To counter this threat, we
have run several manual assessments and counter-checks.

• We also evaluated the performance of the simulator and we show in Table 4.2 a summary
of the results. This aspect is important for its use in practice.

5http://caixamagica.pt
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Chapter 5

Fault Detector

Given a system configuration model, the fault detector [DP11] checks the model in order to
identify possible faults. To analyze the system configuration model, specific query expressions
are evaluated, each representing a class of faults. The language used for expressing the queries
is OCL. It is a declarative language that provides constraints and object query expressions on
models and meta-models. An example of OCL query is shown in Listing 5.1: given a config-
uration model (IN conforming to the metamodel MM), all the instances of the MimeTypeHandler

metaclass are retrieved and those that do not have a handler specified are considered. When
the result of this query is greater than 0, a fault is detected. In fact, such configurations are
considered to be incoherent due to the existence of mime types without corresponding handlers
installed (e.g., the owning package has been deleted without un-registering the handler).

Listing 5.1: Fragment of the OCL query to detect missing mime type handlers
1 MM ! MimeTypeHandler . allInstancesFrom ( ’IN’ )
2 −>select ( e |
3 e . handler . oclIsUndefined ( )
4 )−>size ( )

Since the system configuration model is an abstraction of the real system, there are some
elements of the real system which are not directly represented in the model. Thus, there are
some faults which require both the system model and the running system to be identified. For
instance, according to a system configuration model, the corresponding system should be able
to open PDF (Portable Document Format) files. Even though this information is available in
the model, it is necessary to check if a PDF editor is really installed in the running system.

Queries
repository

Checker
Repository
populator

Message
queue
handler

Result
notifier

Queries
updater

Figure 5.1: Server overview
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The Evoss fault detector permits to specify such queries by using Java and embodying them
in JAR files.

The fault detector is extensible in the sense that when new classes of faults are identified,
a corresponding query can be defined and added to it. In particular, we realized the fault
detector by using the client-server architectural style. In this way different user communities
can contribute in the definition of queries and store them in a centralized manner. Then, each
user can increase his fault detection capabilities by retrieving updated queries from the server.

Figure 5.1 shows an overview of the server-side of the fault detector. It consists of six main
components described in the following. The Message queue handler component receives requests
from clients and forward them to the Queries updater, or to the Checker depending on the client
needs. In particular, the former sends back to the client the updated set of queries, which can
be evaluated locally by the client. The latter evaluates on the system configuration model of
the client the queries available in the OCL queries repository, and produces a result that is
notified by the Result notifier component. Each query can have associated a problem solution
that is proposed to the user if the execution of the query returns an error. The community may
populate the OCL queries repository with new queries by means of the Repository populator

component.

Checker

Invoker Query 
downloader

Queries
repository

Requests
manager

Result
notifier

Figure 5.2: Client overview

An overview of the client of the fault detector is shown in Figure 5.2. It permits to realize the
usage scenarios presented in the remaining of the section. In particular, a user can decide to
execute the Checker of the server or the one available in the client. They are slightly different: the
client’s checker can evaluate queries that require also system information. This is not possible
on the server side since the server gets as input only the model of a system configuration.
Therefore, the fact of executing the checker on the client machine enables the execution of
more sophisticated queries, such as queries that require to check the presence of a file. The
component that manages the different kinds of requests is the Requests manager component.
The Result notifier component retrieves the results either from the server side or from the
client side (Checker component) and notifies the user.

Fault detector usage scenarios

In this section we describe some representative scenarios of the fault detector. More precisely,
we present four scenarios in which are involved the client and the server. For a detailed list
of the functionalities of the failure detector, please refer to the user guide available at http:

//evoss.di.univaq.it/.
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Client

Figure 5.3: First scenario: the user invokes the checker that is on the client side

• Scenario 1 : As shown in Figure 5.3, the user invokes the checker that is available on the
client side (the Checker component). All the queries that are available on the Queries

repository of the client are evaluated. An alternative of this scenario is to update the
queries repository of the client before performing the check.

• Scenario 2 : As shown in Figure 5.4, the community might add, modify, or delete queries
of the Queries repository of the server. The interaction can be realized by using a Web
portal.

Server

Figure 5.4: Second scenario: populating the Queries repository of the server

• Scenario 3 : As shown in Figure 5.5, by means of the Invoker component, the user invokes
the checker that is available on the server by passing the model. User requests are stored
in a message queue. The handling of a request consists of running on the model each OCL
query included in the queries repository (we recall that the server cannot execute JAR
queries since the running client machine is not accessible from the server).
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Client Server

Figure 5.5: Third scenario: the user invokes the checker that is on the server side

Client Server

Figure 5.6: Fourth scenario: OCL queries update

• Scenario 4 : As shown in Figure 5.6, the user requests to just update the set of queries.
This is realized by means of the Query downloader component that adds the request to
the message queue of the server. Then, the server retrieves the queries from the queries
repository and sends the queries back to the client.

5.1 Implementing the fault detector

In this section we present an implementation of the fault detector. The fault detector has been
conceived by using different model-driven techniques and tools based on the Eclipse Modeling
Framework (EMF) [BSM+03]. The implementation of the fault detector together with the
implementation of the whole Evoss approach is freely available at http://evoss.di.univaq.it.
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Figure 5.7: Architecture of the server-side of the fault detector

5.1.1 Architecture

As said in the previous section, the fault detector is based on a client/server infrastructure in
order to realize the envisioned scenario consisting of a community, which can contribute in the
definition of queries for detecting unforeseen faults. In the following the building blocks of both
the client-side and the fault detector server-side are described.

Fault detector server

The architecture of the fault detector server-side is shown in Figure 5.7. It consists of three
main components, named Repository, WebPortal, and FDServer.

