
Instantiation of the metamodel on a widely
used GNU/Linux distribution
Deliverable 2.2

Nature : Deliverable
Due date : 31.01.2010
Start date of project : 01.01.2008
Duration : 36 months

February 10, 2010

Specific Targeted Research Project
Contract no.214898
Seventh Framework Programme: FP7-ICT-2007-1

A list of the authors and reviewers

Project acronym MANCOOSI

Project full title Managing the Complexity of the Open Source Infrastructure

Project number 214898

Authors list Davide Di Ruscio <diruscio@di.univaq.it>

Patrizio Pelliccione <pellicci@di.univaq.it>

Alfonso Pierantonio <alfonso@di.univaq.it>

Internal review Stefano Zacchiroli <zack@pps.jussieu.fr>

Workpackage number WP2

Deliverable number 2

Document type Deliverable

Version 1

Due date 31/01/2010

Actual submission date 31/01/2010

Distribution Public

Project coordinator Roberto Di Cosmo <roberto@dicosmo.org>

Deliverable D2.2 Version 1.0 page 2 of 79

mailto:diruscio@di.univaq.it
mailto:pellicci@di.univaq.it
mailto:alfonso@di.univaq.it
mailto:zack@pps.jussieu.fr
mailto:roberto@dicosmo.org

February 10, 2010

Abstract

One the main objectives of the Mancoosi project is to propose a model-driven approach to
improve the upgrade of FOSS installations. Equipped with that, package managers can both
simulate upgrades (trying to detect configuration inconsistencies) and, during deployment on
the real system, create a more detailed log of script executions that can be used later on to
pinpoint upgrade roll-back mechanism to the precise point where the failure occurred during
deployment.

In order to enable the Mancoosi model-driven approach, this deliverable presents the Mancoosi
model injection technique that is devoted to automatically extract models from a running Linux
system. The model injection approach is implemented in Java and makes use of the Eclipse
Modeling Framework (EMF) facilities. The approach has a layered structure: only the more
specialized layer, which is in charge of executing shell commands, is specifically defined for the
considered distribution and need to be replicated for each new different distribution. The other
layers create models starting from the retrieved information in a way that is independent by
the considered distribution. The result of the Mancoosi injection approach is a model of the
running system conforming to the metamodel presented in Deliverable D2.1.

In this work we present also techniques for keeping the real system and the models always
synchronized. It is in fact important to note that it is always possible that the model and real
system become slightly out-of-sync. For instance we cannot forbid a user to manually delete
a file or to manually change configuration aspects. For this reason we provide mechanisms for
checking the conformity between system and models. Since these synchronization’s features are
really fast, the synchronization can be performed even before each system upgrade and then
before each upgrade simulation.

Conformance

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL
NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OP-
TIONAL” in this document are to be interpreted as described in RFC 2119 1.

1http://www.ietf.org/rfc/rfc2119.txt

Deliverable D2.2 Version 1.0 page 3 of 79

February 10, 2010

Deliverable D2.2 Version 1.0 page 4 of 79

Contents

1 Introduction 11

1.1 Structure of the deliverable . 12

2 The model driven approach to support the upgrade of FOSS systems 15

2.1 FOSS distributions . 15

2.2 An overview of the model-driven approach . 19

2.3 Mancoosi Metamodels . 20

2.4 Model Injection . 21

3 System configuration injection 27

3.1 Eclipse Modeling Framework . 28

3.2 The Mancoosi model management . 32

3.3 The Mancoosi model injection infrastructure . 33

3.4 Developing distribution-dependent model injectors 42

4 Configuration injectors for Debian-based systems 43

5 Package injection 49

5.1 Gra2MoL: A domain specific language for extracting models from source code . . 50

5.2 The Mancoosi DSL . 51

5.3 Maintainer script injection . 52

6 Failure detection 57

6.1 Failure Classification . 57

6.2 Static Analysis . 58

7 Conclusion 61

5

February 10, 2010

Deliverable D2.2 Version 1.0 page 6 of 79

List of Figures

2.1 Overall approach . 19

2.2 Dependencies among metamodels . 20

2.3 Graphical representation of the Configuration metamodel 21

2.4 The role of the injectors in the Mancoosi model-driven approach 22

2.5 Model injection . 24

3.1 The Mancoosi model injection architecture . 27

3.2 The Eclipse Modeling Framework Toolkit . 28

3.3 Ecore metamodel . 29

3.4 Fragment of the Mancoosi metamodel developed in Ecore 30

3.5 Sample Generator Model . 31

3.6 Sample Mancoosi model . 32

3.7 Small fragment of the Mancoosi model management layer 33

3.8 Fragment of the Mancoosi model injection infrastructure 34

3.9 Configuration Manager . 35

3.10 EnvironmentManager Manager . 35

3.11 AlternativesManager Manager . 36

3.12 FileSystem Manager . 36

3.13 Sample file system model . 37

3.14 Group Manager . 37

3.15 User Manager . 38

3.16 Sample model with injected users and groups . 38

3.17 Package Manager . 39

3.18 Package setting dependencies Manager . 40

3.19 Mime type handler Cache Manager . 41

4.1 Fragment of the Ubuntu model injector architecture 43

7

February 10, 2010

4.2 Fragment of an injected Ubuntu configuration . 45

4.3 Time required to inject a running Ubuntu 9.10 system 46

4.4 Time required to inject an Ubuntu 9.10 system running on a faster machine . . . 46

5.1 Overview of the package injection procedure . 49

5.2 Overview of the Gra2Mol approach . 50

5.3 Sample KDM metamodel . 51

5.4 Fragment of the Java grammar . 52

5.5 Sample Gra2Mol transformation . 53

5.6 Fragment of the Package metamodel . 54

5.7 Maintain Scripts Injection . 54

5.8 ANTLRWorks . 55

5.9 Sample injected maintainer scripts . 56

6.1 Some failures detected during system configuration injection 60

Deliverable D2.2 Version 1.0 page 8 of 79

February 10, 2010

List of Acronyms

ACID Atomicity Consistency Isolation Durability

ATL ATLAS Transformation Language

CUDF Common Upgradeability Description Format

DSL Domain Specific Language

DUDF Distribution Upgradeability Description Format

FOSS Free and Open Source Software

GPL General Purpose Language

MANCOOSI Managing Software Complexity

MDE Model Driven Engineering

MOF Meta Object Facility

OMF Open Source Metadata Framework

OMG Object Management Group

POSIX Portable Operating System Interface [for Unix]

UML Unified Modeling Language

XML XML Metadata Interchange

Deliverable D2.2 Version 1.0 page 9 of 79

February 10, 2010

Deliverable D2.2 Version 1.0 page 10 of 79

Chapter 1

Introduction

Free and Open Source Software (FOSS) distributions are among the most complex software
systems known, being made of tens of thousands of components evolving rapidly without central-
ized coordination. Similarly to other software distribution infrastructures, FOSS components
are provided in “packaged” form by distribution editors. Packages define the granularity at
which components are managed (installed, removed, upgraded to newer version, etc.) using
package manager applications, such as APT [Nor08] or Apache maven [Mav08]. Furthermore,
the system openness affords an anarchic array of dependency modalities between the adopted
packages.

One of the main goals of Mancoosi1 is to define a model-driven approach [B0́5] to support
the upgrades of FOSS distributions. The main idea of the proposed model-driven approach
[CRP+09, CDRP+10, DPPZ09] is to specify in terms of models both system configurations
and available packages. In previous works we presented the Mancoosi metamodels (see Deliver-
able D2.1 [DPPZ09]) and the Domain Specific Language (DSL) that we defined to specify the
maintainer scripts (see Deliverable D3.2 [DTP+09]) which have to be executed during package
installations and/or upgrades. Intuitively, models are an abstraction of the real system since
they focus on the relevant aspects in order to predict the operation effects on the software
distribution. To this end, models can be used to drive roll-back operations to recover previous
configurations according to user decisions or after upgrade failures. The use of models allow us
to programmatically reason about the system and promotes also the definition of constraints
and rules that enable some significant static analysis of system configurations. Moreover, the
use of models enables the simulation of the system upgrade. In other words, an upgrade can
be simulated on the models before performing the real upgrade of the system. Since the mod-
els contain also the description of the scripts, in terms of DSL statements, the simulation is
not only a resolution of explicit dependencies among packages, but it deals also with implicit
dependencies and with failures that can be caused by unavailable resources.

In this deliverable we present the instantiation of the Mancoosi metamodel on a Debian-based
distribution. In particular, we describe both system configuration and package maintainer
scripts in terms of models. Since the dimension of the considered system is sizeable, we propose
an approach to support the automatic generation of system configuration and package models.
More precisely, in this deliverable we present a model injection approach [Ecl] that is devoted to
automatically extract models from real artifacts [RPPZ09]. The idea of renewing legacy systems
by means of model driven approaches has been pursued by the Object Management Group

1Mancoosi project: http://www.mancoosi.org

11

http://www.mancoosi.org

February 10, 2010

(OMG) since 2003. In particular, OMG defined the Architecture-Driven Modernization (ADM)
task force [KU07] to support software modernization of existing assets which are imported
into MDE enabled development environments. The developed systems have been designed in
a modular way, thus the support for new distributions can be easily added by extending and
using the provided infrastructure.

In the Mancoosi context we focus on the automatically extraction of models from a real system
that is running on given machines. When dealing with models, it is always an open question
how to ensure both that the models expose the right abstraction level, i.e. they contain all the
useful information, and therefore the models accurately represent the reality. In our approach
the abstraction level is fixed by the Mancoosi metamodels obtained though a suitable domain
analysis described in Deliverable D2.1. The confidence about the fact that our models accurately
represent the real system is gained by the fact that we programmatically and automatically
build our models. In other words the check about the correctness of the models is moved from
the analysis of the models themselves to the automatism defined for obtaining the models.
Therefore, the accuracy of the models can be easily checked by suitably testing the defined
automatism.

Once we are confident that the models accurately represent the real system another problem
raises up. Are we sure that operating with the real system and performing upgrades system
and models will be kept aligned? One first aspect to consider is that for each upgrade the
models are consistently updated. However, it is always possible that the model and real system
become slightly out-of-synch. We cannot in fact forbid a user to manually delete a file or to
manually change configuration aspects. For this reason we provide mechanisms for checking the
conformity between system and models. Since these synchronization’s features are really fast,
the synchronization can be performed even before each system upgrade and then before each
upgrade simulation.

The model injection is implemented in Java and makes use of the Eclipse Modeling Framework
(EMF)2. The model injection is split in two parts: the system configuration injection which
deals with the injection of the static part of the system, e.g. file system, packages, mime-types,
and the package injection which deals with the injection of the dynamic part, i.e. maintainer
scripts. The package injection will be a fundamental part of the upgrade simulation, which
will be the objective of Deliverable D2.3, and of the support for the run-time system upgrade
which will be described in Deliverable D3.3. Both system configuration and package injections
have a layered structure which has been defined in order to have a distribution-independent
injection. In fact only the more specialized layer is specific for the considered distribution and
need to be replicated for a different distribution. This is unavoidable since this layer needs to
execute specific shell commands to retrieve system and packages information. Contrariwise, the
other layers create models starting from the retrieved information in a way that is independent
by the considered distribution. The created models conform to the metamodels presented in
Deliverable D2.1.

1.1 Structure of the deliverable

This deliverable is structured in six chapters:

• Chapter 1 contains an outline of the Deliverable and discusses the context in which this
work appears;

2Eclipse Modeling Framework (EMF) project : http://www.eclipse.org/emf

Deliverable D2.2 Version 1.0 page 12 of 79

http://www.eclipse.org/emf

February 10, 2010

• Chapter 2 briefly recalls FOSS distributions, the Mancoosi model-driven approach, the
Mancoosi metamodels and finally provides an overview of the model injection problem;

• Chapter 3 describes the Mancoosi model configuration injection, by describing the used
technologies and the different layers that compose the model injection approach;

• Chapter 4 shows the instantiation of the overall model injection on a real system. More
precisely we report our experience injecting a running system with the Ubuntu 9.10 dis-
tribution installed;

• Chapter 5 describes the Mancoosi package injection fundamental part for performing the
upgrade simulation. This injection in fact deals with the injection of maintainer scripts
that are executed during the system’s upgrade;

• Chapter 6 shows some static analysis that we can perform on the generated models;

• Chapter 7 concludes the deliverable and outlines future research directions.

Deliverable D2.2 Version 1.0 page 13 of 79

February 10, 2010

Deliverable D2.2 Version 1.0 page 14 of 79

Chapter 2

The model driven approach to
support the upgrade of FOSS
systems

This section recalls the Mancoosi model-driven approach with the aim to show how the work
presented in this deliverable can be integrated with the overall Mancoosi approach. Section 2.1
provides an overview of the FOSS distributions and of their packaged nature. Section 2.2
outlines the overall Mancoosi approach. Section 2.3 recalls the Mancoosi metamodels presented
in Deliverable D2.1 and finally, Section 2.4 shows the role that the injectors have in the Mancoosi
model-driven approach.

2.1 FOSS distributions

Free and Open Source Software (FOSS) distributions are among the most complex software
systems known, being made of tens of thousands components evolving rapidly without central-
ized coordination. Similarly to other software distribution infrastructures, FOSS components
are provided in “packaged” form by distribution editors. Packages define the granularity at
which components are managed (installed, removed, upgraded to newer version, etc.) using
package manager applications, such as: APT [Nor08], Smart [Nie08], Apache Maven [Mav08].

Overall, the architectures of all FOSS distributions are quite similar. Each user machine,
i.e. a distribution installation, has a local package status recording which packages are locally
installed and which are available from remote distribution repositories. In an upgrade scenario
the system administrator requests a change of the package status (e.g. install, remove, upgrade
to a newer version) by means of a package manager, which is in charge of finding a suitable
upgrade plan. More precisely, the package manager solves dependencies and conflicts, retrieves
packages from remote repositories as needed, and deploys individual packages on the filesystem,
possibly aborting the operation if problems are encountered along the way.

A package is usually a bundle of three main parts:

• Files : this part describes the set of files and directories shipped within the package
for installation, e.g. executable binaries, data, documentation, etc. Configuration files is
the subset of files affecting the runtime behavior of the package and meant to be locally

15

February 10, 2010

customized by the system administrator. Proper internalization of configuration file details
is relevant for our purposes, as specific configurations can (implicitly) entail dependencies
not otherwise declared by the involved packages. Configuration files is one of the meta-
information of a package.

• Meta-information : this part contains package-related information, such as a unique
identifier, software version, maintainer and package description, and most notably inter-
package relationships. The kinds of relationships vary with the distribution, but a common
core subset includes: dependencies (the need of other packages to work properly), conflicts
(the inability of being co-installed with other packages), feature provisions (the ability to
declare named features as provided by a given package, so that other packages can depend
on them), and restricted boolean combinations of them [EDO06], as can be seen in Listing
2.1.

Example 1 This example shows the meta-information of the package firefox-3.5 of the
Ubuntu 9.10 distribution. As shown in Listing 2.1, there are several information about a
package.

Listing 2.1: Package meta-information
1 Package : firefox−3.5
2 Status : install ok installed

3 Priority : optional

4 Section : web

5 Installed−Size : 3640
6 Maintainer : Ubuntu Mozilla Team <ubuntu−mozillateam@lists . ubuntu . com>
7 Architecture : i386

8 Version : 3 .5 .7+ nobinonly−0ubuntu0 . 9 . 1 0 . 1
9 Replaces : firefox−3.0 (<< 3 . 1˜) , firefox−3.0−dom−inspector (<< 3 . 1˜) , firefox−3.0−

↪→venkman (<< 3 . 1˜) , firefox −3.1 , firefox−dom−inspector (<< 3 . 1˜)
10 Provides : firefox −3.0 , firefox−3.0−dom−inspector , firefox−3.0−venkman , firefox −3.1 ,

↪→ firefox−dom−inspector , www−browser
11 Depends : fontconfig , psmisc , debianutils (>= 1 .16) , xulrunner −1.9 .1 (>= 1 . 9 . 1) ,

↪→libasound2 (>> 1 . 0 . 1 8) , libatk1 .0−0 (>= 1 . 2 0 . 0) , libc6 (>= 2 . 4) , libcairo2

↪→(>= 1 . 2 . 4) , libfontconfig1 (>= 2 . 4 . 0) , libfreetype6 (>= 2 . 2 . 1) , libgcc1 (>=
↪→ 1 : 4 . 1 . 1) , libglib2 .0−0 (>= 2 . 1 6 . 0) , libgtk2 .0−0 (>= 2 .10) , libnspr4−0d (>=
↪→4.7.3−0 ubuntu1 ˜) , libpango1 .0−0 (>= 1 . 1 4 . 0) , libstdc++6 (>= 4 . 1 . 1) , firefox

↪→−3.5−branding | abrowser−3.5−branding

12 Recommends : ubufox

13 Suggests : firefox−3.5−gnome−support (= 3.5 .7+ nobinonly−0ubuntu0 . 9 . 1 0 . 1) , latex−xft−
↪→fonts , libthai0

14 Conflicts : firefox−3.0 (<< 3 . 1˜) , firefox−3.0−dom−inspector (<< 3 . 1˜) , firefox−3.0−
↪→venkman (<< 3 . 1˜) , firefox−3.1 (<< 3 .1˜ b4˜hg20090317) , firefox−dom−inspector
↪→(<< 3 . 1˜)

15 Conffiles :
16 /etc/apparmor . d/usr . bin . firefox−3.5 97 d80b2693f5e7d9141a4275b91bd883
17 /etc/firefox−3.5/ profile/bookmarks . html 111416629615 cf48b389d1c5d5c11c27
18 /etc/firefox−3.5/ profile/localstore . rdf ea03cc19c2a3f622fa557cd8ea9da6eb

19 /etc/firefox−3.5/ profile/prefs . js 99940 ecd258d83b3355ab06fca0ffddb
20 /etc/firefox−3.5/ profile/mimeTypes . rdf 6047 f42624d9930caa8d651fa94d28f1
21 /etc/firefox−3.5/ profile/chrome/userChrome−example . css

↪→c63733eef9d337c86e6609bcc478a668

22 /etc/firefox−3.5/ profile/chrome/userContent−example . css
↪→d3765c7d2de5626529195007f4b7144a

23 /etc/firefox−3.5/ pref/firefox . js 7883 cf0689295efef7b5b05472e28461
24 Description : safe and easy web browser from Mozilla

25 Firefox delivers safe , easy web browsing . A familiar user interface ,
26 enhanced security features including protection from online identity theft ,
27 and integrated search let you get the most out of the web .

In particular we can see the package name (Package) and the version (Version) that
univocally identify the package. Then we have a set of information that relates the pack-
age with other existing packages. There are several kinds of relations among packages.
For instance, Replaces means that the package substitutes other packages, in this case

Deliverable D2.2 Version 1.0 page 16 of 79

February 10, 2010

previous versions of Firefox. Depends represents the dependencies of the package with
other packages. Recommends is a mild dependency that, if it is not satisfied, this will not
cause problems. Suggests is just a suggestion for other packages that could be useful.
Conflicts represents other packages that create conflict with the considered one; the
meaning is that a configuration should never have two conflicting packages installed at
the same moment. Provides represents the definition of a virtual package. The virtual
packages only exist logically, not physically. The packages with this particular function
will then provide the virtual package. Thus, any other package requiring that function
can simply depend on the virtual package without having to specify all possible packages
individually. If there are both concrete and virtual packages of the same name, then the
dependency may be satisfied (or the conflict caused) by either the concrete package with
the name in question or any other concrete package which provides the virtual package
with the name in question. Finally, Description is a human readable package description,
while the field Conffiles lists the configuration files of the package.

Configuration files have very different nature and they can collect several kind of informa-
tion. They could be executable file but they can also contain information that is managed
by other programs present in the package. For instance Listing 2.2 shows an html con-
figuration file of the package firefox-3.5 that is automatically generated. Then this file
cannot be manually modified. Contrariwise, Listing 2.3 shows a configuration file that
allows users to define specific preferences on Mozilla Firefox.

Example 2 This example shows the the configuration file /etc/firefox-3.5/profile/

bookmarks.html of the package firefox-3.5 of the well known browser. This configura-
tion file is automatically generated and it cannot be edited and modified.

Listing 2.2: /etc/firefox-3.5/profile/bookmarks.html Configuration file
1 < !DOCTYPE NETSCAPE−Bookmark− f i l e −1> < ! -- This is an automatically

2 generated file.

3 It will be read and overwritten.

4 DO NOT EDIT! -->
5 <META HTTP−EQUIV="Content -Type" CONTENT="text/html; charset=UTF -8">
6 <TITLE>Bookmarks</TITLE> <H1>Bookmarks</H1>
7

8 <DL><p>
9 <DT><A HREF="https :// addons.mozilla.org/en-US/firefox/bookmarks/" ICON="data:

↪→image/png;base64 ,iVBORw0KG ...

Example 3 This example shows the configuration file /etc/firefox-3.5/pref/ firefox.js
of the package firefox-3.5 (see Listing 2.3). This configuration file should be edited
in order to select specific preferences, such as enabling/disabling extensions update, en-
able/disable the checking for default browser and so on.

Listing 2.3: /etc/firefox-3.5/pref/firefox.js Configuration file
1 // This is the Debian specific preferences file for Mozilla Firefox

2 // You can make any change in here , it is the purpose of this file.

3 // You can , with this file and all files present in the

4 // /etc/firefox/pref directory , override any preference that is

5 // present in /usr/lib/firefox/defaults/pref directory.

6 // While your changes will be kept on upgrade if you modify files in

7 // /etc/firefox/pref , please note that they won’t be kept if you

8 // do them in /usr/lib/firefox/defaults/pref.

9

10 pref ("extensions.update.enabled" , true) ;
11

12 // Use LANG environment variable to choose locale

13 pref ("intl.locale.matchOS" , true) ;
14

15 // Disable default browser checking.

Deliverable D2.2 Version 1.0 page 17 of 79

February 10, 2010

16 pref ("browser.shell.checkDefaultBrowser" , false) ;
17

18 // Prevent EULA dialog to popup on first run

19 pref ("browser.EULA.override" , true) ;
20

21 // identify ubuntu @ yahoo searchplugin

22 pref ("browser.search.param.yahoo -fr" , "ubuntu") ;
23

24 // identify default locale to use if no /usr/lib/firefox -addons/searchplugins/

↪→LOCALE

25 // exists for the current used LOCALE

26 pref ("distribution.searchplugins.defaultLocale" , "en -US") ;

• Maintainer scripts: this part defines a set of programs, usually written in shell script,
that are used to enable maintainers to attach actions to hooks that are fired by the in-
staller. The set of available hooks depends on the installer; dpkg offers one of the most
comprehensive set of hooks: pre/post-unpacking, pre/post-removal, and upgrade/down-
grade to specific versions [JS08].

Considering the same example of package, namely firefox-3.5, this package has four
maintainer scripts: the pre and post installation script, i.e. firefox-3.5.preinst and firefox-
3.5.postinst respectively, and the pre and post removal scripts, i.e. firefox-3.5.prerm and
firefox-3.5.postrm respectively. The Listing 2.4 shows the firefox-3.5.prerm script.

Listing 2.4: firefox-3.5.prerm Maintainer script

1 #!/bin/sh

2

3 set −e
4

5 APPNAME=firefox−3.5
6

7 i f ["1” = ”remove”]||[”1" = "deconfigure"] ; then
8 update−alternatives −−remove x−www−browser /usr/bin/

↪→APPNAMErm− f/var/lib/update− notifier/user.d/APPNAME−restart−required
9 f i

10

11 i f [−f /usr/share/apport/package−hooks/
↪→APPNAME.pyc]; thenrm− f/usr/share/apport/package− hooks/APPNAME . pyc

12 f i

Maintainer scripts are challenging objects to model, both for its semantics (shell script is a full-
fledged, Turing-complete programming language) and for its syntax which enjoys a plethora of
meta-syntactic facilities (here-doc syntax, interpolation, etc.). Moreover they can do anything
permitted to the installer, which is usually run with system administrator rights. These charac-
teristics make very hard to predict their, possibly unexpected, side-effects which can span the
whole installation.

During package deployment, various kinds of failures can be induced by maintainer scripts.
The “simplest” example is a runtime failure of a script (usually detected by a non-zero exit
code), against which system administrators are left helpless beside their shell script debugging
abilities. More subtle, though possibly easier to deal with, kinds of failures are inconsistent
configurations left over by upgrade scenarios not predicted by maintainers. For instance: a
maintainer script can “forget” to un-register a plugin from its main application while removing
the package shipping the plugin, hence leaving around an inconsistent configuration (which
might, or might not, cause execution failures in the main application).

Deliverable D2.2 Version 1.0 page 18 of 79

February 10, 2010

Figure 2.1: Overall approach

2.2 An overview of the model-driven approach

This section briefly recalls the model-driven approach of Mancoosi and we refer to Deliverable
D2.1 for an extended discussion of it. Figure 2.1 depicts the Mancoosi model-driven approach.
As already highlighted in the introduction, two are the most important features supported by
this approach: the simulation and the use of the model at run-time as driver for the down-grade.
The simulation takes two models as input: the System Model and the Package Model (see the
arrow a©). The former describes the state of a given system in terms of installed packages,
running services, configuration files, etc. The latter provides information about the packages
involved in the upgrade, maintainer scripts included. Given a current configuration, defined in
terms of system model, the simulation the upgrade of the system is simulated by executing the
maintainer scripts of the considered packages. If the execution of a script has some problems
or a not valid configuration is reached, then the outcome of the simulation will be not valid (see
the arrow c©). In this case before proceeding with the upgrade on the real system, the problem
spotted by the simulation should be fixed. Otherwise, if the overall upgrade leaded to a new
configuration that is a valid configuration, then the simulation outcome will be valid (see the
arrow d©). In this case the upgrade on the real system can be operated (see the arrow i©).
However, since the models are an abstraction of the reality, upgrade failures might occur.

In order to support the down-grade, during the real upgrade of the system, models are con-
tinuously updated and kept aligned with the real system they are modeling. Furthermore, Log
models are produced in order to store all the transitions between configurations (see arrow b©).
The information contained in the system, package, and log models (arrows e© and f©) are used
in case of failures (arrow l©) or in case of a user decides to perform a down-grade. In other
words, models drive the down-grade, by indicating the actions that must be performed to bring
the system back to a previous valid configuration (arrow g©). This model-driven approach, to
be effective, must be integrated with other approaches able to physically store useful system
information, and able to retrieve these information when needed. For a discussion of this point
please refer to Deliverable D3.1.

Since it is not possible to specify in detail every single part of systems and packages, trade-offs
between model completeness and usefulness have been evaluated; the result of such a study has
been formalized in terms of metamodels which can be considered one of the main constituting
concepts of Model Driven Engineering (MDE) [Sch06]. They are the formal definition of well-
formed models, constituting the languages by which a given reality can be described in some
abstract sense [B0́5] defining an abstract interpretation of the system. These metamodels are
extremely important since they drive the model injection and the models that we obtain as

Deliverable D2.2 Version 1.0 page 19 of 79

February 10, 2010

Figure 2.2: Dependencies among metamodels

result of the model injection will conform to these metamodels.

2.3 Mancoosi Metamodels

This section briefly recalls the Mancoosi metamodels while we refer to Deliverable D2.1 for its
comprehensive presentation. In order to identify the right trade-off between model complete-
ness and usefulness we analyzed two complex FOSS distributions: the Debian1, the largest
distribution in terms of number of software packages [AGRH05] and the RPM-based Fedora2

distributions. The analysis can be found on deliverable D2.1 and on [RPPZ09]. Successively
the metamodel has been validated by describing part of real systems.

The metamodels which underpin the model based approach are shown in Figure 2.1. The
metamodels describe the concepts making up a system configuration and a software package,
and how to maintain the log of all upgrades. The metamodels have been defined according to
an iterative process consisting of two main steps a) elicitation of new concepts from the domain
to the metamodel b) validation of the formalization of the concepts by describing part of the
real systems. In particular, the analysis has been performed considering the official packages
released by the distributions with the aim of identifying elements that must be considered as
part of the metamodels. Due to space constraints we report here only the results of the analysis,
i.e. the metamodels themselves:

– the System Configuration metamodel, which contains all the modeling constructs necessary
to make the FOSS system able to perform its intended functions. In particular it specifies
installed packages, configuration files, services, filesystem state, loaded modules, shared
libraries, running processes, etc. The system configuration metamodel takes into account
the possible dependency between the configuration of an installed package and other
package configurations. The ability to express such fine-grained and installation-specific
dependencies is a significant advantage offered by the proposed metamodels which embody
domain concepts which are not taken into account by current package manager tools;

– the Package metamodel, which describes the relevant elements making up a software pack-

1http://www.debian.org
2http://fedoraproject.org

Deliverable D2.2 Version 1.0 page 20 of 79

http://www.debian.org
http://fedoraproject.org

February 10, 2010

age. The metamodel also gives the possibility to specify the maintainer script behaviors
which are currently ignored—beside mere execution—by existing package managers. In
order to describe the scripts behavior, the package metamodel contains the Statement

metaclass that represents an abstraction of the commands that can be executed by a
given script to affect the environment, the file system or the package settings of a given
configuration;

– the Log metamodel, which is based on the concept of transactions that represent a set of
statements that change the system configurations. Transitions can be considered as model
transformations [B0́5] which let a configuration C1 evolve into a configuration C2.

As depicted in Figure 2.2, System Configuration and Package metamodels have mutual depen-
dencies, whereas the Log metamodel has only direct relations with both System Configuration
and Package metamodels. Figure 2.3 shows a fragment of the system configuration metamodel.
A system configuration is the composition of artifacts necessary to make computer systems
perform their intended functions [DH07].

Figure 2.3: Graphical representation of the Configuration metamodel

2.4 Model Injection

The model-based approach to simulate FOSS system updates outlined in the previous sec-
tion relies on the existence of both a system model which represents an abstraction of the
configuration being considered, and the models of the packages which have to be installed.
The applicability of the approach depends on the availability of such models which have to be
generated necessarily in automatic way. In this respect specific tools, typically named model
injectors, which generate models starting from existing artifacts have to be devised. Figure 2.4
shows the role of the injectors in the Mancoosi model-driven approach. The figure highlights
the need for two different injectors: one for injecting the configuration of the running system
and the other for injecting the packages to be installed and/or upgraded. The injector of the
system configuration has the role of extracting a model from the system that is running. The
other injector, namely the packages injector, is used by the simulator since it retrieves the infor-
mation that are needed for simulating the upgrade on the previously injected and synchronized
system’s model.

In general, model injection can be seen as a solution to the need for modernizing legacy sys-
tems in order to keep them up-to-date. The problem is that the legacy systems typically resist

Deliverable D2.2 Version 1.0 page 21 of 79

February 10, 2010
Introduction

» This work package is working on models for describing software
artifacts and supporting the upgradeability process

Packages to be
installed/upgraded

Package
Models

Package
Models

Package
Models

Failure
Detector

not valid

not valid

Real System

In
je

c
to

rs

System
Model

Upgrade
Simulator

System
Model

Log
Model

not valid

valid

not valid

October 2009 – Lisbon Meeting 9

Real System
Upgrade Roll-back

not valid

Upgraded
Real System

valid
valid

Figure 2.4: The role of the injectors in the Mancoosi model-driven approach

evolution because the capability to adapt them has diminished through factors not exclusively
related to their functionality. Reasons for this can be: (i) the difficulty to understand and
cost-effectively maintain such a system, (ii) its design models which follow outdated standards,
(iii) its ability to interoperate with other systems, or (iv) its dependence on undesired technolo-
gies or architectures. There is therefore a need to be able to understand and reverse engineer
software assets for the purpose of extracting information and models needed for effective main-
tenance. Unfortunately, in general modernization is not a cheap task. Moreover, the dimension
of the system often impedes handmade modernization. As a consequence, several moderniza-
tion projects are not finished in a planned time and budget or in extremely cases they are
abandoned [sPL03]. This calls for automated modernization. Related to the modernization
problem there is the Reverse Engineering (RE) [Eil05] problem that only aims at discovering
the technological principles of a system through analysis of its structure and its functioning. In
other words, modernization in some sense involves both reverse and forward engineering since
it aims at extracting a model and then producing a new modernized model.

Over the last years, several approaches for extracting models from software artifacts have been
proposed even though the optimal solution which can be used for any situation does not exist
yet [JJJ08]. The complexity of the problem relies on the limitation of current lexical tools which
do not provide the proper abstractions and constructs to query code and generate models with
respect to given metamodels. Some approaches like [WK06, Eff06] focus on generating meta-
models from grammars but they have some drawbacks that may restrict its usefulness, such as
the poor quality of the automatically generated metamodel [JJJ08]. Approaches like [JBK06]
enable the automatic generation of injectors starting from annotated metamodels with syntac-
tic properties. However, they do not permit reuse of existing grammars written for well-known
parser generators. Techniques like [JJJ08] propose specific languages to query software arti-
facts and generate models according to specified source-to-model transformation rules. Other
approaches are:

• MoDisco [Ecl] which defines an infrastructure for supporting model-driven reverse engi-
neering by relying on the concept of discoverer which is a piece of software in charge of

Deliverable D2.2 Version 1.0 page 22 of 79

February 10, 2010

analyzing part of an existing system and extracting a model using the MoDisco’s infras-
tructure;

• The work in [FBB+07] proposes a model-driven modernization method developed by Sod-
ifrance IT Modernization company. This method is based on four phases integrated into
a tool suite developed by Sodifrance, called Model-In-Action (MIA). These phases are:

1. derivation of a model, which conforms to a metamodel, of the system from legacy
code;

2. the second phase consists of removing from the model domain specific aspects so to
obtain an abstract platform independent model;

3. the platform independent model conforms to a metamodel called ANT and in the
third step the ANT model is transformed into a model specific for the target platform;

4. in this step the target code is generated from the platform- specific model by means
of template-based code generation tools.

• Architecture-Driven Modernization (ADM)3 [KU07] is an Object Management Group’s
(OMG’s) initiative, which aims to standardize modernization tools and metamodels. OMG
characterizes the modernization into three different scenarios [KU07]:

1. business architecture: this scenario involves the most complicated and comprehen-
sive cases. These scenarios involve models on all levels of abstractions: business,
application and data architecture, and technical architecture models;

2. application/data architecture: in this scenario we deal with changes that impact both
the technical and the application-data layer. A typical example is the migration
between different platforms. This forces to reorganize the modernized application
architecture;

3. technical architecture: in this scenario we assist to a migration that involves only
the technical architecture. A typical example could be the migration of software
system from one platform to another or transformation between two languages. It is
important to note that in this scenario enhancements cannot impact on system-level
or data design;

Independently from the considered scenario, in [KU07] modernization consists of three
main phases:

1. extracting knowledge from the existing system;

2. defining the target architecture in order to define a transformation approach;

3. transformations from existing into a target system.

• Finally, the work in [RGvD06] proposes a model-driven method for managing software
migration. The first step of this approach is the extraction of the syntax tree from the
original application source code. The next step is the transformation of the model into a
pivot language that, in turn, can be mapped into UML.

In the rest of the document we propose an ad-hoc solution for injecting system configurations
and packages and to generate the models which are required for simulating system upgrades. In

3ADM website: http://adm.omg.org

Deliverable D2.2 Version 1.0 page 23 of 79

http://adm.omg.org

February 10, 2010

...

Real world

...

System

Configuration

Model

Package 1

Model

Package 2

Model

Package n

Model

System

Configuration

Metamodel

Package

Metamodel

conformsTo conformsTo conformsTo

conformsTo

System

Configuration
Package 1

Package nPackage 2

Modeling world

System

Configuration

Injector

drive

Package Injector

drive

Figure 2.5: Model injection

particular, the proposed technique consists of two different injectors as depicted in Figure 2.5:
the System Configuration injector is able to generate a model which represents an abstraction
of the considered system and which conforms to the System Configuration Metamodel. The
Package injector starting from the set of packages which have to be installed, generates corre-
sponding models which conform to the Package Metamodel. Interestingly, the generated package
models contain also the maintainer scripts automatically traduced as set of statements of the
DSL presented in the Deliverable D3.2.