Repository: It is the component that manages the persistence of the elements that are involved
in the fault detection. Figure 5.8 shows the tables of the database in the repository. In par-
ticular, the repository maintains a catalog of Faults that are contributed by a community of
Users. According to the previous section, faults can be discovered by querying only the system
configuration model, or by considering also the running system. In this respect, the reposi-
tory maintains both OCL and JAR queries. Finally, each fault can be related with one or more
Solutions, which can be suggested to users in order to solve the discovered problems.

WebPortal: It is the component that permits to manage in a distributed manner the data stored
in the repository previously presented. Whenever a new fault is discovered by the community,
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Figure 5.8: Database tables

it can be added in the repository together with (i) the queries that are able to detect it, and
(ii) the description of the actions, which can be undertaken to solve the specified fault.

FDServer: It is the class that is encharged of interacting with user clients that want to analyze
their systems. According to the scenarios presented in the previous section, clients can send to
the server the configuration models to be analyzed, or alternatively can ask the server for the
updated queries which will be executed locally, client-side. In order to manage multiple client
requests, the server is implemented by using Java threads by means of the class FDServerThread

in Figure 5.7. Some of the methods provided by such a class are the following:

• execClientQueries: this method permits to use the server as an executor of OCL queries
the client can send to the server together with the model on which such queries have to
be executed;

• execServerQueries: it permits to execute on the model sent by the client all the queries
that are stored in the server repository;

• getOCLQueries: it is used by the client to update its OCL queries, which can be executed
locally later;

• getJARQueries: it is used by the client to update its JAR queries, which can be executed
locally later;

• getSolutions: it permits to retrieve from the repository, the solutions that can be adopted
to solve faults;

• getScenarioFromClient: this method is used by the server to select the scenario to be
executed (e.g., one of those presented in the previous section) according to the request of
the client.

The execution of the previous methods involves the management of different files (i.e., the
configuration model, and the files containing OCL and JAR queries), which are exchanged
between the client and the server. The classes FileSender and FileReceiver implement the
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Figure 5.9: Architecture of the client-side of the fault detector

protocol underpinning such an operation. Finally, the execution of the OCL queries is performed
by means of the execute method of the OCLQueryExecutor class.

Fault detector client

The architecture of the fault detector client-side is shown in Figure 5.9. The main elements are
the classes FDClient, Repository, and the QueryExecutor.

FDClient: It is the main class, which is devoted to the interaction with the server-side. De-
pending on the scenario to be executed, the client can ask the server to analyze a configuration
model by using the queries in the server. Alternatively, the client can update the local reposi-
tory of the queries and analyze the system on its own. In addition of the OCL queries, the client
can analyze the system also by means of JARQueries. In this case, the consistency between the
configuration model and the real system can be checked. The execution of the OCL and of the
JAR queries is performed by means of corresponding executors (i.e., the OCLQueryExecutor and
the JARQueryExecutor, respectively).

Repository: It maintains in the file system of the client, the OCL and the JAR queries that
can be used to analyze locally a system configuration model. As previously said, before the
analysis, the client can update such queries and merge them with those available in the server.

QueryExecutor: The local execution of the queries is based on two classes, named OCLQuery-
Executor, and JARQueryExecutor. The former makes use of MDT OCL1 which is an implemen-
tation of the OMG OCL for EMF-based models. The JARQueryExecutor is able to load a JAR
file containing a Java class implementing an interface consisting of the run method.

1http://www.eclipse.org/modeling/mdt/?project=ocl
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Next section provides more insights about the execution of the fault detector on real examples
by considering the building blocks previously described.

5.2 Experiments

In this section we discuss some experiments we have done to validate the fault detector. The
aim of such experiments is to show how the fault detector works in practice and how it performs.
Section 5.2.1 presents the case study subjects that have been considered for the experiment.
Section 5.2.2 describes the setup we performed for realizing the experiment. Section 5.2.3 reports
and discusses the results of the experimentation. Finally, Section 5.2.4 discusses the threats of
validity of our experiments.

5.2.1 Case study subjects

In this section we describe the case study subjects that we selected for the experiment. We
selected those that are more significant and easy to understand.

Missing packages involved in implicit package dependencies

In order to explain this query, let us consider the Web server Apache2, and PHP5, which is a
scripting language integrated with Apache. In particular, let us assume that we want to remove
the package libapache-mod-php5 from the filesystem. Then the PHP5 module in the Apache
configuration has to be disabled before its removal. This is necessary, otherwise inconsistent
configurations can be reached like the one shown in Figure 5.10. The figure reports the sample
Configuration2, which has been reached by removing libapache-mod-php5 without changing
the configuration of apache2. Such a configuration is broken since it contains a dependency be-
tween the apache2 and libapache-mod-php5 package settings, when only apache2 is installed.
If Apache is now run as a service it may refer to the missing package, PHP5, which of course
could lead to many errors including security breaches and services crashing.

Figure 5.10: Incorrect package removal

In order to do not reach invalid configurations like the one in Figure 5.10, the package libapache-
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mod-php5 contains the postinst and prerm scripts reported on the left hand-side and right hand-
side in the following snippet, respectively.

1 #postinst

2 #!/bin/sh

3 i f [−e /etc/apache2/apache2 . conf ] ; then
4 a2enmod php5 >/dev/null | | true
5 reload_apache

6 f i

1#prerm

2#!/bin/sh

3i f [−e /etc/apache2/apache2 . conf ] ; then
4a2dismod php5 | | true
5f i

In particular, the PHP5 module installed during the unpacking phase gets enabled invoking the
a2enmod command (see line 4 on the left-hand side above); the Apache service is then reloaded
(line 5) to make the change effective. Upon PHP5 removal the reverse will happen, as implemented
by the prerm script snippet above.

It is important to note that currently, available package managers are not able to predict
inconsistencies that can occur if maintainer scripts are not complete. For instance, the invalid
configuration reported in Figure 5.10 can be obtained if the prerm above does not contain the
statement ‘a2dismod php5’. Package managers are not able to detect when such a statement is
missing or an invalid configuration has been reached. The only types of errors they can detect
are run-time failures of scripts. They cannot normally resolve the problem and perform a limited
set of actions at this point. They may try and restart the configuration script, report the error
to the user or, more frequently than not, they will abort the script and possibly provide an
error code and/or warning message.