The approach that we follow in Mancoosi can be categorized in the step-wise approach proposed
in [KU07]. The difference is that the target system is the existing system in which we perform an
upgrade. Then, we use the first step of the classical modernization approach in order to obtain
a model of the system. Once obtained the model we transform it into a target architecture that
is the upgraded original system, i.e. the original system goes from one configuration to a new
one.

In some sense we use reverse engineering techniques to extract models from the running system.
The model can be used for performing some static analysis. Then we can simulate the upgrade
on the system and, if the simulation found an error then we discovered that the upgrade cannot
be performed due to problems of the models or because the system’s configuration does not
support the selected upgrade. If the simulation ends positively, then the real upgrade can
be performed. In this scenario we are assuming that the system and the model coexist in
time and are kept synchronized. In literature this application area is referred as “models at
runtime” [BBF09]. This expression puts in evidence that the system can has access at runtime to
various models representing the system [JBB09]. As a consequence, the models need to be kept
in synchronization with the current state of the system. This is exactly what we do in Mancoosi.
The techniques that we present in this remaining of this deliverable are used to extract the
model from the system, but, if a model of system already exists then it is possible to use the
same technique in order to synchronize the model with the running system. This is extremely
important since, even thought we can imagine to instrument each action that causes a system
upgrade with suitable operations act to keep the model synchronized, in practical cases this
does not work. In fact, numerous are the ways a system can change something that is relevant

Deliverable D2.2 Version 1.0 page 24 of 79

February 10, 2010

for the model, here included the user actions. This testifies the need for having synchronization
mechanisms. As explained in the remaining of the deliverable, the synchronization analyzes the
system and when discovers a difference with the information stored in the model, it accordingly
updates the model. In this way the synchronization is very efficient as shown in Chapter 4.

Deliverable D2.2 Version 1.0 page 25 of 79

February 10, 2010

Deliverable D2.2 Version 1.0 page 26 of 79

Chapter 3

System configuration injection

This chapter describes the application which has been conceived for injecting the configuration
of running FOSS systems. The approach has been designed to be easily extended and to
support any Linux distribution (e.g. Debian, Mandriva, Caixa Magica, etc.). In particular, the
implemented system consists of three layers as shown in Figure 3.1: the upper layer consists of
injectors which are specific to the considered distribution since, to query the considered system,
they use the proper package manager like dpkg and rpm. The creation and the population
of models according to the gathered information is performed by extending and using the
elements provided by the Mancoosi model injection infrastructure which is independent from the
considered distribution and then it is wrote once and for all. Such layer uses the Mancoosi model
management one which provides the means for creating and managing models which conform
to the Mancoosi metamodel summarized in the previous chapter. Moreover, we engineered the
overall injection architecture thus supporting also “horizontal” extensions. More precisely, the
Mancoosi Model Injection Infrastructure can be extended by adding more classes by enlarging
the type of runtime errors that can be identified.

The remaining of the chapter is organized as follows: Section 3.1 introduces the Eclipse Modeling
Framework (EMF)1 which underpins the overall injection architecture. Section 3.2 presents in
detail the layer which is devoted to the management of Mancoosi models, whereas the model in-
jection infrastructure is described in Section 3.3. The prescriptions which have to be considered
to implement distribution specific injectors are described in Section 3.4.

1EMF project Web site:http://www.eclipse.org/modeling/emf/

Model Injection

…

Mancoosi Model Management

Mancoosi

Model Injection Infrastructure

Debian
Model Injector

Mandriva
Model Injector

Caixa Magica
Model Injector

Ubuntu
Model Injector

January 2010 – Nice Meeting

Figure 3.1: The Mancoosi model injection architecture

27

http://www.eclipse.org/modeling/emf/

February 10, 201066Model Driven Development with EMF

Ecore Model
Generator

Model

import

Generator
Java Emitter

Template

Model Driven Engineering > Introduction to Eclipse Modeling Framework

Dott. Davide Di Ruscio

Java

model

Java

edit

Java

editor

Figure 3.2: The Eclipse Modeling Framework Toolkit

3.1 Eclipse Modeling Framework

This section presents an overview of the technologies used to implement the overall Mancoosi
model injection. The approach is implemented by making use of the Eclipse development plat-
form and of some of its plugins, as explained in the following. In particular, Eclipse2 is an
open source development platform comprised of extensible frameworks and tools for building,
deploying and managing software across the lifecycle. The Eclipse open source community has
over 60 open source projects. One of these projects is the Eclipse Modeling Framework (EMF)
that is a modeling framework and code generation facility for building tools and other appli-
cations based on a structured data model. EMF brings together and integrates modeling and
programming without forcing a separation between high-level modeling and low-level implemen-
tation programming. Therefore, within EMF, modeling and programming can be considered the
same thing. On one side EMF provides a solid, high-level way both to communicate the design
and to generate part (if not all) of the implementation code, on the other side a programmer
can still maintain its programming attitude. Then, the aim of EMF is to mix modeling with
programming in order to maximize the effectiveness of both.

All the main building blocks of the EMF Toolkit are depicted in Figure 3.2. A key role is played
by the Ecore model which represents the metamodel which has been developed by analyzing
the considered applicative domain and capturing the relevant concepts in terms of meta-classes
and relations among them. Such a model conforms to the Ecore metamodel which is reported
in Figure 3.3. The Ecore metamodel can be considered the Eclipse implementation of the
OMG Meta Object Facility (MOF) [Obj03]; a fragment is reported in Figure 3.3 and the most
important elements are described in the following [BSM+03]:

– EClass: this is a central element in the overall metamodel since it permits the specification
of classes, which are the nodes of an object graph. Classes are identified by name and can
contain a number of features (i.e. attributes and references). They can refer to a number
of other classes as its super-types, and can be abstract; in this case an instance cannot be
created;

2Eclipse project Web site: http://www.eclipse.org.

Deliverable D2.2 Version 1.0 page 28 of 79

http://www.eclipse.org

February 10, 2010

Figure 3.3: Ecore metamodel

– EAttribute: this element models attributes, which are the leaf components of an object’s
data. They are identified by name and they have a type;

– EReference: this element models one end of an association between two classes. They are
identified by name and type, where that type represents the class at the other end of the
association. Bidirectionality is supported by pairing a reference with its opposite, i.e. a
reference in the class representing the other end of the association. Lower and upper bounds
are specified in the reference for multiplicity. A reference can support a stronger type of
association called containment;

– EDataType: this element models simple types whose structure is not modeled. They are
identified by name and are most commonly used as attribute types;

– EStructuralFeature: it is the common base class for attribute and reference which can be
characterized by the following Boolean attributes:

• Changed, whether the value of the feature can be modified;

• Derived, whether the value of the feature has to be computed from those of other related
features;

• Transient, whether the value of the feature is omitted from the object’s persistent seri-

Deliverable D2.2 Version 1.0 page 29 of 79

February 10, 2010

alization;

• Unsettable, whether the value of the feature has an unset state distinguishable from the
state of being set to any specific value;

• Volatile, whether the feature has no storage field generated in the implementation class.

– EPackage: it models packages, containers for classifiers, i.e. classes and data types. A
package’s name needs not be unique; its namespace URI is used to uniquely identify it. This
URI is used in the serialization of instance documents, along with the namespace prefix, to
identify the package for the instance;

– ETypedElement: it models elements which have a type, e.g. attributes, references, param-
eters, and operations. All typed elements have an associated multiplicity specified by their
lowerBound and upperBound;

– EEnum: it models enumeration types, which specify enumerated sets of literal values;

– EEnumLiteral: it models the members of enumeration type’s set of literal values. An enu-
meration literal is identified by name and has an associated integer value as well as literal
value used during serialization.

Figure 3.4: Fragment of the Mancoosi metamodel developed in Ecore

Such elements are used to conceive metamodels which play a key role in MDE, since they are
the formal definition of well-formed models, or in other words they constitute the languages
by which a given reality can be described in some abstract sense [B0́5]. A small fragment of
the Mancoosi metamodel which conforms to the Ecore metamodel outlined above is reported in
Figure 3.4. In particular, the figure depicts the metaclass NamedElement which is a supertype
of the metaclasses Configuration, and InstalledPackages. For each metaclass, a number of
structural features are specified like the attribute creationTime of the metaclass Configuration

Deliverable D2.2 Version 1.0 page 30 of 79

February 10, 2010

Figure 3.5: Sample Generator Model

which is used to maintain when a given configuration model has been created, or the reference
installedPackages which will maintain all the installed packages of a given system.

Once a metamodel has been defined, it is used by a Generator Model as depicted in Figure 3.2
which specifies some properties of the code to be generated, as for instance, the name of the
packages which have to be generated, the path in the filesystem of the considered system which
will contain the generated code, etc. For instance, the generator model fragment reported
in Figure 3.5 imports the Mancoosi metamodel previously sketched and provides additional
information related to the code generation. In the reported example, the source code of the
model package, which will be introduced in the rest of the section, has to be generated in the
path /it.univaq.mancoosi.injectors/src.

A generator model like the one reported in Figure 3.5 is the input of a code generator which
is able to produce the Java implementation of the provided metamodel which consists of the
following three main components:

• model : it is a Java library which represents the core model manipulation and persistence
implementation. In particular, all the facilities to create, modify, validate, serialize, and
de-serialize models conforming to the given metamodel are automatically generated and
contained in such a component;

• edit : it is a Java library which contains methods for querying and manipulating models
to be offered to graphical editors which do not have direct access to the model;

• editor : it is an automatically generated tree based editor like the one reported in Fig-
ure 3.6.a which has been generated from the Mancoosi metamodel. In the editor a sample
Mancoosi model is reported and represents an Ubuntu system configuration consisting of
many installed packages like alacarte, apt-utils, etc. For each installed package, a number of
properties are also reported as for instance the conflicts, dependencies, the configuration
files etc.

Deliverable D2.2 Version 1.0 page 31 of 79

February 10, 2010

Concerning the developed injectors for system configurations, the EMF toolkit reported in
Figure 3.2 has been adopted to generate the Mancoosi Model Management layer depicted in
Figure 3.1. In particular, starting from the Mancoosi metamodel, the mancoosi.model component
has been generated as explained in the next section.

3.2 The Mancoosi model management

As previously said, the EMF toolkit presented above has been used for the implementation of the
overall model injection architecture, especially to generate the Java code which is necessary to
manipulate models conforming to the Mancoosi metamodel. In particular, the generated model
component contains two main Java packages named mancoosi and mancoosi.impl as depicted on the
right-hand side of Figure 3.7. Being more precise, the package mancoosi contains Java interfaces
defined according to the metaclasses of the Mancoosi metamodel. For example, the metaclass
Configuration induces the generation of the Java interface Configuration in the package mancoosi.
For each structural feature of the source metaclass, corresponding getters and setters are also
generated (e.g. the methods setEnvironment(Environment) and getEnvironment() are generated
from the meta-relation environment in the meta-class Configuration). The package mancoosi.impl

contains the Java classes which implement all the interfaces in the package mancoosi (e.g. the class
ConfigurationImpl implements the interface Configuration). Moreover, according to the Abstract
factory pattern [GHJV95], the MancoosiFactoryImpl class is generated in order to provide a factory
class that programmers have to use to create new model elements.

a) Tree editor view b) XMI 2.0 view

Figure 3.6: Sample Mancoosi model

A sample use of the code generated from the Mancoosi metamodel is reported in Listing 3.1.
The sample Java class Injector uses the methods provided by the generated class Configuration

to create a new configuration and to set its structural features (see lines 10-13). A new environ-
ment is also created and the containment relation between the metaclasses Configuration and
Environment is considered by executing the method setEnvironment (see line 14).

Deliverable D2.2 Version 1.0 page 32 of 79

February 10, 2010

Listing 3.1: Sample use of the Mancoosi model management layer
1 import mancoosi . MancoosiFactory ; import mancoosi . Configuration ;
2 import mancoosi . Environment ; . . .
3

4 public class Injector {
5

6 public stat ic void main (String [] args) {
7 . . .
8 MancoosiFactory factory = MancoosiFactory . eInstance ;
9 Configuration configuration = factory . createConfiguration () ;

10 configuration . setCreationTime ((new GregorianCalendar ()) . getTime () . toString ()) ;
11 configuration . setSystemType ("Ubuntu") ;
12

13 Environment environment = factory . createEnvironment () ;
14 configuration . setEnvironment (environment) ;
15 . . .
16 URI fileURI = URI . createFileURI ("model/systemModel.ecore") ;
17 Resource resource = new XMIResourceFactoryImpl () . createResource (fileURI) ;
18 resource . getContents () . add (configuration) ;
19 resource . save () ;
20 }
21 }

The generated code from the Mancoosi metamodel is also able to serialize and de-serialize
models in XML documents as for instance the model in Figure 3.6.b which has been obtained
by executing a code fragment like the one in lines 16-19 of Listing 3.1 which saves the sample
created configuration in the file systemModel.ecore located in the directory ./model.

Figure 3.7: Small fragment of the Mancoosi model management layer

3.3 The Mancoosi model injection infrastructure

The Mancoosi model management layer presented in the previous section underpins an injec-
tion infrastructure which contains a library of Java abstract classes which embody common

Deliverable D2.2 Version 1.0 page 33 of 79

February 10, 2010

model manipulation operations which are required by any injector independently from the
considered distribution. Figure 3.8 depicts the main building blocks of the model injection in-
frastructure which consists of two main Java packages named mancoosi.injectors.managers, and
mancoosi.injectors.utils. The former contains a number of classes each devoted to the manage-
ment of a specific aspect of a Linux distribution, like the file system, packages, alternatives,
etc. The latter contains auxiliary classes which are used internally by the managers as will be
explained in the following.

Figure 3.8: Fragment of the Mancoosi model injection infrastructure

Hereafter, all the classes reported in Figure 3.8 are explained in depth by means of some
explanatory examples. It is worth noting that all the managers implement the singleton design
pattern [GHJV95] in order to guarantee that only one instance for each manager exists in the
running injector.

Configuration Manager It is used to manage the abstract representation of the system
configuration being injected. In particular it provides the methods to get and set the single
instance of the metaclass Configuration which is populated by the other managers during the
overall injection phase (see Figure 3.9). The method getInstance is contained also in all the
other managers and it is used to get the single available instance of the manager. The method
synchronize plays an important role since it can be executed to synchronize the configuration
represented in the model with the real one. In particular, the execution of the method synchronize

will invoke the same method of all the other managers to update models in order to reflect
the modifications which have been performed on the real system. For instance, if the user

Deliverable D2.2 Version 1.0 page 34 of 79

February 10, 2010

accidentally removes a configuration file or some executables which are important for the correct
use of the system, by means of the synchronization phase the user is informed about missing
files or fallacious situations and the models are consistently updated. Vice versa, if the model
has been manually modified, the invocation of the method synchronize will incrementally update
it by recovering its consistency with the current system configuration. It is important to note
that we do not allow changes made by hand on the models; moreover in case of conflicts the
models will be updated to reflect the system configuration.

Figure 3.9: Configuration Manager

Environment Manager Its structure is like that of the configuration manager previously
described (see Figure 3.10). The main purpose of this manager is maintaining a single instance
of the metaclass Environment and having it available everywhere in the injector being imple-
mented. The environment element is used to represent shared libraries and running processes
of the considered system.

Figure 3.10: EnvironmentManager Manager

Alternatives Manager The concept alternative refers to a location of symbolic links and
helper-system where associations can be named and maintained in a consistent manner. It
allows distribution and package owners to group and categorizes packages that provide similar
functionality. For example, instead of having to refer to every email client that exists in the
repositories it is possible for package maintainers to refer to the group association “email” and
if it is required by the package, then the operating system and user can select which email
client they would like to use. Alternatives can be represented in a Mancoosi model by means
of instances of the metaclass Alternative and the Alternatives Manager class is introduced to
create and maintain them (see Figure 3.11). The abstract method createAlternativesFromSystem

plays a key role since it creates all the modeling elements which are required to represent the
alternatives installed in the considered system. The method is abstract since it is distribution

Deliverable D2.2 Version 1.0 page 35 of 79

February 10, 2010

Figure 3.11: AlternativesManager Manager

dependent and each injector has to implement it. For instance, in Debian based distributions,
the installed alternatives can be retrieved by looking at the file /etc/alternatives.

FileSystem Manager It provides common methods which are typical in the management
of modeling elements representing the file system. All the methods of the abstract class
FileSystemManager have an implementation which eventually can be customized by properly
extending the class as it will be described in the next section. In particular, apart from the
operations related to the singleton pattern and to the synchronization facility, the class provides
the following methods (see Figure 3.12):

– createFile(path : String) : File, given a string representing a path in the file system, corre-
sponding instances of the metaclass File are created as in the example in Figure 3.13;

– deleteFile(path : String) : Boolean, it removes the instances of the metaclass File correspond-
ing to the files located in the path provided as parameter. For instance, the execution of
the code deleteFile(/etc/acpi/events/ac) will remove all the file element ac contained in the
modeling element events;

– getFile(path : String) : File, this method is able to retrieve from the model the element
which corresponds to the path provided as parameter;

– exists(path : String) : Boolean, it checks whether exists a modeling element corresponding
to the file located in the path given as parameter.

Figure 3.12: FileSystem Manager

Deliverable D2.2 Version 1.0 page 36 of 79

February 10, 2010

Figure 3.13: Sample file system model

The FileSystem Manager supports also symbolic links as dangling symbolic links would be easy
spot for runtime failures.

As previously said, a specific injector will extend FileSystemManagers abstract class and eventu-
ally introduce new methods for file system manipulations specific to the considered distribution.

Group Manager This class provides the operations which are typically required for managing
user groups of an installed system (see Figure 3.14). In particular, apart from the methods of
the singleton design pattern and that provided for synchronizing the modeled groups with those
really existing in the considered system, the group manager provides also the following methods:

– addGroup(groupName : String) : Group, given a string which represents the name of a group,
a new instance of the metaclass Group is created;

– getGroup(groupName : String) : Group, this methods is able to retrieve the modeling element
corresponding to the group identified by the string given as parameter;

– getAllGroups() : Group[], it retrieves all the groups represented in the considered configu-
ration model;

Figure 3.14: Group Manager

Deliverable D2.2 Version 1.0 page 37 of 79

February 10, 2010

User Manager The management of system users is very similar to that of the groups pre-
viously presented (see Figure 3.15). The main difference between these two classes is on the
CreateUsersFromSystem() method which injects all the users of the real system and updates the
models by adding corresponding modeling elements. This method makes use of the group
manager in order to add groups in the model according to the information of each user. A
model fragment which represents some of the users and groups of a real system is reported in
Figure 3.16.

Figure 3.15: User Manager

Figure 3.16: Sample model with injected users and groups

Package Manager This manager plays a key role in the overall infrastructure since the con-
figuration injection starts by considering first the installed packages. In this respect, the method
createPackageElementsFromSystem() in Figure 3.17 updates the model being created by adding
all the information related to the installed packages. This is an abstract method since the way
the installed packages have to be gathered from the system heavily depends on the considered
distribution. For instance, if we are considering a Debian-based system, the package manager
dpkg can be used to query the configuration and to retrieve information about the installed
packages. In case of RPM-based distribution, the package manager rpm can be considered. The

Deliverable D2.2 Version 1.0 page 38 of 79

February 10, 2010

other abstract methods of the package manager which have to be implemented with respect to
the the kind of considered system are the following:

– setFeaturesOfInstalledPackages(), this abstract method has to be implemented by each new
injector to set all the structural features of the installed packages consisting of the name,
architecture, configuration files, package dependencies, etc. Such method can use the
other abstract methods which are described in the following;

– processPackageMetadataLine(String aLine, InstalledPackage pkg), some of the features of the
installed packages can be defined by means of this abstract method which has to be defined
by each injector in order to process all the metadata of the installed packages. Since the
ways for retrieving the package information depend on the considered distribution, this
method is provided as abstract. Then each injector will implement it with respect to
the package format of the considered distribution. Such a method can use the abstract
methods which are presented hereafter;

– processConfFiles(List<String> conffilesBlock, InstalledPackage installedPackage), for each in-
stalled package, all the corresponding configuration files have to be injected in the con-
figuration model. In this respect, this abstract method is provided and each injector will
implement it by using the proper tools which the considered distribution offers to query
the system and retrieve the information related to the configuration files of each package;

– createSingleDeps(String[] singleDeps, Dependence owner), the dependencies of each retrieved
package can be the conjunctions and/or disjunctions of strong atomic dependencies. This
abstract method has to be implemented in order to retrieve the single dependencies of
each package by considering its metadata;

– createSingleConflicts(String[] singleConflicts, Conflict owner), the installed packages can be in
conflict with other packages. As for the dependencies, the conflict specification can involve
single conflicts which are in conjunctions and/or disjunctions. This abstract method has
to be implemented by each injector in order to retrieve the single conflicts by looking at
the metadata of the considered packages;

Figure 3.17: Package Manager

According to the Package metaclass of the Mancoosi metamodel, all the configuration files of a
given package are contained in an instance of the PackageSetting metaclass. The management
of dependencies among package settings which are not managed by common package managers
are considered by PackageSettingDependenciesManager described in the following.

Deliverable D2.2 Version 1.0 page 39 of 79

February 10, 2010

PackageSettingDependencies Manager It queries the given configuration and gathers
possible dependencies between configuration files; these files may give place to inconsistent
states if not properly managed. In particular, even though the dependencies between pack-
ages are not defined, there are some configuration files which depend on other configuration
files belonging to different packages. For instance, the Apache Web server does not depend on
PHP5 module (and should not, because it is useful also without it), but while PHP5 is installed,
Apache needs specific configuration to work in harmony with it; at the same time, such config-
uration would inhibit Apache to work properly once PHP5 gets removed. Unfortunately, the
Apache package does not depend on PHP5 even though their configuration files might have de-
pendencies. Current package managers do not support the dependencies between configuration
files, hence the dependencies which can occur on a given configuration are not directly available
but they have to be retrieved.

Figure 3.18: Package setting dependencies Manager

The abstract class PackageSettingDependenciesManager shown in Figure 3.18 provides the pro-
grammer with some methods which have to be implemented with respect to the specific system
being injected. The main methods provided by the manager are the following:

• getRequiredFiles(File confFile, InstalledPackage installedPackagePar) : List <File>, this ab-
stract method returns all the configuration files which are used in the one passed as
parameter;

• updatePackageSettingDependencies(), this method updates the dependencies between the
package settings already created in the configuration model by exploiting the method
getRequiredFiles(). Being more precise, for each configuration file of each installed package,
it checks whether such a file depends on others in the system.

A concrete application of such a manager will be described in the next chapter.

MimeTypeHandlerCache Manager In the Mancoosi metamodel the metaclasses Mime-
TypeHandlerCache and MimeTypeHandler are provided to maintain the cache of the mime
type handlers installed in the considered system. This manager provides the methods to cre-
ate and have access to the modeling element which have the references to all the mime type
handlers installed in the system and represented in the model. In particular, the method
createMimeTypeHandlerCacheFromSystem() queries the considered system, gathers all the infor-
mation related to the mime types and, finally, injects them into the model. Such a method is
abstract since each distribution maintains the information related to the mime types in different
ways. Thus, each new injector will implement it according to the prescriptions of the considered
distribution.

Deliverable D2.2 Version 1.0 page 40 of 79

February 10, 2010

Figure 3.19: Mime type handler Cache Manager

The set of managers that has been provided can be extended as introduced at the beginning of
this chapter by adding the support for new entities, such as XML catalog entries, the registry
of available Python modules, crontab entries, documentation registries, menu entries, etc. It is
important to note that the larger the set of classes that will be added, the larger the class of
runtime errors that can be identified.

The mancoosi.injectors.utils package As depicted in Figure 3.8 the managers described above
are contained in the Java package mancoosi.injectors.manager. To increase the performance of the
overall injection approach some utility classes have been implemented (and located in the pack-
age mancoosi.injectors.utils) especially to reduce the time required to retrieve the elements from
the model being considered. For instance, the classes FileMap and PackageSettingMap imple-
ment two data structures which have been conceived to maintain file and package setting model
elements, respectively, and to reduce the time required to retrieve them especially when big
configuration models have to be manipulated. The package mancoosi.injectors.utils contains also
the class FailureDetector which provides the user with operations able to perform static analysis
on given configuration models and to identify possibly system inconsistencies which may give
place to upgrade faults or malfunctions. Some of the available failure detection possibilities
which are currently supported are explained in depth in Chapter 6.

Manager Required customizations

Configuration None

Environment None

FileSystem None

Group None

MimeTypeHandlerCache - createMimeTypeHandlerCacheFromSystem

Package - createSingleDeps

- createSingleConflicts

- processPackageMetadataLine

- processConfFiles

- setFeaturesOfInstalledPackages

- createPackageElementsFromSystem

PackageSettingDependencies None

User None

Table 3.1: Required customizations to implement model injectors

Deliverable D2.2 Version 1.0 page 41 of 79

February 10, 2010

3.4 Developing distribution-dependent model injectors

The Mancoosi model injection architecture reported in Figure 3.1 has been conceived to support
any distribution by identifying common elements and manipulations in an intermediate layer and
provides the means to use and extend it with respect to the specificities of the considered system.
In particular, implementing a new injector consists of extending all the managers described in
the previous section and providing the implementation of all the available abstract methods.
Table 3.1 reports all the elements which have to be implemented to support new distributions.
Such a table will be considered in the next chapter which describes the implementation of a
developed injector to support Ubuntu systems.

Deliverable D2.2 Version 1.0 page 42 of 79

Chapter 4

Configuration injectors for
Debian-based systems

In this chapter we describe the injector which has been implemented to support the injection of
Ubuntu 9.10 systems. The complete implementation of the injector is available online1; in this
chapter only the essentials will be discussed with the aim to provide guidelines for developing
new injectors for other Linux distributions.

Figure 4.1: Fragment of the Ubuntu model injector architecture

1http://www.mancoosi.org/reports/d2.2-eclipseModelInjection.tar.gz

43

http://www.mancoosi.org/reports/d2.2-eclipseModelInjection.tar.gz

February 10, 2010

As said in the previous chapter, to implement an injector for supporting a new Linux distri-
bution, the injection infrastructure presented in the previous chapter has to be considered by
extending the provided classes and implementing their abstract methods. According to such
prescriptions, the Ubuntu 9.10 injector has been implemented as depicted in Figure 4.1. List-
ing 4.1 reports a fragment of the main method of the class UbuntuInjector which uses all the
implemented Ubuntu managers to inject a running systems in a corresponding configuration
model.

Listing 4.1: Fragment of the main method of the UbuntuInjector class
1 // Model Initialization

2 Configuration configuration =
3 UbuntuConfigurationManager . getInstance () . getConfiguration () ;
4

5 Environment environment =
6 UbuntuEnvironmentManager . getInstance () . getEnvironment () ; FileSystem

7 fileSystem = UbuntuFileSystemManager . getInstance () . getFileSystem () ;
8 MimeTypeHandlerCache mimeTypeHandlerCache =
9 UbuntuMimeTypeHandlerCacheManager . getInstance () . getMimeTypeHandlerCache () ;

10 environment . setMimeTypeHandlerCache (mimeTypeHandlerCache) ;
11 configuration . setEnvironment (environment) ;
12 configuration . setFileSystem (fileSystem) ;
13

14 // System users are added in the model

15 UbuntuUserManager userManager = (UbuntuUserManager)
16 UbuntuUserManager . getInstance () ; userManager . createUsersFromSystem () ;
17

18 // All the installed packages are retrieved and corresponding modeling elements are

↪→created

19 PackageManager pkgManager = UbuntuPackageManager . getInstance () ;
20 pkgManager . createPackageElementsFromSystem () ;
21

22 // Dependencies among package settings are retrieved

23 UbuntuPackageSettingDependenciesManager . getInstance () . updatePackageSettingDependencies ()
↪→ ;

24

25 // Mime types and their handlers are represented in the model

26 UbuntuMimeTypeHandlerCacheManager . getInstance () . createMimeTypeHandlerCacheFromSystem () ;
27

28 // All the alternatives installed in the system are represented in the model

29 UbuntuAlternativesManager . getInstance () . createAlternativesFromSystem () ;
30

31 configuration . setCreationTime ((new
32 GregorianCalendar ()) . getTime () . toString ()) ;
33 configuration . setSystemType ("Ubuntu") ; . . .

According to the Mancoosi metamodel, a system model has a configuration element as root,
and all the other model elements are contained in it such as the environment and the filesystem.
In this respect, a new configuration element is created by using the getConfiguration method
of the developed UbuntuConfigurationManager (see line 3 in Listing 4.1), then the modeling el-
ements which are used to represent the file system and the environment are created by using
the UbuntuFileSystemManager and UbuntuEnvironmentManager classes, respectively. The contain-
ment relation between such elements and the previously created configuration is set by using
the methods setEnvironment and setFileSystem provided by the Mancoosi model management
layer (see lines 11-12). In the same way, the modeling element which will maintain all the
mime type handlers installed in the considered system is created by means of the proper man-
ager (see line 8) and specified as contained in the environment element previously created (see
line 10). After such an initialization phase, the model is updated by means of data gathered
from the real system by using methods which are Ubuntu specific. For instance, the method
createPackageElementsFromSystem of the UbuntuPackageManager class retrieves all the installed
packages by executing the shell command dpkg -l and properly parses its outcome. For each

Deliverable D2.2 Version 1.0 page 44 of 79

February 10, 2010

package, the corresponding configuration files are retrieved by using the command dpkg -s.

The provided managers are able to retrieve also information which is not directly available and
needs to be identified by means of a complex navigation on the real system. For instance, the
identification of the dependencies between the configuration files is an example and it is per-
formed by the method updatePackageSettingDependencies of the UbuntuPackageSettingDependencies-

Manager class (see line 23).

Generated by the Ubuntu Package Manager

Generated by the Ubuntu FileSystem

Manager

Generated by the Ubuntu Alternatives

Manager

Generated by the Ubuntu User and Group

Managers

Generated by the Ubuntu

MimeTypeHandlerCache Manager

Figure 4.2: Fragment of an injected Ubuntu configuration

Figure 4.2 reports a small fragment of a configuration model generated by executing the Ubuntu
9.10 injector on a running system consisting of ≈1.300 installed packages. The model is reported
by using a tree-based editor which is part of the Mancoosi model management layer. However,
since the generated Mancoosi models will be manipulated and analyzed by means of further
provided tools (as described in Chapter 6), supporting their visualization by means of specific
editors is not relevant even though technically possible by using proper technologies like GMF2,

2Eclipse Graphical Modeling Framework (GMF) project: http://www.eclipse.org/gmf

Deliverable D2.2 Version 1.0 page 45 of 79

http://www.eclipse.org/gmf

February 10, 2010

200

250

300

350

400

450

500

Ubuntu system configuration injection

Time (in sec)

0

50

100

150

200

250

300

350

400

450

500

Installed packages Users and Groups Alternatives Package setting

dependencies

Mime Type handler

cache

Ubuntu system configuration injection

Time (in sec)

Figure 4.3: Time required to inject a running Ubuntu 9.10 system

TCS3, etc. which permit to specify ad-hoc concrete syntaxes for given metamodels. For instance,
by using such technologies it is possible to implement tools to query Mancoosi models and show
to the users only some views of them like the installed packages and their inter-dependencies,
the services which are executed when the system is started, etc.

The generation of a Mancoosi configuration model may take some time depending on the hard-
ware configuration of the considered system. Figure 4.3 shows the time which has been required
to inject an Ubuntu 9.10 system, running on a virtual machine with 512MB of RAM upon Vir-
tual Box4. As shown in Figure 4.3 the injection of directly available elements is really fast as for
instance the users and the groups of a system, the configured alternatives, or the installed mime
type handlers. More time is required to inject the installed packages especially because all their

3Textual Concrete Syntax (TCS) progect: http://www.eclipse.org/gmt/tcs/
4VirtualBox Website: http://www.virtualbox.org/

40

60

80

100

120

Time (in sec)

Time (in sec)

0

20

40

60

80

100

120

Installed packages Users and Groups Alternatives Package setting

dependencies

Mime Type handlare

cache

Time (in sec)

Time (in sec)

Figure 4.4: Time required to inject an Ubuntu 9.10 system running on a faster machine

Deliverable D2.2 Version 1.0 page 46 of 79

http://www.eclipse.org/gmt/tcs/
http://www.virtualbox.org/

February 10, 2010

configuration files have to be retrieved. The operations which take longer are related to the
injection of information which has to be retrieved by means of complex system navigations as
for instance the dependencies between the configuration files (see Package setting dependencies
in Figure 4.3).

We have executed the model injection approach also on an Ubuntu 9.10 system running on a
machine with a quad-core processor, 2.83Ghz, 4GB of RAM with ≈1.400 installed packages.
Figure 4.4 reports the execution time of such an injection which has been completed in less than
120 seconds.

As said in the previous chapter, the overall injection infrastructure has been designed to support
also the synchronization between real systems and corresponding configuration models. In fact,
each manager provides the user with the method synchronize to update the model according to
the modifications operated on the system configuration without to force a complete regeneration
of the model. The experiments we performed on the machines previously considered took few
seconds for performing the synchronization. The rationale of this good result is that the model
update, which is the slowest part of the model construction, is performed only when the model
differs from the real system.

Deliverable D2.2 Version 1.0 page 47 of 79

February 10, 2010

Deliverable D2.2 Version 1.0 page 48 of 79

Chapter 5

Package injection

In this chapter we describe the proposed package injection approach which takes into account
both the static data of packages and the contained maintainer scripts (see Figure 5.1). In this
respect, package injectors have two main components each devoted to the management of the
different kind of information to be injected. As discussed in the previous chapter, the system
configuration injection already takes into account the static description of the packages. The
other part to be considered in order to have a complete package injection is the injection of the
maintainer scripts associated to the packages. This task requires specialized techniques and tools
that are described in Section 5.1. As shown on right-hand side of Figure 5.1 the outcome of the
overall package injection procedure consists of modeling elements which represent the considered
package together with the contained scripts written as statements of the DSL presented in the
Deliverable D3.2 and briefly recalled in Section 5.2. The details about the maintainer scripts
injection are given in Section 5.3.

Static data

Maintainer scripts

Package

Static data injection

Maintainer scripts injection

Mancoosi Model

Figure 5.1: Overview of the package injection procedure

49

February 10, 2010

5.1 Gra2MoL: A domain specific language for extracting mod-
els from source code

Gra2MoL [CIM09] is a language especially tailored to address the problem of model extraction
from source code. The idea of the extraction process is to automatically generate models
conforming to a target metamodel from source code conforming to a specific grammar (see
Figure 5.2).

Figure 5.2: Overview of the Gra2Mol approach

Gra2MoL helps this process since it is a Domain Specific Language (DSL) that allows the spec-
ification of mappings between grammar elements and target metamodel elements. A Gra2MoL
transformation definition consists of rules which transform grammar elements into model el-
ements. Then in Gra2Mol the source element of a transformation rule is a grammar element
rather than a metamodel element. A transformation rule is composed of four parts:

– from : this part specifies a non terminal-symbol of the grammar and it is used to define
the tree nodes where the rule is applied. This part can also include query operations to
check if the nodes whose type is the non-terminal satisfy a defined structure;

– to: this part specifies the type of the target elements which have to be generated when
the rule is applied;

– queries: this part is used to specify a set of query expressions defined in an OCL-like
language. Queries are particularly useful in Gra2Mol since grammars and models have
different nature. While programming language grammars produce syntax trees where
references between elements are implicitly realized by means of identifiers, models are
graphs where references between elements are explicit. Therefore, grammar-to-model
transformations require intensive queries over the whole syntax tree to retrieve information
that are out of the scope of the current rule;

– mapping : the mapping is used to define the mappings between source and target el-
ements. It contains a binding construct that can be used to establish the relationship
between a source grammar element and a target metamodel element. A binding is written
as an assignment using the operator “=”, where the left-hand side must be a property of
the target element metaclass and the right-hand side can be the variable specified in the
from part of the rule, a query identifier, or a literal value. If it is a literal value, the value
is directly assigned to the property of the left-hand side. If it is a query identifier, then
the query is executed; the query execution may involve the execution of other rules. If

Deliverable D2.2 Version 1.0 page 50 of 79

February 10, 2010

it is an expression, it is evaluated and two situations may arise: (i) the result is a node
whose type corresponds to a terminal and in this case the result is directly assigned, or
(ii) a rule to resolve the binding is executed.