In general we are speaking about implicit dependencies among packages, i.e., dependencies that
are not explicitly defined in the package meta-data. It is worth noticing that existing package
managers are not able to predict inconsistencies like the one in Figure 5.10 since they take into
account only information about package dependencies and conflicts expressed in the package
meta-data.

Listing 5.2 reports the OCL query for checking the existence of missing packages involved in
implicit package dependencies.

Listing 5.2: OCL query to detect missing packages involved in implicit package dependencies
1 mancoosimm : : PackageSetting . allInstances ( )−>exists ( e | e . dependences−>exists ( d | d .

↪→ownerPkg . oclIsTypeOf ( ’mancoosimm :: NotInstalledPackage ’ ) ) )

The solution associated with this query suggests to install the package so to fix the implicit
dependencies, or to remove the package that gives place to the problem.

Existence of packages that are in the Half-installed state

Each packages has associated a state, which varies when the package is involved in an upgrade.
The possible states of a package are2:

• Installed: the package is installed.

• Not installed: the package is not installed and the configuration files are not present in
the system.

2According to the Debian policy http://www.debian.org/doc/debian-policy and the manpage of dpkg
http://man.cx/dpkg#sec5
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• Half-installed: when installing or removing the package some error can be experienced
and then the package is left in a half-installed state. This state can also have a Reinst

required flag meaning that the package needs to be reinstalled even if we want to remove
it.

• Config-files: when removing a package that was previously installed, if everything goes
well, the package will be left in the Config-files state since the configuration files of the
package have not been deleted. The purge operation must be performed to delete also the
configuration files and then to reach the Not installed state.

• Half-configured: indicates that the package has been unpacked, but its configuration
scripts have failed. This state can also have a Reinst required flag, meaning that the
package needs to be reinstalled even if we want to remove it.

• Unpacked: the package is unpacked, but not configured.

According to the different upgrade scenarios [DPD11], an unsuccessful upgrade might left a
package in a Half-installed or Half-configured state. Such states represent possible faults
which can be identified by means of the queries in Listing 5.3, and Listing 5.4.

Listing 5.3: OCL query to detect the existence of packages in the Half-installed state
1 mancoosimm : : HalfInstalledPackage . allInstances ( )−>size ( ) > 0

The solution associated to this query suggests to remove or reinstall the package.

Existence of packages that are in the Half-configured state

The identification of faults due to the existence of packages in the Half-configured state can
be performed by means of the query in Listing 5.4, which is similar to the one in Listing 5.3.

Listing 5.4: OCL query to detect the existence of packages in the Half-configured state
1 mancoosimm : : HalfConfiguredPackage . allInstances ( )−>size ( ) > 0

The solution associated to this query suggests to remove or reinstall the package.

Existence of packages that are in the Half-installed state with a Reinst required flag

The aim of this query is to check if there exist packages in the Half-installed state with a
Reinst required flag, meaning that the package needs to be reinstalled even if we want to
remove it. The query is shown in Listing 5.5.

Listing 5.5: OCL query to detect the existence of packages in the Half-installed state with a
Reinst required flag

1 mancoosimm : : HalfInstalledReinstRequiredPackage . allInstances ( )−>size ( ) > 0

The solution associated to this query suggests to reinstall the package even if the user wants to
remove it because of the Reinst required flag.
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Existence of packages that are in the Half-configured state with a Reinst required flag

The aim of this query is to check if there exist packages in the Half-configured state with
a Reinst required flag meaning that the package needs to be reinstalled even if we want to
remove it. The query is shown in Listing 5.6.

Listing 5.6: OCL query to detect the existence of packages in the Half-configured state with a
Reinst required flag

1 mancoosimm : : HalfConfiguredReinstRequiredPackage . allInstances ( )−>size ( ) > 0

The solution associated to this query suggests to reinstall the package even if the user wants to
remove it because of the Reinst required flag.

Missing executable in a MIME type handler specification (OCL)

MIME (Multipurpose Internet Mail Extensions) is a mechanism for encoding files and datas-
treams and for providing meta-information about them. Examples of these meta-information
are their type (e.g., audio or video) and format (e.g., JPG, HTML, MP4). The registration
of MIME type handlers allows programs, like Web browsers, to invoke the proper handlers to
view, edit or display MIME types, which are not supported directly by the considered program.
The aim of the query shown in Listing 5.7, is to detect if there exists a mime type handler
registration, which misses the link to the executable.

Listing 5.7: OCL query to detect if executables are missing a MIME type handler specification
1 mancoosimm : : MimeTypeHandler . allInstances ( )−>exists ( h | h . handler . oclIsUndefined ( ) )

The solution associated to this query suggests to link a correct executable, if this executable
exists, or to remove the mime type handler registration.

Missing executable in a menu entry

The aim of this query is to check if a menu entry is missing of an executable. The OCL query
is shown in Listing 5.8.

Listing 5.8: OCL query to detect MenuEntry elements with missing executable
1 mancoosimm : : MenuEntry . allInstances ( )−>exists ( e | e . executable . oclIsUndefined ( ) )

The solution associated to this query suggests to add a correct reference to an executable or to
remove the entry of the menu.

Missing executable in a Service

Linux services can be started, stopped and reloaded with the use of scripts typically stocked in
/etc/init.d/. The aim of this query is to check if the executable of some service is missing.
The OCL query is shown in Listing 5.9.