Example 4 Generating KDM model from Java code: In the following we present a sample appli-
cation of Gra2Mol borrowed by [CIM09] consisting of the automatic generation of KDM1 models
from Java code. In particular, KDM is a metamodel for knowledge discovery in software and
defines a common vocabulary of knowledge related to software engineering artifacts, regardless
of the implementation programming language and runtime platform. KDM is designed by the
Object Management Group’s foundation for software modernization. For more information, the
interested reader can refer to the official Architecture-Driven Modernization (ADM) Website2.
The main elements of the KDM metamodel are depicted in Figure 5.3: the root metaclass is
Segment which contains different code models each composed of class units. Among the code
elements of a class unit there are instances of the metaclass methodUnit.

Figure 5.3: Sample KDM metamodel

According to Figure 5.2, to generate KDM models from source code, it is necessary the avail-
ability of the source grammar. A fragment of the ANTLR grammar of Java is reported in
Figure 5.4. It is considered for specifying the Java to KDM transformation reported in Fig-
ure 5.5. For instance, the createSegment rule generates a target Segment instance from a source
Java compilation unit. The query class retrieves the contained normal class declaration which
will be used to set the reference codeElement of the generated element model.

5.2 The Mancoosi DSL

The Mancoosi DSL is a language which has been defined for specifying and to simulate the
behavior of the maintainer scripts which are executed during package upgrades. The language
has been conceived by analyzing existing maintainer scripts and identifying common recurrences
which have been formalized in terms of specific metaclasses. The Mancoosi DSL consists of an
abstract and concrete syntax, and of a semantics definition which has been given in an opera-
tional fashion by means of ATL transformations which change the source system configuration
model and generate a target one according to the semantics of the executed DSL statements.
The Mancoosi DSL is described in the Deliverable D3.2 and here we recall the main aspects
which are useful to understand the maintainer scripts injection. The abstract syntax of the
language is defined in terms of the Mancoosi metamodel, a small fragment of it is reported in

1Knowledge Discovery Metamodel (KDM): http://www.omg.org/technology/kdm/index.htm
2Architecture-Driven Modernization (ADM) : http://adm.omg.org/

Deliverable D2.2 Version 1.0 page 51 of 79

http://www.omg.org/technology/kdm/index.htm
http://adm.omg.org/

February 10, 2010

Figure 5.4: Fragment of the Java grammar

Figure 5.6: the InstalledPackage metaclass composes a number of scripts which consists of state-
ments which can be both shell commands and templates like PostinstUdev and PostinstDesktop.

In the rest of the chapter we propose an injection approach which is able to represent in terms
of models conforming to the Mancoosi metamodel, the maintainer scripts of the package to be
installed or upgraded.

5.3 Maintainer script injection

The proposed approach to inject maintainer scripts relies on the Gra2Mol framework as outlined
above. The injection process is depicted in Figure 5.7: GMS is the grammar we defined for
parsing the maintainer scripts. By means of ANTLR3 we produce a parser for GMS . The
parser takes as input the maintainer scripts and produces an abstract syntax tree for the parsed
scripts. The abstract syntax tree is taken as input by Gra2Mol transformations which query it
and generate target models.

The grammar that we defined for the maintainer scripts is shown in Appendix. It is important
to note that this grammar embodies ad-hoc productions corresponding to the identified recur-
rent templates. One assumption that we made is that the scripts that we want to parse are
syntactically correct. This assumption is reasonable since we parse maintainer scripts that are
integrant part of a Linux distribution.

The structure of the defined grammar is inspired by the Open Group Base specification for the
Shell Command Language4 and by the grammar of the Mancoosi DSL described in Deliverable
D3.2. As shown in Listing 5.1 the grammar is able to recognize both the templates and shell

3ANTLR: http://www.antlr.org
4Shell Command Language: http://www.opengroup.org/onlinepubs/009695399/utilities/xcu_chap02.

html

Deliverable D2.2 Version 1.0 page 52 of 79

http://www.antlr.org
http://www.opengroup.org/onlinepubs/009695399/utilities/xcu_chap02.html
http://www.opengroup.org/onlinepubs/009695399/utilities/xcu_chap02.html

February 10, 2010

Figure 5.5: Sample Gra2Mol transformation

commands that cannot be recognized as a template. Moreover, the reported grammar is specific
for Debian-based distributions. Suitable grammars should be defined for other distributions
according to the common recurrences which have to be captured in terms of corresponding
templates.

According to the grammar in Listing 5.1 each maintainer script starts with an header such
as #!/bin/sh. Therefore, the mainRule is composed of an header and a sequence of state-
ments. A statement could be a template, one of the 52 found for Debian in Deliverable D2.1, a
command statement, a control statement, a loop statement, and finally a redirection statement.

Listing 5.1: Main rules of the grammar
1 mainRule
2 : header (statement) ∗
3 ;
4

5 header
6 : SHARP EXCL path (param) ? ’\n’

7 ;
8

9 statement
10 : template
11 | command statement
12 | control statement
13 | loop statement
14 | redirection statement
15 ;
16 . . .
17 template :
18 . . .
19 | templatePostinstDesktop

20 | . . .
21 ;
22 . . .
23 templatePostinstDesktop

24 : ’if’ (’\n’) ? LSBRACK DQUOTE ? input_variable DQUOTE ? EQU DQUOTE ? ’configure ’ DQUOTE

↪→? RSBRACK (’\n’) ? AND (’\n’) ? ’which’ ’update -desktop -database ’ GREAT path
↪→DIGIT GREATAND DIGIT ’;’ ’then’ (’\n’) ? ’update -desktop -database ’ param (’\n’ |

Deliverable D2.2 Version 1.0 page 53 of 79

February 10, 2010

Figure 5.6: Fragment of the Package metamodel

↪→ ’;’) ’fi’ (’\n’ | ’;’)
25 ;
26 . . .

The non-terminal templatePostinstDesktop corresponds to the bash code reported in Listing 5.2
which is an identified Debian template as discussed in the Deliverable D2.1.

Listing 5.2: postinst-desktop Debian template
1 #!/bin/sh
2 i f ["$1" = "configure"] && which update−desktop−database >/dev/null 2>&1 ; then
3 update−desktop−database −q
4 f i

The grammar reported in Listing 5.1 has been developed by using ANTLRWorks, the ANTLR
GUI Development Environment5: Figure 5.8 shows a screenshot of the environment at work.

As shown in Figure 5.7, the grammar definition is the first step which is required to adopt

5ANTLRWorks: http://www.antlr.org/works/index.html

Figure 5.7: Maintain Scripts Injection

Deliverable D2.2 Version 1.0 page 54 of 79

http://www.antlr.org/works/index.html

February 10, 2010

Figure 5.8: ANTLRWorks

Gra2Mol for the script injection. Then transformation rules have to be defined in order to
establish how the elements in the abstract syntax tree which has been obtained by parsing
the source code, have to be transformed in target model elements. Such transformation rules
are specified by using the Gra2Mol language as in Listing 5.3. The reported transformation
fragment consists of the following rules:

– mapInstalledPackage, this rule generates in the target model an instance of the InstalledPackage

metaclass for each source file in a directory which contains all the maintainer scripts which
have to be injected;

– mapScriptDefinition, this rule generates in the target model an instance of the metaclass
Script for each mainRule element identified in the source code;

– mapTemplatePostinstDesktop and mapTemplatePostinstUdev generate target template elements
with respect to the occurred template in the source code.

The specification order of the rules matters and rules are linked each others by means of the
mappings directive. For instance, the rule mapScriptDefinition is executed for all the mains elements
which are retrieved by the query in the mapInstalledPackage rule (see line 5 ofListing 5.3). The
mapping at line 7 of Listing 5.3 sets the reference Script of the generated InstalledPackage with
the element mains which contains all the elements generated by the rule mapScriptDefinition.

Listing 5.3: Excerpt of the Gra2Mol transformation for injecting maintainer scripts
1 rule ’mapInstalledPackage ’

2 from file f

3 to InstalledPackage

4 queries

Deliverable D2.2 Version 1.0 page 55 of 79

February 10, 2010

Figure 5.9: Sample injected maintainer scripts

5 mains : //#mainRule;

6 mappings

7 Script = mains ;
8 end_rule

9

10 rule ’mapScriptDefinition ’

11 from mainRule mr

12 to Script

13 queries

14 stats : /mr//#command;
15 mappings

16 statements = stats ;
17 end_rule

18

19 rule ’mapTemplatePostinstDesktop ’

20 from command/template // templatePostinstDesktop st

21 to PostinstDesktop

22 queries

23 . . .
24 mappings

25 . . .
26 end_rule

27

28 rule ’mapTemplatePostinstUdev ’

29 from command/template // templatePostinstUdev st

30 to PostinstUdev

31 queries

32 . . .
33 mappings

34 . . .
35 end_rule

A sample model which has been generated by means of the maintainer script injection approach
previously presented is reported in Figure 5.9. The model consists of two DSL statements (i.e.
UpdateMimeTypeCache and PostinstUdev) and of an if statement which does not correspond to
any template, thus it has been represented in the generated model without manipulations.

Deliverable D2.2 Version 1.0 page 56 of 79

Chapter 6

Failure detection

Once the model has been built, this opens to new static analysis scenarios. In order to under-
stand the analysis that we can perform just using the model and without simulating upgrades
it is useful to recall the classification of failures that we described in Deliverable D3.2. Let us
recall also that the upgrade of a FOSS system typically requires the following main steps:

1. a user selects the package he/she aims to install or uninstall;

2. suitable dependencies resolution algorithms compute additional packages that are involved
in the upgrade;

3. pre and post installation scripts are executed to perform the installation. If the required
packages are available and the dependencies resolution algorithms resolve each depen-
dency, then the step can be performed.

In Section 6.1 we devise a classification of possible failures which can occur during upgrade
scenarios. We highlight those which are currently most difficult to manage since raised by
incomplete or incorrect maintainer scripts. After this general classification, in Section 6.2 we
discuss some failures which can be detected by means of static analysis on the considered system
configuration model.

6.1 Failure Classification

The first failure classification can be provided by taking into account the time when failures are
noticed. In this respect we distinguish among:

• Failure before the package commences installation , upgrades can fail before the
real installation of packages. Hence the system configuration is not changed. Typical
situations that can occur are: (i) package lists that, either locally or remotely, have errors;
(ii) package management database is locked or inaccessible; (iii) package management
database is corrupted, incoherent or is in an erroneous state; (iv) dependencies may be
missing due to a broken or unsynchronised repository; and (v) packages may refer to a
package that has been deprecated and/or removed;

• Failure of scripts during upgrades, these kinds of failures rely on the state of resources
and for this reason it is difficult to simulate or predict. The main causes of these failures

57

February 10, 2010

can be: (i) scripts may try to access to non-existent files; (ii) scripts may have problems
with access rights to/from files; (iii) scripts referred to may fail e.g. APT-Lua; (iv) pre
and post install scripts may have insufficient permissions, etc.;

• Non valid configurations are reached , the upgrade process reaches the end but the
obtained configuration is “not valid” since, for instance, there are configuration files which
refer to others which no longer exist in the file system;

• Slow failures (also named Undetected failures in [DCZT08]), even in this case, if the
upgrade process reaches the end there is a chance that the obtained configuration contains
failures that might not become apparent until another package is released or that it is in
a generally unused part of the package and is “logic bomb”;

In addition to this classification we can experience also other kinds of failures that typically occur
during system upgrades. For a complete description of these aspects we refer to Deliverable
D3.2.

6.2 Static Analysis

In this section we refer to failure that can be discovered before the package installation. In
particular, in this section we show how by means of the model we are able to discover some
errors that current package managers are not able to discover.

• Discovering implicit dependencies among packages: by means of the models that provide a
common representation of the system’s concepts we are able to discover dependencies that
are implicit, i.e. dependencies that are not declared into the package’s meta-information.
For instance by analyzing the configuration files we can discover dependencies that con-
figuration files of a package have with configuration files of another package. Since the
configuration files of a package are obviously related to the package they belong to, a
dependency among the two involved package should exist. However, the existence of this
relation is not obvious since they are added by hand by maintainers.

Actually, at the state of the art it is not possible to completely automate the extraction
of these dependencies since the configuration files are interpreted by other programs that
know the real semantics of what is written in these files. As future research direction we
could imagine to define a domain specific language for writing configuration files. Another
possible future research direction is to rely on a social and collaborative network managed
by the distributions and shared among distribution maintainers, users, researchers.

In the following we report some examples of implicit dependencies discovered on an Ubuntu
9.10 distribution by analyzing the configuration files by means of some defined heuristic:

1. Even though no dependency is defined between the package gdm and the package
usplash, our analysis raises that the configuration file /etc/init.d/usplash of the
package usplash is required in the configuration file /etc/init.d/gdm of the package
gdm. Listing 6.1 an extract of the configuration file showing this implicit dependency.

Listing 6.1: Fragment of the configuration file /etc/init.d/gdm
1 . . . i f pidof usplash > /dev/null ; then
2 usplash=:
3 orig_console="$(fgconsole)"

Deliverable D2.2 Version 1.0 page 58 of 79

February 10, 2010

4 DO_NOT_SWITCH_VT=yes /etc/init . d/usplash start

5 # We’ve just shut down usplash , so don ’t log

6 # success as it will look weird on the console.

7 log_end_msg=:
8 else
9 usplash=fa l se

10 log_end_msg=log_end_msg

11 f i
12 . . .

The rationale of this part of this configuration file is: if usplash is running then
/etc/init.d/usplash is invoked. The underlining assumption is that if usplash is
running then the usplash package is installed. This assumption may easily turn to
be false. For instance a package different from usplash and without any relation with
this package could have simply executed a process coincidentally called usplash.

2. Even though no dependency is defined between the package x11-common and the
package gdm, our analysis raises that the configuration file /etc/init.d/gdm of the
package gdm could be required by the configuration file /etc/gdm/failsafeXinit of
the package x11-common. The configuration file /etc/init.d/gdm may be invoked
with a parameter with gdm. The invocation of the file depends on a parameter that
can be set to true. This is a case of “potential” dependency and it is clear that the
responsibility to correctly set the parameter and to correctly manage this implicit
dependency is delegated to the user.

3. Even though no dependency is defined between the package gdm and the pack-
age x11-common, the configuration file /etc/X11/Xsession.options of the package
x11-common could be required by the configuration file /etc/gdm/Xsession of the
package gdm. Actually the file in mentioned in a variable of the script and the vari-
able is never used. However, it could be dangerous to have this variable defined since
this could suggest to use it.

4. Let us consider the package laptop-mode-tools. This package does not have depen-
dencies with the package xset even though the configuration file /etc/laptop-mode/
laptop-mode.conf gives the possibility to the laptop mode tools of controlling the
X display and the configuration file explicitly wrote that:

“Using these settings, you can let laptop mode tools control the X display
standby timeouts. This requires that you have installed the “xset” utility.
It is part of the X.org server distribution and included in the package xorg-
server-utils.”.

Moreover the same configuration file recommends:

“The X settings are not automatically applied on login, and this is impossible
fix for the user, since laptop mode tools must operate as root. Therefore, it
is recommended to add the following line to /etc/X11/Xsession as well:
/usr/sbin/laptop mode force”

Now let us imagine that we add this package and then we remove the package
laptop-mode-tools. Then, since we modified the configuration file /etc/X11/Xsession
of the X11-common package and since no dependency is defined between X11-common

and laptop-mode-tools, the system configuration would have problems.

• Discovering missing configuration files: according to the system configuration model, some
configuration files are required but they are not available in the system. For instance in
Figure 6.1 the file /etc/ldap/ldap.conf is required by the installed package libldap-2.4-2 but
it is actually missing;

Deliverable D2.2 Version 1.0 page 59 of 79

February 10, 2010

• Discovering Mime-type dangling handlers: according to the available information, the
considered system should be able to manage a mime type, but the corresponding handler
is missing in the system. For instance, in the configuration considered in Figure 6.1 the
executable “dia” handling the mime type “application/x-dia-diagram” is missing even
though according to the system configuration it appears to be a manageable mime type;

• Discovering missing services: the init.d file contains services that should start at the
system start-up; some of the services would be not present in the system’s configuration.
By querying the configuration model, it is possible to detect such missing services.

Figure 6.1: Some failures detected during system configuration injection

Many other failures can be detected by extending the set of managers presented in the previous
chapters. Moreover, in the Deliverable 2.3, we will introduce also the support for the detection
of failures which can occur during the simulation of package upgrades.

Deliverable D2.2 Version 1.0 page 60 of 79

Chapter 7

Conclusion

In this deliverable we have described the instantiation of the Mancoosi metamodel on systems
running the Ubuntu 9.10 Linux distribution. The instantiation has been performed by means
of automated tools that have been conceived to be as distribution-independent as possible. For
this reason the architecture of the model injection is layered. More precisely it consists of three
layers:

• the lower layer is called Mancoosi Model Management and it is automatically and com-
pletely generated by the Eclipse Modeling Framework, which is the technology we used to
implement the overall Mancoosi model injection. The Mancoosi Model Management layer
provides the API to build the models conforming the Mancoosi metamodels;

• the middle layer is called Mancoosi model injection infrastructure and contains ten man-
agers each devoted to the extraction of a particular aspect of the Linux running system,
such as Configuration, Environment, Package, File System, etc. It is important to note
that also this layer is completely distribution-independent. Moreover, this layer can be
extended to cover more classes of errors during the upgrade simulation;

• the upper layer is called Distribution-dependent Model Injector and contains a model
injector specialized for each distribution. Intuitively this layer contains instruments for
querying the running system and for collecting useful information. The model is build by
means of the API provided by the Mancoosi model injection infrastructure and then of
the API provided by the lower layer.

The defined injection approach is used not only to build a first model of our running system but
it is also used to keep the model synchronized with the running system. The synchronization is
very useful to ensure that the model will not become obsolete even when a user intentionally or
unintentionally makes a modification on the system without using typical upgrade instruments.

In Deliverable D2.3 we will show how the Mancoosi simulation will animate the models presented
in this deliverable. The same models will be used also by Deliverable D3.3 to show how they
can help the roll-back of an undesired upgrade.

61

February 10, 2010

Deliverable D2.2 Version 1.0 page 62 of 79

Maintainers scripts grammar

1 grammar GrammarShellForMancoosi ;
2

3 options {
4 backtrack=true ;
5 k=1;
6 }
7

8

9 mainRule

10 : header (statement) ∗
11 ;
12

13 header

14 : SHARP EXCL path (param) ? ’\n ’
15 ;
16

17

18 statement

19 : template

20 | command_statement

21 | control_statement

22 | loop_statement

23 | redirection_statement

24 ;
25

26 template

27 : templateA1

28 | templateA2

29 | templateA3

30 | templateA4

31 | templateA5

32 | templateA6

33 | templateA7

34 | templateA8

35 | templateA9

36 | templateA10

37 | templateA11

38 | templateA12_13

39 | templateA14

40 | templateA15

41 | templateA16

42 | templateA17

43 | templateA18

44 | templateA19

45 | templateA20

46 | templateA21

47 | templateA22

48 | templateA23

49 | templateA24

50 | templateA25

51 | templateA26

52 | templateA27

53 | templateA28

54 | templateA29

55 | templateA30

63

February 10, 2010

56 | templateA31

57 | templateA32

58 | templateA33

59 | templateA34

60 | templateA35

61 | templateA36

62 | templateA37

63 | templateA38

64 | templateA39

65 | templateA40

66 | templateA41

67 | templateA42

68 | templateA43

69 | templateA44

70 | templateA45

71 | templateA46

72 | templateA47

73 | templateA48

74 | templateA49

75 | templateA50

76 | templateA51

77 | templateA52

78 ;
79

80 templateA1

81 : ’ i f ’ (’\ n ’) ? LSBRACK DQUOTE ? input_variable DQUOTE ? EQU DQUOTE ? ’ configure ’ DQUOTE

↪→? RSBRACK (’\ n ’) ? AND (’\ n ’) ? ’ which ’ ’ update−desktop−database ’ GREAT SLASH ’
↪→dev ’ SLASH ’ null ’ DIGIT GREATAND DIGIT ’ ; ’ ’then ’ (’\ n ’) ? ’ update−desktop−
↪→database ’ MINUS ’q ’ (’\ n ’ | ’ ; ’) ’ f i ’ (’\ n ’ | ’ ; ’)

82 ;
83

84 templateA2

85 : ’ i f ’ (’\ n ’) ? LSBRACK DQUOTE ? input_variable DQUOTE ? EQU DQUOTE ? ’ remove ’ DQUOTE ?
↪→RSBRACK (’\ n ’) ? AND (’\ n ’) ? ’ which ’ ’ update−desktop−database ’ GREAT SLASH ’ dev ’
↪→ SLASH ’ null ’ DIGIT GREATAND DIGIT ’ ; ’ ’then ’ (’\ n ’) ? ’ update−desktop−database ’
↪→ MINUS ’q ’ (’\ n ’ | ’ ; ’) ’ f i ’ (’\ n ’ | ’ ; ’)

86 ;
87

88 templateA3

89 : ’ i f ’ (’\ n ’) ? LSBRACK DQUOTE ? input_variable DQUOTE ? EQU DQUOTE ? ’ configure ’ DQUOTE

↪→? RSBRACK (’\ n ’) ? AND (’\ n ’) ? ’ which ’ ’ install−docs ’ GREAT SLASH ’ dev ’ SLASH ’
↪→null ’ DIGIT GREATAND DIGIT ’ ; ’ ’then ’ (’\ n ’) ? ’ install−docs ’ MINUS ’i ’ SLASH ’
↪→usr ’ SLASH ’ share ’ SLASH ’ doc−base ’ SLASH doc_id (’\ n ’ | ’ ; ’) ’ f i ’ (’\ n ’ | ’ ; ’)

90 ;
91

92 templateA4

93 : ’ i f ’ (’\ n ’) ? LSBRACK DQUOTE ? input_variable DQUOTE ? EQU DQUOTE ? ’ remove ’ DQUOTE ?
↪→RSBRACK OR (’\ n ’) ? LSBRACK DQUOTE ? input_variable DQUOTE ? EQU DQUOTE ? ’ upgrade ’
↪→ DQUOTE ? RSBRACK (’\ n ’) ? AND (’\ n ’) ? ’ which ’ ’ install−docs ’ GREAT SLASH ’ dev ’
↪→SLASH ’ null ’

94 DIGIT GREATAND DIGIT ’ ; ’ ’then ’ (’\ n ’) ? ’ install−docs ’ MINUS ’r ’ doc_id (’\ n ’ | ’ ; ’)
↪→ ’ f i ’ (’\ n ’ | ’ ; ’)

95 ;
96

97 templateA5

98 : ’ i f ’ (’\ n ’) ? LSBRACK DQUOTE ? input_variable DQUOTE ? EQU DQUOTE ? ’ configure ’ DQUOTE

↪→? RSBRACK (’\ n ’) ? AND (’\ n ’) ? LSBRACK MINUS ’x ’ SLASH ’ usr ’ SLASH ’ lib ’ SLASH ’
↪→emacsen−common ’ SLASH ’ emacs−package−install ’ RSBRACK ’ ; ’ ’then ’ (’\ n ’) ?

99 SLASH ’ usr ’ SLASH ’ lib ’ SLASH ’ emacsen−common ’ SLASH ’ emacs−package−install ’ pack

↪→ (’\ n ’ | ’ ; ’) ’ f i ’ (’\ n ’ | ’ ; ’)
100 ;
101

102 templateA6

103 : ’ i f ’ (’\ n ’) ? LSBRACK MINUS ’x ’ SLASH ’ usr ’ SLASH ’ lib ’ SLASH ’ emacsen−common ’
↪→SLASH ’ emacs−package−remove ’ RSBRACK ’ ; ’ ’then ’ (’\ n ’) ? SLASH ’ usr ’ SLASH ’ lib
↪→ ’ SLASH ’ emacsen−common ’ SLASH ’ emacs−package−remove ’ pack (’\ n ’ | ’ ; ’) ’ f i ’
↪→ (’\ n ’ | ’ ; ’)

104 ;
105

106 templateA7

Deliverable D2.2 Version 1.0 page 64 of 79

February 10, 2010

107 : ’ i f ’ (’\ n ’) ? LSBRACK DQUOTE ? input_variable DQUOTE ? EQU DQUOTE ? ’ configure ’ DQUOTE

↪→? RSBRACK (’\ n ’) ? AND (’\ n ’) ? ’ which ’ ’ update−gconf−defaults ’ GREAT SLASH ’ dev ’
↪→ SLASH ’ null ’ DIGIT GREATAND DIGIT ’ ; ’ ’then ’ (’\ n ’) ? ’ update−gconf−defaults ’
↪→ (’\ n ’ | ’ ; ’) ’ f i ’ (’\ n ’ | ’ ; ’)

108 ;
109

110 templateA8

111 : ’ i f ’ (’\ n ’) ? ’ which ’ ’ update−gconf−defaults ’ GREAT SLASH ’ dev ’ SLASH ’ null ’ DIGIT

↪→ GREATAND DIGIT ’ ; ’ ’then ’ (’\ n ’) ? ’ update−gconf−defaults ’ (’\ n ’ | ’ ; ’) ’ f i ’
↪→ (’\ n ’ | ’ ; ’)

112 ;
113

114 templateA9

115 : ’ i f ’ (’\ n ’) ? LSBRACK DQUOTE ? input_variable DQUOTE ? EQU DQUOTE ? ’ configure ’ DQUOTE

↪→? RSBRACK ’ ; ’ ’then ’ (’\ n ’) ? ’ gconf−schemas ’ DMINUS ’ register ’ schemas (’\ n ’
↪→ | ’ ; ’) ’ f i ’ (’\ n ’ | ’ ; ’)

116 ;
117

118 templateA10

119 : ’ i f ’ (’\ n ’) ? LSBRACK DQUOTE ? input_variable DQUOTE ? EQU DQUOTE ? ’ remove ’ DQUOTE ?
↪→RSBRACK OR (’\ n ’) ? LSBRACK DQUOTE ? input_variable DQUOTE ? EQU DQUOTE ? ’ upgrade ’
↪→ DQUOTE ? RSBRACK ’ ; ’ ’then ’ (’\ n ’) ? ’ gconf−schemas ’ DMINUS ’ unregister ’
↪→schemas (’\ n ’ | ’ ; ’) ’ f i ’ (’\ n ’ | ’ ; ’)

120 ;
121

122 templateA11

123 : ’ i f ’ (’\ n ’) ? LSBRACK DQUOTE ? input_variable DQUOTE ? EQU DQUOTE ? ’ purge ’ DQUOTE ?
↪→RSBRACK ’ ; ’ ’then ’ (’\ n ’) ? ’ OLD_DIR ’ EQU SLASH ’ etc ’ SLASH ’ gconf ’ SLASH ’
↪→schemas ’ (’\ n ’) ? ’ SCHEMA_FILES ’ EQU DQUOTE schemas DQUOTE ’\n ’ ’ i f ’ (’\ n ’) ?

124 LSBRACK (’\ n ’) ? MINUS ’d ’ DOLLAR ’ OLD_DIR ’ RSBRACK ’ ; ’ ’then ’ (’\ n ’) ? ’ for ’ (’\ n ’) ?
↪→ ’ SCHEMA ’ (’\ n ’) ? ’ in ’ (’\ n ’) ? DOLLAR ’ SCHEMA_FILES ’ ’ ; ’ ’do ’ ’\n ’ ’ rm ’ MINUS ’
↪→f ’ DOLLAR ’ OLD_DIR ’ SLASH DOLLAR ’ SCHEMA ’ ’\n ’ ’done ’ (’\ n ’ | ’ ; ’) ’ rmdir ’
↪→MINUS ’p ’

125 DMINUS ’ ignore−fail−on−non−empty ’ DOLLAR ’ OLD_DIR ’ (’\ n ’ | ’ ; ’) ’ f i ’ (’\ n ’ | ’ ; ’) ’
↪→ f i ’ (’\ n ’ | ’ ; ’)

126 ;
127

128 templateA12_13

129 : ’ i f ’ (’\ n ’) ? ’ which ’ ’ update−icon−caches ’ GREAT SLASH ’ dev ’ SLASH ’ null ’ DIGIT

↪→GREATAND DIGIT ’ ; ’ ’then ’ (’\ n ’) ? ’ update−icon−caches ’ dirlist (’\ n ’ | ’ ; ’) ’ f i
↪→ ’ (’\ n ’ | ’ ; ’)

130 ;
131

132 templateA14

133 : ’ i f ’ (’\ n ’) ? LSBRACK DQUOTE ? input_variable DQUOTE ? EQU DQUOTE ? ’ configure ’ DQUOTE

↪→? RSBRACK ’ ; ’ ’then ’ (’\ n ’) ? ’ install−info ’ DMINUS ’ quiet ’ file (’\ n ’ | ’ ; ’) ’
↪→ f i ’ (’\ n ’ | ’ ; ’)

134 ;
135

136 templateA15

137 : ’ i f ’ (’\ n ’) ? LSBRACK DQUOTE ? input_variable DQUOTE ? EQU DQUOTE ? ’ remove ’ DQUOTE ?
↪→RSBRACK (’\ n ’) ? OR (’\ n ’) ? LSBRACK DQUOTE ? input_variable DQUOTE ? EQU DQUOTE ? ’
↪→upgrade ’ DQUOTE ? RSBRACK ’ ; ’

138 ’then ’ (’\ n ’) ? ’ install−info ’ DMINUS ’ quiet ’ DMINUS ’ remove ’ file (’\ n ’ | ’ ; ’) ’ f i ’
↪→ (’\ n ’ | ’ ; ’)

139 ;
140 //
141 templateA16

142 : ’ i f ’ (’\ n ’) ? LSBRACK param DQUOTE SLASH ’ etc ’ SLASH ’ init . d ’ SLASH script DQUOTE

↪→RSBRACK ’ ; ’ ’then ’ (’\ n ’) ? ’ update−rc . d ’ script initparms GREAT path OR

↪→simple_command (’\ n ’ | ’ ; ’) ’ f i ’ (’\ n ’ | ’ ; ’)
143 ;
144

145 templateA17

146 : ’ i f ’ (’\ n ’) ? LSBRACK param DQUOTE SLASH ’ etc ’ SLASH ’ init . d ’ SLASH word DQUOTE

↪→RSBRACK ’ ; ’ ’then ’ (’\ n ’) ? ’ update−rc . d ’ word param+ GREAT path (’\ n ’ | ’ ; ’)
147 ’ i f ’ (’\ n ’) ? LSBRACK param DQUOTE input_variable DQUOTE RSBRACK ’ ; ’ ’then ’ (’\ n ’) ? ’

↪→_dh_action ’ EQU ’ restart ’ (’\ n ’) ? ’ else ’ (’\ n ’) ? ’ _dh_action ’ EQU ’ start ’
↪→ (’\ n ’ | ’ ; ’) ’ f i ’ (’\ n ’ | ’ ; ’)

Deliverable D2.2 Version 1.0 page 65 of 79

February 10, 2010

148 ’ i f ’ (’\ n ’) ? LSBRACK param DQUOTE AP ’ which ’ ’ invoke−rc . d ’ DIGIT GREAT path AP

↪→DQUOTE RSBRACK ’ ; ’ ’then ’ (’\ n ’) ? ’ invoke−rc . d ’ word DOLLAR ’ _dh_action ’ OR

↪→simple_command (’\ n ’) ?
149 ’ else ’ (’\ n ’) ? SLASH ’ etc ’ SLASH ’ init . d ’ SLASH word DOLLAR ’ _dh_action ’ OR

↪→simple_command (’\ n ’ | ’ ; ’) ’ f i ’ (’\ n ’ | ’ ; ’) ’ f i ’ (’\ n ’ | ’ ; ’)
150 ;
151

152 templateA18

153 : ’ i f ’ (’\ n ’) ? LSBRACK param DQUOTE SLASH ’ etc ’ SLASH ’ init . d ’ SLASH word DQUOTE

↪→RSBRACK AND LSBRACK DQUOTE input_variable DQUOTE EQU ’ remove ’ RSBRACK ’ ; ’
154 ’then ’ (’\ n ’) ? ’ i f ’ (’\ n ’) ? LSBRACK param DQUOTE AP ’ which ’ ’ invoke−rc . d ’ DIGIT

↪→GREAT path AP DQUOTE RSBRACK ’ ; ’ ’then ’ (’\ n ’) ? ’ invoke−rc . d ’ word ’ stop ’ OR

↪→simple_command (’\ n ’) ?
155 ’ else ’ (’\ n ’) ? SLASH ’ etc ’ SLASH ’ init . d ’ SLASH word ’ stop ’ OR simple_command (’\ n ’

↪→ | ’ ; ’) ’ f i ’ (’\ n ’ | ’ ; ’) ’ f i ’ (’\ n ’ | ’ ; ’)
156 ;
157

158 templateA19

159 : ’ i f ’ (’\ n ’) ? LSBRACK param DQUOTE SLASH ’ etc ’ SLASH ’ init . d ’ SLASH word DQUOTE

↪→RSBRACK ’ ; ’ ’then ’ (’\ n ’) ? ’ update−rc . d ’ word param+ GREAT path (’\ n ’ | ’ ; ’)
160 ’ i f ’ (’\ n ’) ? LSBRACK param DQUOTE AP ’ which ’ ’ invoke−rc . d ’ DIGIT GREAT path AP

↪→DQUOTE RSBRACK ’ ; ’ ’then ’ (’\ n ’) ? ’ invoke−rc . d ’ word ’ start ’ OR simple_command

↪→ (’\ n ’) ?
161 ’ else ’ (’\ n ’) ? SLASH ’ etc ’ SLASH ’ init . d ’ SLASH word ’ start ’ OR simple_command (’\ n

↪→ ’ | ’ ; ’) ’ f i ’ (’\ n ’ | ’ ; ’) ’ f i ’ (’\ n ’ | ’ ; ’)
162 ;
163

164 templateA20

165 : ’ i f ’ (’\ n ’) ? LSBRACK param DQUOTE SLASH ’ etc ’ SLASH ’ init . d ’ SLASH word DQUOTE

↪→RSBRACK ’ ; ’ ’then ’ (’\ n ’) ? ’ i f ’ (’\ n ’) ? LSBRACK param DQUOTE AP ’ which ’ ’
↪→invoke−rc . d ’ DIGIT GREAT path AP DQUOTE RSBRACK ’ ; ’

166 ’then ’ (’\ n ’) ? ’ invoke−rc . d ’ word ’ stop ’ OR simple_command (’\ n ’) ? ’ else ’ (’\ n ’) ?
↪→SLASH ’ etc ’ SLASH ’ init . d ’ SLASH word ’ stop ’ OR simple_command (’\ n ’ | ’ ; ’) ’
↪→ f i ’ (’\ n ’ | ’ ; ’) ’ f i ’ (’\ n ’ | ’ ; ’)

167 ;
168

169 templateA21

170 : ’ i f ’ (’\ n ’) ? LSBRACK DQUOTE ? input_variable DQUOTE ? EQU DQUOTE ? ’ purge ’ DQUOTE ?
↪→RSBRACK ’ ; ’ ’then ’ (’\ n ’) ? ’ update−rc . d ’ param ’ remove ’ GREAT path OR

↪→simple_command (’\ n ’ | ’ ; ’) ’ f i ’ (’\ n ’ | ’ ; ’)
171 ;
172

173 templateA22

174 : ’ i f ’ (’\ n ’) ? LSBRACK DQUOTE ? input_variable DQUOTE ? EQU DQUOTE ? ’ configure ’ DQUOTE

↪→? RSBRACK ’ ; ’ ’then ’ (’\ n ’) ? ’ ldconfig ’ (’\ n ’ | ’ ; ’) ’ f i ’ (’\ n ’ | ’ ; ’)
175 ;
176