Listing 5.9: OCL query to detect service elements with missing executable
1 mancoosimm : : Service . allInstances ( )−>exists ( e | e . executable . oclIsUndefined ( ) )

The solution associated to this query suggests to restore the executable or to remove the service.
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Missing link in an Alternative

Alternatives is a location of symbolic links and helper-system where associations can be named
and maintained in a consistent manner. It allows distribution and package owners to group and
categorise packages that provide similar functionalities. For example, instead of having to refer
to every email client that exists in the repositories, it is possible for package maintainers to refer
to the group association “email” and, if it is required by the package, the operating system and
user can select which email client they would like to use. Similarly, if a new package provides
the same features as expected in the “email” category, it can use the alternatives system to
suggest that it is capable of performing the actions required. Alternatives are represented with
a name, which is the name of the considered alternative (e.g., java), and a location, which refers
to the real executable in the file system (e.g., /usr/j2se/bin/java).

The aim of the query shown in Listing 5.10, is to check if there exist alternatives, which have
the location missing.

Listing 5.10: OCL query to detect Alternative elements with missing current executable
1 mancoosimm : : Alternative . allInstances ( )−>exists ( e | e . current . oclIsUndefined ( ) )

The solution associated to this query suggests to fix the location, if possible, to reinstall the
executable required by the alternative, if needed, or to remove the alternative entry.

Existence of configuration files which can be written and/or executed by a non-root
user

Configuration files must have root as owner. Then this query checks if there exist configuration
files with owner different from root. The query is shown in Listing 5.11.

Listing 5.11: OCL query to detect Alternative elements with missing current executable
1 mancoosimm : : PackageSetting . allInstances ( )−>exists ( e | e . files−>exists ( f | ( f . owner . name

↪→<> ’root’ ) ) )

The solution associated to this query suggests to change the owner of the configuration file.

Missing configuration files

This query analyses the running system to check if, according to the configuration model,
configuration files are missing. Listing 5.12 shows the java code realizing the query.

Listing 5.12: JARQuery to detect missing configuration files
1 . . .
2 public class MissingConfigurationFiles {
3

4 stat ic Configuration configuration = null ;
5

6 public stat ic void checkMissingConfigurationFiles ( ) {
7

8 // Checking for missing files

9 System . out . println ( "Cheking for missing Configuration files ...." ) ;
10

11 Iterator<InstalledPackage> ipi = configuration . getInstalledPackages ( ) . iterator ( ) ;
12

13 while ( ipi . hasNext ( ) ) {
14

15 InstalledPackage ip = ipi . next ( ) ;
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16 PackageSetting ps = ip . getPackageSettings ( ) ;
17

18 i f ( ps != null ) {
19 Iterator<File> fi = ps . getFiles ( ) . iterator ( ) ;
20 while ( fi . hasNext ( ) ) {
21 java . io . File aux = new java . io . File ( ( ( File ) fi . next ( ) ) . getLocation ( ) ) ;
22 i f ( ! aux . exists ( ) ) {
23 System . out . println ( "WARNING: The configuration file " + aux . getPath ( ) + " 

↪→is missing and it is required by the package " + ip . getName ( ) ) ;
24 }
25 }
26 }
27 }
28 System . out . println ( "Cheking for missing Configuration files .... DONE" ) ;
29 }
30

31

32 public stat ic void main ( String [ ] args ) throws IOException{
33 MancoosiPackageImpl . init ( ) ;
34

35 URI fileURI = URI . createFileURI ( "model/systemModel.ecore" ) ;
36 Resource resource = new XMIResourceFactoryImpl ( ) . createResource ( fileURI ) ;
37 resource . load ( null ) ;
38 UbuntuConfigurationManager . getInstance ( ) . setConfiguration ( ( Configuration ) resource .

↪→getContents ( ) . get (0 ) ) ;
39 configuration = UbuntuConfigurationManager . getInstance ( ) . getConfiguration ( ) ;
40

41 checkMissingConfigurationFiles ( ) ;
42 }
43 }

The solution associated to this query suggests to restore the configuration file.

Missing executable in a MIME type handler specification (JAR)

This query checks the running system to check if executables associated to a MIME type handler
specification are missing. This query is similar to the query Missing executable in a MIME type
handler specification (OCL) in Listing 5.7; however in this case we check also the running
system. Listing 5.13 shows the java code realizing the query.

Listing 5.13: JARQuery to detect missing MimeType handlers
1 . . .
2 public class MissingMimeTypeHandler {
3

4 stat ic Configuration configuration = null ;
5

6 public stat ic void checkMissingMimeTypeHandlers ( ) {
7

8 // Checking for missing files

9 System . out . println ( "Cheking for missing MimeTypeHandlers ...." ) ;
10

11 Iterator<MimeTypeHandler> mthit = configuration . getEnvironment ( ) .
↪→getMimeTypeHandlerCache ( ) . getHandlers ( ) . iterator ( ) ;

12 MimeTypeHandler mth = null ;
13 java . io . File aux = null ;
14

15 while ( mthit . hasNext ( ) ) {
16 mth = mthit . next ( ) ;
17 aux = new java . io . File ( mth . getHandler ( ) . getLocation ( ) ) ;
18 i f ( ! aux . exists ( ) ) {
19 System . out . println ( "WARNING: L’handler " +mth . getHandler ( ) . getLocation ( ) + " is 

↪→missing and it is necessary to manage the " + mth . getType ( ) . getName ( ) + " 

↪→MimeType" ) ;
20 }
21

Deliverable D2.3 Version 1.0 page 79 of 99



May 24, 2011

22 }
23 System . out . println ( "Cheking for missing MimeTypeHandlers .... DONE" ) ;
24 }
25

26

27 public stat ic void main ( String [ ] args ) throws IOException{
28 MancoosiPackageImpl . init ( ) ;
29

30 URI fileURI = URI . createFileURI ( "model/systemModel.ecore" ) ;
31 Resource resource = new XMIResourceFactoryImpl ( ) . createResource ( fileURI ) ;
32 resource . load ( null ) ;
33 UbuntuConfigurationManager . getInstance ( ) . setConfiguration ( ( Configuration ) resource .

↪→getContents ( ) . get (0 ) ) ;
34 configuration = UbuntuConfigurationManager . getInstance ( ) . getConfiguration ( ) ;
35

36 checkMissingMimeTypeHandlers ( ) ;
37 }
38 }

The solution associated to this query suggests to restore the configuration file.