177 templateA23

178 : ’ i f ’ (’\ n ’) ? LSBRACK DQUOTE ? input_variable DQUOTE ? EQU DQUOTE ? ’ remove ’ DQUOTE ?
↪→RSBRACK ’ ; ’ ’then ’ (’\ n ’) ? ’ ldconfig ’ (’\ n ’ | ’ ; ’) ’ f i ’ (’\ n ’ | ’ ; ’)

179 ;
180

181 templateA24

182 : ’ inst ’ EQU SLASH ’ etc ’ SLASH ’ menu−methods ’ SLASH word (’ ; ’ | ’\n ’) ’ i f ’ LSBRACK

↪→param DOLLAR ’ inst ’ RSBRACK ’ ; ’ ’then ’ (’\ n ’) ? ’ chmod ’ ’ a+x ’ DOLLAR ’ inst ’ (’\ n
↪→ ’ | ’ ; ’)

183 ’ i f ’ LSBRACK param DQUOTE AP ’ which ’ ’ update−menus ’ DIGIT GREAT path AP DQUOTE

↪→RSBRACK ’ ; ’ ’then ’ (’\ n ’) ? ’ update−menus ’ (’\ n ’ | ’ ; ’) ’ f i ’ (’\ n ’ | ’ ; ’) ’ f i ’
↪→ (’\ n ’ | ’ ; ’)

184 ;
185

186 templateA25

187 : ’ inst ’ EQU SLASH ’ etc ’ SLASH ’ menu−methods ’ SLASH word (’ ; ’ | ’\n ’) ’ i f ’ LSBRACK

↪→ DQUOTE input_variable DQUOTE EQU DQUOTE ’ remove ’ DQUOTE RSBRACK AND LSBRACK

↪→param DQUOTE DOLLAR ’ inst ’ DQUOTE RSBRACK ’ ; ’
188 ’then ’ (’\ n ’) ? ’ chmod ’ ’a−x ’ DOLLAR ’ inst ’ (’\ n ’ | ’ ; ’) ’ f i ’ (’\ n ’ | ’ ; ’) ’ i f ’

↪→LSBRACK param DQUOTE AP ’ which ’ ’ update−menus ’ DIGIT GREAT path AP DQUOTE

↪→RSBRACK ’ ; ’ ’then ’ (’\ n ’) ? ’ update−menus ’ (’\ n ’ | ’ ; ’) ’ f i ’ (’\ n ’ | ’ ; ’)
189 ;
190

Deliverable D2.2 Version 1.0 page 66 of 79

February 10, 2010

191 templateA26

192 : ’ i f ’ (’\ n ’) ? LSBRACK DQUOTE ? input_variable DQUOTE ? EQU DQUOTE ? ’ configure ’ DQUOTE

↪→? RSBRACK (’\ n ’) ? AND (’\ n ’) ? LSBRACK param DQUOTE AP ’ which ’ ’ update−menus ’
↪→DIGIT GREAT path AP DQUOTE RSBRACK ’ ; ’

193 ’then ’ (’\ n ’) ? ’ update−menus ’ (’\ n ’ | ’ ; ’) ’ f i ’ (’\ n ’ | ’ ; ’)
194 ;
195

196 templateA27

197 : ’ i f ’ (’\ n ’) ? LSBRACK param DQUOTE AP ’ which ’ ’ update−menus ’ DIGIT GREAT path AP

↪→DQUOTE RSBRACK ’ ; ’ ’then ’ (’\ n ’) ? ’ update−menus ’ (’\ n ’ | ’ ; ’) ’ f i ’ (’\ n ’ | ’ ; ’)
198 ;
199

200 templateA28

201 : ’ i f ’ (’\ n ’) ? LSBRACK DQUOTE ? input_variable DQUOTE ? EQU DQUOTE ? ’ configure ’ DQUOTE

↪→? RSBRACK ’ ; ’ ’then ’ (’\ n ’) ? ’ i f ’ (’\ n ’) ? LSBRACK param SLASH ’ boot ’ SLASH ’
↪→System . map ’ MINUS word RSBRACK ’ ; ’

202 ’then ’ ’ depmod ’ param param SLASH ’ boot ’ SLASH ’ System . map ’ MINUS word word OR (’\
↪→n ’ | ’ ; ’) ’ f i ’ (’\ n ’ | ’ ; ’) ’ f i ’ (’\ n ’ | ’ ; ’)

203 ;
204

205 templateA29

206 : ’ i f ’ (’\ n ’) ? LSBRACK param SLASH ’ boot ’ SLASH ’ System . map ’ MINUS word RSBRACK ’ ; ’
↪→ ’then ’ ’ depmod ’ param param SLASH ’ boot ’ SLASH ’ System . map ’ MINUS word word

↪→OR (’\ n ’ | ’ ; ’) ’ f i ’ (’\ n ’ | ’ ; ’)
207 ;
208

209 templateA30

210 : ’ PYTHON ’ EQU number (’\ n ’ | ’ ; ’) ’ i f ’ (’\ n ’) ? ’ which ’ DOLLAR ’ PYTHON ’ GREAT path

↪→DIGIT GREATAND DIGIT (’\ n ’) ? AND (’\ n ’) ? LSBRACK param SLASH ’ usr ’ SLASH ’ lib ’
↪→ SLASH DOLLAR ’ PYTHON ’ SLASH ’ compileall . py ’ RSBRACK ’ ; ’

211 ’then ’ (’\ n ’) ? ’ DIRLIST ’ EQU DQUOTE param+ DQUOTE (’\n ’ | ’ ; ’) ’ for ’ (’\ n ’) ? word

↪→ ’ in ’ DOLLAR ’ DIRLIST ’ ’ ; ’ ’do ’ ’\n ’ DOLLAR ’ PYTHON ’ SLASH ’ usr ’ SLASH ’ lib ’
↪→SLASH DOLLAR ’ PYTHON ’ SLASH ’ compileall . py ’ param word (’\ n ’ | ’ ; ’) ’done ’ (’\ n
↪→ ’ | ’ ; ’) ’ f i ’ (’\ n ’ | ’ ; ’)

212 ;
213

214 templateA31

215 : ’ dpkg ’ param param VBAR (’\ n ’) ? ’awk’ AP input_variable TILDE SLASH BSLASH DOT ’
↪→py ’ DOLLAR SLASH LGRAF ’ print ’ input_variable DQUOTE ’c ’ BSLASH ’n ’ DQUOTE

↪→DQUOTE input_variable DQUOTE RGRAF AP VBAR (’\ n ’) ? ’ xargs ’ ’ rm ’ param GREATAND

↪→DIGIT (’\ n ’ | ’ ; ’)
216 ;
217

218 templateA32

219 : ’ i f ’ (’\ n ’) ? LSBRACK DQUOTE ? input_variable DQUOTE ? EQU DQUOTE ? ’ configure ’ DQUOTE

↪→? RSBRACK (’\ n ’) ? AND (’\ n ’) ? ’ which ’ ’ scrollkeeper−update ’ GREAT path DIGIT

↪→GREATAND DIGIT ’ ; ’ ’then ’ (’\ n ’) ? ’ scrollkeeper−update ’ param (’\ n ’ | ’ ; ’) ’ f i ’
↪→ (’\ n ’ | ’ ; ’)

220 ;
221

222 templateA33

223 : ’ i f ’ (’\ n ’) ? LSBRACK DQUOTE ? input_variable DQUOTE ? EQU DQUOTE ? ’ remove ’ DQUOTE ?
↪→RSBRACK (’\ n ’) ? AND (’\ n ’) ? ’ which ’ ’ scrollkeeper−update ’ GREAT path DIGIT

↪→GREATAND DIGIT ’ ; ’ ’then ’ (’\ n ’) ? ’ scrollkeeper−update ’ param (’\ n ’ | ’ ; ’) ’ f i ’
↪→ (’\ n ’ | ’ ; ’)

224 ;
225

226 templateA34

227 : ’ i f ’ (’\ n ’) ? LSBRACK DQUOTE ? input_variable DQUOTE ? EQU DQUOTE ? ’ configure ’ DQUOTE

↪→? RSBRACK ’ ; ’ ’then ’ (’\ n ’) ? ’ rm ’ param param (’\ n ’ | ’ ; ’) ’ for ’ ’ ordcat ’ ’ in ’
↪→word+ ’ ; ’

228 ’do ’ (’\ n ’) ? ’ update−catalog ’ DMINUS ’ quiet ’ DMINUS ’ add ’ param DOLLAR LGRAF ’
↪→ordcat ’ RGRAF (’\ n ’ | ’ ; ’) ’done ’ (’\ n ’ | ’ ; ’) ’ update−catalog ’ DMINUS ’ quiet ’
↪→DMINUS ’ add ’ DMINUS ’ super ’ param (’\ n ’ | ’ ; ’) ’ f i ’ (’\ n ’ | ’ ; ’)

229 ;
230

231 templateA35

232 : ’ i f ’ (’\ n ’) ? LSBRACK DQUOTE ? input_variable DQUOTE ? EQU DQUOTE ? ’ remove ’ DQUOTE ?
↪→RSBRACK (’\ n ’) ? OR (’\ n ’) ? LSBRACK DQUOTE ? input_variable DQUOTE ? EQU DQUOTE ? ’
↪→upgrade ’ DQUOTE ? RSBRACK ’ ; ’

Deliverable D2.2 Version 1.0 page 67 of 79

February 10, 2010

233 ’then ’ (’\ n ’) ? ’ update−catalog ’ DMINUS ’ quiet ’ DMINUS ’ remove ’ DMINUS ’ super ’ param

↪→ (’\ n ’ | ’ ; ’) ’ f i ’ (’\ n ’ | ’ ; ’)
234 ;
235

236 templateA36

237 : ’ i f ’ (’\ n ’) ? LSBRACK DQUOTE ? input_variable DQUOTE ? EQU DQUOTE ? ’ purge ’ DQUOTE ?
↪→RSBRACK (’\ n ’) ? ’ ; ’ ’then ’ (’\ n ’) ? ’ rm ’ param param param (’\ n ’ | ’ ; ’) ’ f i ’ (’\
↪→n ’ | ’ ; ’)

238 ;
239

240 templateA37

241 : ’ i f ’ (’\ n ’) ? LSBRACK DQUOTE ? input_variable DQUOTE ? EQU DQUOTE ? ’ configure ’ DQUOTE

↪→? RSBRACK (’\ n ’) ? AND (’\ n ’) ? LSBRACK param DQUOTE AP ’ which ’ ’ update−mime−
↪→database ’ GREAT path AP DQUOTE RSBRACK ’ ; ’

242 ’then ’ (’\ n ’) ? ’ update−mime−database ’ SLASH ’ usr ’ SLASH ’ share ’ SLASH ’ mime ’ (’\ n ’ |
↪→ ’ ; ’) ’ f i ’ (’\ n ’ | ’ ; ’)

243 ;
244

245 templateA38

246 : ’ i f ’ (’\ n ’) ? LSBRACK param DQUOTE AP ’ which ’ ’ update−mime−database ’ DIGIT GREAT

↪→path AP DQUOTE RSBRACK ’ ; ’ ’then ’ (’\ n ’) ? ’ update−mime−database ’ SLASH ’ usr ’
↪→SLASH ’ share ’ SLASH ’ mime ’ (’\ n ’ | ’ ; ’) ’ f i ’ (’\ n ’ | ’ ; ’)

247 ;
248

249 templateA39

250 : ’ i f ’ (’\ n ’) ? LSBRACK DQUOTE ? input_variable DQUOTE ? EQU DQUOTE ? ’ configure ’ DQUOTE

↪→? RSBRACK (’\ n ’) ? AND (’\ n ’) ? LSBRACK param DQUOTE AP ’ which ’ ’ update−mime ’
↪→DIGIT GREAT path AP DQUOTE RSBRACK ’ ; ’

251 ’then ’ (’\ n ’) ? ’ update−mime ’ (’\ n ’ | ’ ; ’) ’ f i ’ (’\ n ’ | ’ ; ’)
252 ;
253

254 templateA40

255 : ’ i f ’ (’\ n ’) ? ’ which ’ ’ update−mime ’ GREAT path DIGIT GREATAND DIGIT ’ ; ’ ’then ’
↪→ (’\ n ’) ? ’ update−mime ’ param (’\ n ’ | ’ ; ’) ’ f i ’ (’\ n ’ | ’ ; ’)

256 ;
257

258 templateA41

259 : ’ i f ’ (’\ n ’) ? LSBRACK DQUOTE ? input_variable DQUOTE ? EQU DQUOTE ? ’ configure ’ DQUOTE

↪→? RSBRACK (’\ n ’ | ’ ; ’) ’then ’ (’\ n ’) ? ’ i f ’ (’\ n ’) ? ’ which ’ ’ suidregister ’ GREAT

↪→ path DIGIT GREATAND DIGIT (’\ n ’) ? AND (’\ n ’) ? LSBRACK param SLASH ’ etc ’ SLASH

↪→ ’ suid . conf ’ RSBRACK (’\ n ’ | ’ ; ’)
260 ’then ’ (’\ n ’) ? ’ suidregister ’ param param path param param param (’\ n ’ | ’ ; ’)
261 ’ elif ’ (’\ n ’) ? LSBRACK param param RSBRACK (’ ; ’ | ’\ n ’) ’then ’ (’\ n ’) ? ’ chown ’ param

↪→COLON param param (’\ n ’ | ’ ; ’) ’ chmod ’ param param (’\ n ’ | ’ ; ’) ’ f i ’ (’\ n ’ |
↪→ ’ ; ’) ’ f i ’ (’\ n ’ | ’ ; ’)

262 ;
263

264 templateA42

265 : ’ i f ’ (’\ n ’) ? LSBRACK DQUOTE ? input_variable DQUOTE ? EQU DQUOTE ? ’ remove ’ DQUOTE ?
↪→RSBRACK (’\ n ’) ? AND (’\ n ’) ? LSBRACK param SLASH ’ etc ’ SLASH ’ suid . conf ’ RSBRACK

↪→ (’\ n ’) ? AND (’\ n ’) ? ’ which ’ ’ suidunregister ’ GREAT path DIGIT GREATAND DIGIT

↪→ ’ ; ’ ’then ’ (’\ n ’) ? ’ suidunregister ’ param param param (’\ n ’ | ’ ; ’) ’ f i ’ (’\ n ’ |
↪→ ’ ; ’)

266 ;
267

268

269 templateA43

270 : ’ i f ’ (’\ n ’) ? LSBRACK DQUOTE ? input_variable DQUOTE ? EQU DQUOTE ? ’ install ’ DQUOTE ?
↪→RSBRACK OR (’\ n ’) ? LSBRACK DQUOTE ? input_variable DQUOTE ? EQU DQUOTE ? ’ upgrade ’
↪→ DQUOTE ? RSBRACK ’ ; ’ ’then ’ (’\ n ’) ? ’ i f ’ (’\ n ’) ? LSBRACK param DQUOTE word

↪→DQUOTE RSBRACK ’ ; ’ ’then ’ (’\ n ’) ? ’ i f ’ (’\ n ’) ? LSBRACK

271 DQUOTE AP ’ md5sum ’ BSLASH DQUOTE word BSLASH DQUOTE VBAR ’ sed ’ param BSLASH DQUOTE

↪→ ’s ’ SLASH DOT ’∗ ’ SLASH SLASH BSLASH DQUOTE AP DQUOTE EQU DQUOTE AP ’ dpkg−
↪→query ’ param param EQU APSINGLE DOLLAR LGRAF ’ Conffiles ’ RGRAF APSINGLE word

↪→VBAR ’ sed ’ param param BSLASH DQUOTE

272 BSLASH BSLASH BSLASH BSLASH APSINGLE word APSINGLE ’s ’ SLASH DOT ’∗ ’ SLASH SLASH ’p
↪→ ’ BSLASH DQUOTE AP DQUOTE RSBRACK (’\ n ’) ? ’then ’ (’\ n ’) ? ’ rm ’ param DQUOTE

↪→word DQUOTE (’\ n ’ | ’ ; ’) ’ f i ’ (’\ n ’ | ’ ; ’) ’ f i ’ (’\ n ’ | ’ ; ’) ’ i f ’ (’ \ n ’) ?
↪→LSBRACK param DQUOTE word DQUOTE RSBRACK ’ ; ’

Deliverable D2.2 Version 1.0 page 68 of 79

February 10, 2010

273 ’then ’ (’\ n ’) ? ’ rm ’ param DQUOTE word DQUOTE (’\ n ’ | ’ ; ’) ’ f i ’ (’\ n ’ | ’ ; ’) ’ f i ’
↪→ (’\ n ’ | ’ ; ’)

274 ;
275

276 templateA44

277 : ’ i f ’ (’\ n ’) ? LSBRACK DQUOTE ? input_variable DQUOTE ? EQU DQUOTE ? ’ configure ’ DQUOTE

↪→? RSBRACK (’ ; ’ | ’\n ’) ’then ’ (’\ n ’) ? ’ i f ’ LSBRACK param DQUOTE word DQUOTE

↪→RSBRACK (’ ; ’ | ’\n ’) ’then ’ (’\ n ’) ? ’echo ’ DQUOTE ’ Preserving ’ ’ user ’ ’ changes
↪→ ’ ’ to ’ word

278 DOT DOT DOT DQUOTE (’ ; ’ | ’\n ’) ’ i f ’ LSBRACK param DQUOTE word DQUOTE RSBRACK (’ ; ’
↪→ | ’\n ’) ’then ’ (’\ n ’) ? ’ mv ’ param DQUOTE word DQUOTE DQUOTE word DQUOTE (’\ n
↪→ ’ | ’ ; ’) ’ f i ’ (’\ n ’ | ’ ; ’) ’ mv ’ param DQUOTE word DQUOTE DQUOTE word DQUOTE

↪→ (’\ n ’ | ’ ; ’) ’ f i ’ (’\ n ’ | ’ ; ’) ’ f i ’ (’\ n ’ | ’ ; ’)
279 ;
280

281 templateA45

282 : ’ i f ’ (’\ n ’) ? LSBRACK DQUOTE ? input_variable DQUOTE ? EQU DQUOTE ? ’ configure ’ DQUOTE