Missing services

This query analyses the running system to check if, according to the configuration model,
service binaries are missing. This query is similar to the query Missing executable in a Service
in Listing 5.9. Listing 5.14 shows the java code realizing the query.

Listing 5.14: JARQuery to detect missing services
1 . . .
2 public class MissingServices {
3

4 stat ic Configuration configuration = null ;
5

6 public stat ic void checkMissingServices ( ) {
7

8 System . out . println ( "Cheking for missing Services ...." ) ;
9 Iterator<Service> is = configuration . getServices ( ) ;

10

11 while ( is . hasNext ( ) ) {
12 Service s = is . next ( ) ;
13 java . io . File aux = new java . io . File ( s . getExecutable ( ) . getLocation ( ) ) ;
14 i f ( ! aux . exists ( ) ) {
15 System . out . println ( "WARNING: The binary " + aux . getPath ( ) + " of the service "

↪→+ s . getName ( ) + "is missing." ) ;
16 }
17 }
18 System . out . println ( "Cheking for missing Services .... DONE" ) ;
19 }
20

21

22 public stat ic void main ( String [ ] args ) throws IOException{
23 MancoosiPackageImpl . init ( ) ;
24

25 URI fileURI = URI . createFileURI ( "model/systemModel.ecore" ) ;
26 Resource resource = new XMIResourceFactoryImpl ( ) . createResource ( fileURI ) ;
27 resource . load ( null ) ;
28 UbuntuConfigurationManager . getInstance ( ) . setConfiguration ( ( Configuration ) resource .

↪→getContents ( ) . get (0 ) ) ;
29 configuration = UbuntuConfigurationManager . getInstance ( ) . getConfiguration ( ) ;
30

31 checkMissingServices ( ) ;
32 }
33 }

The solution associated to this query suggests to reinstall the service.
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Summing up

Table 5.1 summarizes the case study subjects described above. In particular, Table 5.1 shows
the query name, the link to the associated listing, the type of query, i.e, OCL or JAR, and if a
solution to the detected fault is provided.

Query Listing ref. Query type Provide Solution

1 Missing packages involved in Listing 5.2 OCL Yes
implicit package dependencies

2 Existence of packages that are Listing 5.3 OCL Yes
in the Half-installed state

3 Existence of packages that are Listing 5.4 OCL Yes
in the Half-configured state

4 Existence of packages that are Listing 5.5 OCL Yes
in the Half-installed state

with a Reinst requ. flag

5 Existence of packages that are Listing 5.6 OCL Yes
in the Half-configured state

with a Reinst requ. flag

6 Missing executable in a MIME Listing 5.7 OCL Yes
type handler specification (OCL)

7 Missing executable in a menu entry Listing 5.8 OCL Yes

8 Missing link in a Service Listing 5.9 OCL Yes

9 Missing link in an Alternative Listing 5.10 OCL Yes

10 Existence of conf. files which Listing 5.11 OCL Yes
can be written and/or executed

by a not root user

11 Missing configuration files Listing 5.12 JAR Yes

12 Missing executable in a MIME Listing 5.13 JAR Yes
type handler specification

13 Missing services Listing 5.14 JAR Yes

Table 5.1: Case study subjects

5.2.2 Experimental setup

The experiment has been performed on an Intel Core2 Duo CPU P8600 - 2.40 GHz, 4 GB of
RAM, with installed a Debian Squeeze distribution. The considered system consists of 1’296
installed packages, and the size of the system configuration model is of ≈3MB.

5.2.3 Results

To validate the fault detector we intentionally injected errors in the real system and we used the
fault detector to detect them. More specifically, for each query we injected 20 errors and the fault
detector discovered all of them. For instance, referring to the query Missing configuration files
- Listing 5.12, we intentionally deleted some configuration files of installed packages. The query
was able to check both the model and the running system and inform the user about such missing
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files. It is important to note that performing the same query without a uniform representation
of different configuration aspects requires the adoption of different tools like dpkg, find, awk,
and sed. For instance, in order to retrieve the configuration files of an installed package the user
has to consider the package metadata. Contrariwise, such information is explicitly represented
in the system configuration model and immediately available.

Table 5.2 reports the execution time of the case study subjects of Table 5.1. It is important to
note that execution time of a query is affected by other aspects which are not directly related
to the query execution (e.g., model loading). In fact, executing one of the considered query
does not require much more time then executing all of them together (see the last 3 lines of
Table 5.2).

Case study subject Execution time

1 1.487s

2 1.512s

3 1.492s

4 1.452s

5 1.496s

6 1.544s

7 1.476s

8 1.584s

9 1.380s

10 1.504s

11 1.276s

12 1.245s

13 1.124s

1-10 1.660s

11-13 2.204s

1-13 3.296s

Table 5.2: Fault detector experiment results

5.2.4 Threats to Validity

The results of our experiments are subjects to the following threats of validity:

• We considered a real distribution; while this is a large case study, we cannot claim that the
results of our experimental evaluation are generalizable. The evaluation should be con-
sidered as investigating the potential of the technique rather than providing a statement
of effectiveness. However, the performed validation provides us an acceptable confidence
of the accuracy and correctness of the fault detector.

• The entire Evoss approach and then also its fault detector component are engineered to
be easy generalizable to other distributions. In fact, we instantiated the approach also to
the Caixa Maǵıca RPM distribution3.

• The tools we have used or implemented could be defective. To counter this threat, we
have run several manual assessments and counter-checks.

3http://www.caixamagica.pt
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• We also evaluated the performance of the fault detector and we show in Table 5.2 a
summary of the results. This aspect is important for its use in practice.
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Chapter 6

Related Work

In this chapter we compare Evoss and its components with related work. More specifically,
Section 6.1 compares Evoss with current meta-installers. Section 6.2 discusses simulation in
computer science and how the Evoss simulator is an advance with respect to state of art
approaches. Section 6.3 presents approaches to manage safe upgrades. Section 6.4 shows how
Evoss can be considered an approach to use model at run-time. Finally, Section 6.5 compared
the fault detector with lightweight formal methods.

6.1 Comparing Evoss with current meta-installers

Current meta-installers use algorithms to detect if a solution to the satisfiability problem of
package dependencies and conflicts exists and then generate an upgrade plan.

Then meta-installers act as dumb-agents and call dpkg, rpm or the associated installer on the
packages and report the error codes at this stage. Then, the installer unpacks the files down-
loaded by the meta-installer and runs the associated configuration scripts. It is at this stage
that the meta-installers assume that the configuration files will report an error code if something
has gone wrong.

It might be the case that the package maintainer may have made a mistake, not made a reference
to a dependency or some other types of error within the maintainer file. If this is the case then
the maintainer scripts will still run. They are after all written in Turing complete languages.
Although they may be syntactically correct they may not be logically correct. There is a large
assumption made at this point in that the maintainer is expected to write conditional checks
against anything that might fail. Utilities such as deb-helper can help producing maintainer
scripts for packagers but it does not guarantee that they will be free of configuration errors.
Most of the time when a failure is detected by a meta-installer it will report the error code
and stop the installation. The packages that have been installed to this point are normally
left as they are and all the commands that were run up to the point of the failure are left
as they were. In this case it leaves the system in an undefined state. Files may have been
modified and cache-updaters may have been run but the system currently will just say that
the package installation failed. This leaves the possibility that some packages were installed,
being dependencies of the desired package but are not being used. This entails all the standard
problems of failed installations.

There are possible security holes as the installation will be reported back as not have being
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Existing Model driven
approaches approach

Static deploy-time failures Y Y

Dynamic deploy-time failures Y1 Y

Undetected failures N Y

Table 6.1: Current support to detect and manage upgrade failures

successful. Also there may be resources that have been left in an erroneous state. For instance,
if there is a power failure after a pre-rm script is run, then the caches may have been updated to
report that the application has been removed when it has not. Having a transactional system
that monitors the configuration states will highlight these errors and possibly revert all the
changes dependent on the user’s preferences.

To summarize, Table 6.1 reports the main categories of possible upgrade failures that we iden-
tified and described in Section 2.2. For each of them the table states if current approaches
are able or not to detect and eventually manage them. Evoss has been conceived to focus on
detecting faults before, during and after upgrades are performed.

6.2 Simulation in computer science

Simulation in computer science is a quite old and established practice (see for instance the
Simulation Modelling Practice and Theory Elsevier journal2). Smith in [Smi00] defines sim-
ulation as “... the process of designing a model of a real or imagined system and conducting
experiments with this model to understand the behavior of the system or to evaluate strategies
for its operation.”. The key issues in simulation are model design, i.e., the acquisition of valid
source information about the relevant selection of key characteristics and behaviours, model
execution, i.e., the use of simplifying approximations and assumptions within the simulation,
and execution analysis, i.e., fidelity and validity of the simulation outcomes [Fis95].

Typically, simulators are defined and specialized for the specific domain they want to deal
with, such as marine simulators, automobile simulators, robotics simulators, city and urban
simulators, etc. In this document we proposed a simulator that is specialized to the domain
of Linux distributions. The simulator is part of the Evoss approach and in particular uses
the Evoss DSL for specifying maintainer scripts. Evoss metamodels are used to represent the
system configurations and packages to be installed. They are defined by following a process that
makes use of a domain analysis performed to understand details of the domain [DCDRP+10],
and is iterative so to tune the model to unforeseen aspects that have to be considered for the
simulation purposes.

The importance of the validity of the simulation in terms of fitness for purpose is emphasized
in [PAG+10] where the authors show how essential is a trusting relationship between scientists
and simulation developers for scientifically-useful and acceptable simulation in scientific do-
mains. Even the Sargent’s model of simulation development process [Sar86] gives emphasis on
validation of models with respect to the real problem. Moreover, Sargent remind us in [Sar98]

1Failures may be detected as the script will report an error code but the changes already performed are usually
not undone.

2http://www.sciencedirect.com/science/journal/1569190X, formerly known as Simulation Practice
and Theory.
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that “a model should be developed for a scientific purpose ... and its validity determined with
respect to that purpose”. We espouse these conclusions and we investigate within Evoss the
use of model-driven techniques as a means for realizing ‘trusted’ simulations. More specifically,
we automatize the construction of the system model on which the simulation is performed. In
this way we encode the trusting relationship within the injectors implementation in the sense
that it is sufficient to test the injectors for trusting on the built model. The injectors in fact
build models that conform to metamodels that are a formalization of the domain. Metamodels
are defined through an iterative process that involves also domain experts. In other words the
metamodels define the abstraction level of the models and embed the ‘purpose’ of the model ac-
cording to [Sar98]. Finally, it is important to note that when the injectors have been built they
can be executed even before each simulation, as we do in Evoss. This means that the models
will be in some sense available@run-time (see Section 6.4) and this would help on maintaining
the ‘trust’ [PAG+10] on the models used for the simulation. Another important aspect is the
trust of the simulator itself. This aspect will be discussed in the next chapter.

6.3 Managing safe upgrades

The challenge of the configuration management is on maintaining and deploying the configura-
tion of machines over time. Several approaches and Configuration Management Tools (CMTs)
exist to that end; the most relevant ones are Bcfg2 [DBL06], LCFG [AS00], PoDIM [DJ07],
Quattor [CPL+08], and Puppet [Kan06, Kan03]. The main difference of our work with respect
to the configuration management research is that existing CMTs are only able to grasp some
of the static aspects of a system that might induce upgrade failures; such tools are not able
to manage relevant dynamic aspects of maintainer scripts and hence cannot shield users from
upgrade failures due to them. On the contrary, the main activity of the Evoss simulator is
about simulating the execution of maintainer scripts defined in terms of the Evoss DSL.

Conary [Joh05] is a system that manages package upgrades via automated dependency resolution
against distributed on-line repositories. To replace maintainer scripts, Conary introduces the
notion of dynamic tags, which are analysed to detect similar operations performed by package
installation, and groups them together. In the end, these operations are performed on the
system, just like maintainer scripts, and the issue of predicting and preventing failures is still
there.

McQueen [McQ05] proposed to instrument the upgrade process to monitor the files that are
actually being modified, to be able to restore them in case of failures. Unfortunately, it is not
always possible to undo an upgrade by simply restoring the old copy of all touched files, and
it is necessary to consider also the system configuration, the running services, etc., as taken
into account by our metamodels. This kind of tools can be ideally combined with Evoss to
detect discrepancies between the model and the actual system. This can be done by comparing
execution traces of the DSL with the actual maintainer scripts. Each discrepancy will lead to
refining the DSL, hence improving the simulation provided by Evoss.

NSIS3 is an open source system to build auto-installers for Windows. NSIS recognizes the
importance of providing specific primitives to write maintainer scripts, and makes some steps
towards defining a useful domain specific language. However, the language contains full-fledged
conditionals, functions, labels, gotos, and arbitrary integer expressions, which make it Turing-
complete, missing completely the advantages of our DSL.

3http://nsis.sourceforge.net/Main_Page
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Finally, NixOS [DL08] is a purely functional distribution, where static parts of a system (pack-
ages, configuration files, boot scripts, etc.) are built from pure functions. The approach promises
to render upgrade failures irrelevant, as they can be easily undone. Unfortunately this is not
always the case, as some operations can not be made purely functional (e.g., user database
management).

6.4 Models@runtime

The models@runtime approach [BBF09] aims at extending the applicability of models to the
run-time environment. Modeling techniques provide viable means to enable system monitoring,
model analysis and evolution at run-time [GC08]. These approaches recognize the need to
produce, manage, and maintain software models all along the software’s life time in order to
assist the realization and validation of system’s evolution while the system is in execution. The
DiVA project4 combines aspect-oriented and model-driven techniques with the aim to provide a
tool-supported methodology and an integrated framework for managing dynamic variability in
adaptive systems. Evoss [DCDRP+10] uses models@runtime to manage the upgrade of system
configurations in the context of free and open source software systems.

6.5 Lightweight formal methods

The literature is plenty of formal methods [CW96, Pel01], i.e., of techniques that are used to
model complex systems as mathematical entities, and that aim at improving the reliability
of systems. Examples for formal methods are model checking [CGP01, PPS09], which uses
some software to automatically check that the software satisfies its specification, deductive
verification [Flo67, Hoa83], which uses some logical formalism to formally prove that the software
satisfies its specification, and testing [MS04], which checks software executions according to some
coverage scheme.

A particular class of formal methods is the class of lightweight formal methods [JW96]. This
kind of formal methods promises to offer a cost-effective and pragmatic way of improving the
quality of software specifications.

The main characteristics of lightweight approaches are [JW96]:

• Partiality in language. An important aspect of specification languages is their tractability:
a specification language intended as a general mathematical notation come at the expense
of analysis.

• Partiality in modelling. Focus on some aspects of the system, as required by the verifica-
tion and by keeping low the cost of formalization.

• Partial analysis. It would be preferable to reduce the ability to find proofs than the ability
to detect errors reliably (a full specification might be undecidable).

• Partiality in composition. For a large system, it can be necessary to make use of many
partial specifications and views. The composition of the different views is difficult.

4http://www.ict-diva.eu
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The expressiveness of a lightweight formal specification language should be limited to what can
be exploited by the automated verification. Automation is extremely important and can be
obtained by reducing the descriptive power.

Examples of lightweight formal methods are Alloy [Jac02], Eiffel [Mey91]5, IFAD VDM [AL99],
and MOSEL-2 [Bar05].

Alloy is a small modelling language for describing structural properties. It is easy to read and
write, and provides fully-automated analysis.

Eiffel is a comprehensive framework for developing high quality software at low cost. The
reliable design and code is obtained through the use of the design by contract method [Mey98].
Design by contract is a software development method that promotes the design of a system in
terms of components that cooperate on the basis of precisely defined contracts.

The Vienna Development Method (VDM) is a formal method that supports the specification
and design of software systems. It supports syntax checking, extensive static semantics checking,
and documentation.

MOSEL-2 is a lightweight formal method approach for performance evaluation of real-world
systems whose dynamic behaviour can be characterized as a discrete event triggered evolution.

The failure detector is a sort of lightweight formal method. It is fully automatic, focused in the
specific domain, and effective. We use OCL instead of using an existent lightweight approach,
such as Alloy, since OCL can be directly used with any Meta-Object Facility (MOF) meta-
model.

5http://www.eiffel.com/
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Chapter 7

Conclusion

In this deliverable we have discussed how current technology used to manage FOSS distribu-
tions leaves many types of upgrade failures undetected. We have then shown how to signifi-
cantly enlarge the class of detectable failures by adopting a novel model-based approach. The
approach—called Evoss—takes into account both fine-grained static aspects of system con-
figurations (e.g. dependencies among configuration settings) and dynamic aspects of upgrades
(e.g. configuration scripts and their effect on the system state). Both aspects are currently
ignored by state of the art package managers. An essential component of Evoss is a DSL
capturing all essential operations performed by configuration scripts, and yet is simple enough
to be amenable to analysis and simulation.

This approach has been practically validated instantiating it on three widely used FOSS distri-
butions, namely Caixa Maǵıca, Debian, and Ubuntu. Evoss has been designed with continuous
refinement in mind, with the explicit intention of involving the system administrator FOSS com-
munity in iteratively adding primitives to the DSL.

In the following we provide some considerations on Evoss, revolving around three topics: com-
munity support, flexibility, generalization, and performance of Evoss.

Community support We are aware that the failure detection abilities of Evoss are not
complete with respect to all possible upgrade failures; what has been presented here is rather
just a representative subset of failures that have been found to be common during package
upgrades. We hope for a community participation in the iterative and probably never ending
improvement of failure detection abilities. In fact, adding a new class of detectable faults
is relatively straightforward in Evoss: it is enough to add the corresponding OCL or JAR
queries to the fault detector, and queries turn out to be quite concise. Even though OCL is
not a language with which sysadms are necessarily familiar, similar experiences (such as QWG
templates in Quattor [CPL+08]) show that, once the usefulness of a tool has been proven, the
interest of the sysadm community easily grows around it, even when the learning curve is steep.

Evoss adoption and flexibility We have shown how Evoss represents a clear advancement
in dealing with reliable upgrades for FOSS distribution installations. The price for this ad-
vancement includes the effort required to integrate Evoss in real environments and the loss of
flexibility when compared to a maintainer being able to use a general scripting language for
maintainer scripts.
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By focusing on the integration of Evoss in real environments, two aspects should be considered:
(i) in [DPP10] (and recalled in Section 3.1) we introduced the model injector that promotes
the use of Evoss in practice since thanks to this module the needed models (included DSL
statements representing the maintainer scripts) are automatically extracted from the actual
system; (ii) as discussed in the previous item we hope that the community of users will be
involved in the definition of common errors thus increasing the capabilities of the fault detector.

Regarding the loss in flexibility it is interesting to note that from the analysis we performed we
realized that often maintainers do not really need a full-fledged language as POSIX shell to write
maintainer scripts. Nevertheless, in some cases they do need more flexibility. For this reason we
added the tagging mechanism (see Section 3.5) that allows maintainers to write more complex
scripts by using any language. While minimal knowledge about models and their manipulation
is needed to do that, maintainers are only asked to add tagging information about changes that
scripts make on a configuration when executed.

To sum up, Evoss is flexible since (i) it allows maintainers to write scripts with traditional
scripting languages or by means of DSL statements; (ii) the tagging mechanism of the DSL is
another dimension of this flexibility allowing the definition of complex scripts.

Generalization of the simulator The overall Evoss approach can be generalized and the
lessons learned in our experience might be reused even in other contexts different from FOSS
systems.

Figure 7.1: Model-driven simulation approach

Our thesis is that model-driven technologies might help the realization of ‘trusted’ simula-
tions, by espousing the terminology in [PAG+10]. Figure 7.1 shows the phases that compose
the model-driven simulation approach. An analysis and representation of the domain of in-
terest is unavoidable. In our approach we realize and encode the domain modeling in term of
metamodels. The process of realizing the metamodels, which involves also the identification
of elements to be considered, is naturally iterative and should include domain experts: they
can provide the needed knowledge and simulator developers have to build a trust relationship
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with them [PAG+10]. The realization of metamodels enables the automatic conformity check
of models on which the simulation is performed. This conformity ensures that the produced
models will respect constraints defined at the metamodel level and that the models will be
produced at the ‘correct’ abstraction level, i.e., as encoded in the metamodels.

Another important aspect is that models can be automatically produced thanks to model in-
jection techniques, such as [JJJ08] and the MoDisco project1, which are tailored on extract-
ing models from source code. Specifically, the package injection component of Evoss uses
Gra2Mol [JJJ08] to automatically extract models from maintainer scripts written in Bash.
Moreover, the configuration injection component automatically build a configuration model
by querying the running system, by extracting useful information, and by programmatically
building models. This has several advantages:

• models are automatically built, then once we are confident on the injector correctness we
can trust the produced models;

• since the construction of the models is automatized, we can re-perform the model con-
struction before each simulation; this ensures maintainability also of the trust on the
models [PAG+10].

The simulation is performed by executing chains of model transformations that starting from a
system configuration produce a new system configuration. Model transformations enable also
the construction of error models containing the reason of the error.

Even the validation of the simulator can profit from the model-driven infrastructure. In addition
to the fact that the construction of the models is automatized by using model injectors that can
be largely tested as any other software program, specific validation procedures can be defined.
For instance, we realized an automatic validation check, as described in Section 4.6, which
increases the confidence on the simulator. Specifically, starting from a system configuration
CM1 we inject a configuration model and we perform the simulation, thus producing a new
configuration model CM2. Then we perform the real system upgrade and we inject again the
system, thus producing a configuration model CM3. We are then able to check that CM2 is
equal to CM3. By testing this on a number of system upgrades we validate the simulator in
terms of fitness for purpose.

Performance of Evoss Our empirical tests show that simulation and failure detection do
not add significant overhead to the upgrade process (which is anyhow usually dominated by
other factors, such as download times). The most expensive task of Evoss is model injection.

The whole injection process has been tested on two different machines: a first experiment has
been performed on an Ubuntu 9.10 system running on a machine with a quad-core processor,
2.83Ghz, 4GB of RAM with ≈1.400 installed packages. The whole injection process and the
execution of the failure detector described in Chapter 5, have been completed in less than 240
seconds, as shown in Figure 7.2. Another experiment has been performed on an Ubuntu 9.10
system, running on a virtual machine with 512MB of RAM upon Virtual Box2. In this case the
process took longer due to the limited hardware resources. It has been completed nevertheless
in ≈1000 seconds.

1http://www.eclipse.org/MoDisco/
2http://www.virtualbox.org/.
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Figure 7.2: Timing injection of an Ubuntu 9.10 system on a test machine

However, it is important to note that the measurement represents the performance required to
build models from scratch. Typically the model update is performed by means of simulation
which modifies models accordingly to the real system. However, it is always possible for the
model and the real system to be slightly out-of-sync. For instance, we cannot forbid a user
to manually delete files or to manually change configuration aspects. In those cases the model
injection must be performed again. We are currently investigating optimizations of the injection
performance by exploiting the existent configuration model and doing “diff”-updates.
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[RRGLR+09] José E. Rivera, Daniel Ruiz-Gonzalez, Fernando Lopez-Romero, José Bautista,
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