↪→? RSBRACK (’ ; ’ | ’\n ’) ’then ’ (’\ n ’) ? LPAR (’\ n ’) ? ’while ’ ’read ’ ’ line ’ (’ ; ’)
↪→? ’do ’ (’\ n ’) ? ’ set ’ DMINUS DOLLAR ’ line ’ (’ ; ’ | ’\n ’) ’ dir ’ EQU DQUOTE

↪→input_variable DQUOTE ’ ; ’ ’ mode ’ EQU DQUOTE input_variable DQUOTE ’ ; ’ ’ user ’
↪→EQU DQUOTE input_variable DQUOTE ’ ; ’ ’ group ’ EQU DQUOTE input_variable DQUOTE

↪→ (’ ; ’ | ’\n ’) ’ i f ’ LSBRACK EXCL param DQUOTE DOLLAR ’ dir ’ DQUOTE RSBRACK

283 (’ ; ’ | ’\n ’) ’then ’ (’\ n ’) ? ’ i f ’ ’ mkdir ’ DQUOTE DOLLAR ’ dir ’ DQUOTE DIGIT GREAT

↪→path (’ ; ’ | ’\n ’) ’then ’ (’\ n ’) ? ’ chown ’ DQUOTE DOLLAR ’ user ’ DQUOTE COLON

↪→DQUOTE DOLLAR ’ group ’ DQUOTE DQUOTE DOLLAR ’ dir ’ DQUOTE (’ ; ’ | ’\n ’) ’ chmod ’
↪→DQUOTE DOLLAR ’ mode ’ DQUOTE DQUOTE DOLLAR ’ dir ’ DQUOTE (’\ n ’ | ’ ; ’) ’ f i ’ (’ \ n ’ |
↪→ ’ ; ’) ’ f i ’ (’ ; ’ | ’\n ’) ’done ’ (’ ; ’ | ’\n ’) RPAR DLESS word (’\ n ’ | ’ ; ’)
↪→word (’\ n ’ | ’ ; ’) ’ f i ’ (’\ n ’ | ’ ; ’)

284 ;
285

286 templateA46

287 : LPAR (’\ n ’) ? ’while ’ ’read ’ ’ dir ’ (’ ; ’) ? ’do ’ (’\ n ’) ’ rmdir ’ DQUOTE DOLLAR ’ dir ’
↪→DQUOTE DIGIT GREAT path OR ’ true ’ (’\ n ’ | ’ ; ’) ’done ’ (’\ n ’ | ’ ; ’) RPAR DLESS

↪→ word (’\ n ’ | ’ ; ’) param (’\ n ’ | ’ ; ’) word (’\ n ’ | ’ ; ’)
288 ;
289

290 templateA47

291 : ’ i f ’ (’\ n ’) ? LSBRACK DQUOTE ? input_variable DQUOTE ? EQU DQUOTE ? ’ configure ’ DQUOTE

↪→? RSBRACK (’\ n ’ | ’ ; ’) ’then ’ (’\ n ’) ? ’ update−alternatives ’ DMINUS ’ install ’
↪→SLASH ’ usr ’ SLASH ’ bin ’ SLASH ’x−window−manager ’ ’x−window−manager ’ word param

↪→ (’\ n ’ | ’ ; ’) ’ f i ’ (’\ n ’ | ’ ; ’)
292 ;
293

294 templateA48

295 : ’ i f ’ (’\ n ’) ? LSBRACK DQUOTE ? input_variable DQUOTE ? EQU DQUOTE ? ’ configure ’ DQUOTE

↪→? RSBRACK (’\ n ’ | ’ ; ’) ’then ’ (’\ n ’) ? ’ update−alternatives ’ DMINUS ’ install ’
↪→SLASH ’ usr ’ SLASH ’ bin ’ SLASH ’x−window−manager ’ ’x−window−manager ’ word param

↪→DMINUS ’ slave ’ SLASH ’ usr ’ SLASH ’ share ’
296 SLASH ’ man ’ SLASH ’ man1 ’ SLASH ’x−window−manager . 1 . gz ’ ’x−window−manager . 1 . gz ’ param

↪→ (’\ n ’ | ’ ; ’) ’ f i ’ (’\ n ’ | ’ ; ’)
297 ;
298

299 templateA49

300 : ’ i f ’ (’\ n ’) ? LSBRACK DQUOTE ? input_variable DQUOTE ? EQU DQUOTE ? ’ remove ’ DQUOTE ?
↪→RSBRACK (’\ n ’ | ’ ; ’) ’then ’ (’\ n ’) ? ’ update−alternatives ’ DMINUS ’ remove ’ ’x−
↪→window−manager ’ param (’\ n ’ | ’ ; ’) ’ f i ’ (’\ n ’ | ’ ; ’)

301 ;
302

303 templateA50

304 : ’ i f ’ (’\ n ’) ? ’ which ’ ’ update−fonts−dir ’ GREAT path DIGIT GREATAND DIGIT ’ ; ’ ’then ’
↪→ (’\ n ’) ? command_statement+ ’ f i ’ (’\ n ’ | ’ ; ’)

305 ;
306

307 templateA51

308 : ’ i f ’ LSBRACK param DQUOTE AP ’ which ’ ’ update−fonts−dir ’ DIGIT GREAT path AP DQUOTE

↪→ RSBRACK ’ ; ’ ’then ’ (’\ n ’) ? command_statement+ ’ f i ’ (’\ n ’ | ’ ; ’)
309 ;
310

311 templateA52

Deliverable D2.2 Version 1.0 page 69 of 79

February 10, 2010

312 : ’ i f ’ (’\ n ’) ? LSBRACK DQUOTE ? input_variable DQUOTE ? EQU DQUOTE ? ’ purge ’ DQUOTE ?
↪→RSBRACK (’\ n ’) ? AND (’\ n ’) ? LSBRACK param SLASH ’ usr ’ SLASH ’ share ’ SLASH ’
↪→debconf ’ SLASH ’ confmodule ’ RSBRACK ’ ; ’ ’then ’ (’\ n ’) ? DOT SLASH ’ usr ’ SLASH ’
↪→share ’ SLASH ’ debconf ’ SLASH ’ confmodule ’ (’\ n ’ | ’ ; ’) ’ db_purge ’ (’\ n ’ | ’ ; ’)
↪→ ’ f i ’ (’\ n ’ | ’ ; ’)

313 ;
314

315 doc_id

316 : id

317 ;
318

319 pack

320 : id

321 ;
322

323 schemas

324 : word

325 ;
326

327 dirlist

328 : path+
329 ;
330

331 file

332 : id

333 ;
334

335 initparms

336 : param+
337 ;
338

339 script

340 : id

341 ;
342

343 redirection_statement

344 : statement_group redirection (’\ n ’ | ’ ; ’)
345 ;
346

347 redirection

348 : (GREAT
349 // | LESS

350 | DIGIT GREAT

351 // | DIGIT LESS

352 | DGREAT

353 // | DIGIT DGREAT

354 | DLESS

355 // | LESSAND

356 // | DIGIT LESSAND

357 | GREATAND

358 | DIGIT GREATAND

359 // | DLESSDASH

360 // | DIGIT DLESSDASH

361 // | LESSAND

362 // | DIGIT LESSAND

363 | GREATAND

364 | DIGIT GREATAND

365 // | DLESSDASH

366 // | DIGIT DLESSDASH

367 | ANDGREAT

368 // | DIGIT LESSGREAT

369 // | LESSGREAT

370 // | CLOBBER

371 // | DIGIT CLOBBER

372 // | DIGIT DLESS

373) (path | word)
374 | LESSAND DIGIT

375 | DIGIT LESSAND DIGIT

376 | GREATAND DIGIT

377 | DIGIT GREATAND DIGIT

Deliverable D2.2 Version 1.0 page 70 of 79

February 10, 2010

378 // | GREATAND MINUS

379 // | DIGIT GREATAND MINUS

380 // | LESSAND MINUS

381 // | DIGIT LESSAND MINUS

382 ;
383

384 statement_group

385 : LPAR (’\ n ’) ? statement∗ RPAR

386 | LGRAF (’\ n ’) ? statement∗ (’ ; ’) ? RGRAF

387 ;
388

389

390 command_statement

391 : list_of_commands (’\ n ’ | ’ ; ’)
392 ;
393

394 command_name

395 : id

396 | path
397 | DOT
398 ;
399

400 nestedCommand

401 : command_name param∗
402 ;
403

404 control_statement

405 : if_statement

406 | case_statement

407 ;
408

409 loop_statement

410 : for_statement

411 | until_statement

412 | while_statement

413 ;
414

415 until_statement

416 : ’ until ’ (’\ n ’) ? condition (’ ; ’) ? ’do ’ (’\ n ’) ? statement∗ ’done ’ (’\ n ’ | ’ ; ’)
417 ;
418

419

420 while_statement

421 : ’while ’ (’\ n ’) ? condition (’ ; ’) ? ’do ’ (’\ n ’) ? statement∗ ’done ’ (’\ n ’ | ’ ; ’)
422 ;
423

424 case_statement

425 : ’ case ’ (’\ n ’) ? (DQUOTE) ? word (DQUOTE) ? ’ in ’ (’\ n ’) ? body_case+ ’ esac ’ (’\ n ’ |
↪→ ’ ; ’)

426 ;
427

428 body_case

429 : word (’\ n ’) ? (VBAR word) ∗ (’\ n ’) ? RPAR (’\ n ’) ? (statement) ∗ (’\ n ’) ? DSEMI (’\ n ’) ?
430 ;
431

432 if_statement

433 : ’ i f ’ (’\ n ’) ? condition (’ ; ’) ? ’then ’ (’\ n ’) ? statement∗ ifelse_branch∗ else_branch

↪→? ’ f i ’ (’\ n ’ | ’ ; ’)
434 ;
435

436 ifelse_branch

437 : ’ elif ’ (’\ n ’) ? condition (’ ; ’) ? ’then ’ (’\ n ’) ? statement∗
438 ;
439

440 else_branch

441 : ’ else ’ (’\ n ’) ? statement∗
442 ;
443

444 condition

445 : conditional_expr_list ((AND | OR) command_expr_list) ∗

Deliverable D2.2 Version 1.0 page 71 of 79

February 10, 2010

446 | command_expr_list ((AND | OR) conditional_expr_list) ∗
447 ;
448

449 conditional_expr_list

450 : conditional_expression ((AND | OR) (’\ n ’) ? conditional_expression) ∗
451 ;
452

453 command_expr_list

454 : pipeline ((AND | OR) (’\ n ’) ? pipeline) ∗
455 ;
456

457 for_statement

458 : ’ for ’ (’\ n ’) ? word ’ in ’ word (’ ; ’) ? ’do ’ (’\ n ’) ? statement∗ ’done ’ (’\ n ’ | ’ ; ’)
459 ;
460

461 assignment_statement

462 : word EQU param

463 | word EQU DQUOTE param+ DQUOTE

464 ;
465

466 conditional_expression

467 : LSBRACK EXCL ? (boolean_expression | command_expression) RSBRACK

468 ;
469

470 boolean_expression

471 : DQUOTE ? word DQUOTE ? (EQU | NOTEQU) DQUOTE ? (word | path) DQUOTE ?
472 ;
473

474 command_expression

475 : param DQUOTE ? (param)+ DQUOTE ?
476 ;
477

478 substitution_variable

479 : DOLLAR LGRAF id RGRAF

480 ;
481

482 input_variable

483 : DOLLAR DIGIT

484 ;
485

486 in_command_variable

487 : DOLLAR id

488 ;
489

490 external_variable

491 : UNDERSCORE id

492 | DOLLAR UNDERSCORE id

493 ;
494

495 special_variable

496 : DOLLAR QMARK

497 | DOLLAR DOLLAR

498 | DOLLAR EXCL

499 ;
500

501 shell_variable

502 : DOLLAR ’ HOME ’
503 | DOLLAR ’ PATH ’
504 | DOLLAR ’ PS ’ DIGIT

505 ;
506

507 simple_command

508 : assignment_statement

509 | command_name (DQUOTE ? param+ DQUOTE ?) ∗
510 ;
511

512 param

513 : MINUS word

514 | DMINUS word ?
515 | word

Deliverable D2.2 Version 1.0 page 72 of 79

February 10, 2010

516 | path

517 | redirection

518 | COLON

519 | AP nestedCommand AP

520 | number

521 | command_name

522 | BSLASH

523 | SLASH

524 | APSINGLE

525 | TILDE

526 | ’∗ ’
527 ;
528

529 word

530 : input_variable

531 | in_command_variable

532 | shell_variable

533 | special_variable

534 | external_variable

535 | substitution_variable

536 | id

537 ;
538

539 pipeline

540 : (’ time ’) ? simple_command (VBAR (’\ n ’) ? simple_command) ∗
541 ;
542

543 list_of_commands

544 : pipeline ((AND | OR) pipeline) ∗
545 | asynchronous

546 ;
547

548 asynchronous

549 : pipeline (AMPERSAND pipeline) ∗ (AMPERSAND) ?
550 ;
551

552 path

553 : (DOLLAR) ? (id) ? (SLASH (DOLLAR) ? id)+ SLASH ?
554 ;
555

556 number : DIGIT+ ((DOT | MINUS) DIGIT+)∗
557 ;
558

559 id : ’ update−desktop−database ’
560 | ’ which ’
561 | ’ configure ’
562 | ’ remove ’
563 | ’ install−docs ’
564 | ’ upgrade ’
565 | ’ update−gconf−defaults ’
566 | ’ register ’
567 | ’ unregister ’
568 | ’ OLD_DIR ’
569 | ’ SCHEMA_FILES ’
570 | ’ SCHEMA ’
571 | ’ purge ’
572 | ’ rm ’
573 | ’ rmdir ’
574 | ’ ignore−fail−on−non−empty ’
575 | ’ update−icon−cache ’
576 | ’ quiet ’
577 | ’ install−info ’
578 | ’ update−rc . d ’
579 | ’ ldconfig ’
580 | ’ update−menus ’
581 | ’ PYTHON ’
582 | ’ DIRLIST ’
583 | ’ scrollkeeper−update ’
584 | ’ update−mime−database ’
585 | ’ usr ’

Deliverable D2.2 Version 1.0 page 73 of 79

February 10, 2010

586 | ’ share ’
587 | ’ mime ’
588 | ’ lib ’
589 | ’ compileall . py ’
590 | ’ emacsen−common ’
591 | ’ emacs−package−install ’
592 | ’ emacs−package−remove ’
593 | ’ etc ’
594 | ’ gconf ’
595 | ’ schemas ’
596 | ’ init . d ’
597 | ’ _dh_action ’
598 | ’ restart ’
599 | ’ start ’
600 | ’ invoke−rc . d ’
601 | ’ stop ’
602 | ’ inst ’
603 | ’ menu−methods ’
604 | ’ a+x ’
605 | ’a−x ’
606 | ’ catalog ’
607 | ’ super ’
608 | ’ update−catalog ’
609 | ’ old ’
610 | ’ suid . conf ’
611 | ’ suidunregister ’
612 | ’ update−alternatives ’
613 | ’ install ’
614 | ’ bin ’
615 | ’x−window−manager ’
616 | ’ boot ’
617 | ’ System . map ’
618 | ’ depmod ’
619 | ’ add ’
620 | ’ update−fonts−dir ’
621 | ’ md5sum ’
622 | ’ sed ’
623 | ’s ’
624 | ’p ’
625 | ’ dpkg−query ’
626 | ’ Conffiles ’
627 | ’ debconf ’
628 | ’ confmodule ’
629 | ’ db_purge ’
630 | ’ slave ’
631 | ’ man ’
632 | ’ man1 ’
633 | ’x−window−manager . 1 . gz ’
634 | ’ suidregister ’
635 | ’ chown ’
636 | ’ chmod ’
637 | ’read ’
638 | ’ dir ’
639 | ’ true ’
640 | ’echo ’
641 | ’ Preserving ’
642 | ’ user ’
643 | ’ changes ’
644 | ’ to ’
645 | ’ mv ’
646 | ’ line ’
647 | ’ mode ’
648 | ’ mkdir ’
649 | ’ group ’
650 | ’ dpkg ’
651 | ’awk’
652 | ’ py ’
653 | ’ print ’
654 | ’c ’
655 | ’ xargs ’

Deliverable D2.2 Version 1.0 page 74 of 79

February 10, 2010

656 | ’n ’
657 | ’ set ’
658 | ’∗ ’
659 | ’q ’
660 | ’ dev ’
661 | ’ null ’
662 | ’i ’
663 | ’ doc−base ’
664 | ’r ’
665 | ’x ’
666 | ’d ’
667 | ’f ’
668 | ID

669 ;
670

671 DIGIT : ’ 0 ’ . . ’ 9 ’ ;
672

673 ID : (’ a ’ . . ’ z ’ | ’A ’ . . ’ Z ’ | ’∗ ’ | ’+ ’) (’a ’ . . ’z ’ | ’A ’ . . ’Z ’ | ’ 0 ’
674 . . ’ 9 ’ | UNDERSCORE | MINUS | QMARK | DOT | ’+ ’ | LSBRACK | RSBRACK) ∗ ;
675

676 AMPERSAND : ’& ’ ;
677

678 COLON : ’ : ’ ;
679

680 VBAR : ’ | ’ ;
681

682 DOLLAR : ’$ ’ ;
683

684 UNDERSCORE : ’_ ’ ;
685

686 QMARK : ’ ? ’ ;
687

688 SHARP : ’ #’;
689

690 EXCL : ’ ! ’ ;
691

692 MINUS : ’− ’ ;
693

694 SLASH : ’ / ’ ;
695

696 BSLASH : ’\\ ’ ;
697

698 DMINUS : ’−− ’;
699

700 AND : ’&& ’;
701

702 OR : ’ | | ’ ;
703

704 LSBRACK : ’ [’ ;
705

706 RSBRACK : ’] ’ ;
707

708 LPAR : ’ (’ ;
709

710 RPAR : ’) ’ ;
711

712 LGRAF : ’ { ’ ;
713

714 RGRAF : ’ } ’ ;
715

716 DQUOTE : ’ "’;
717

718 DOT : ’.’;

719

720 AP : ’\u0060 ’;

721

722 EQU : ’=’;

723

724 NOTEQU : ’!=’;

725

Deliverable D2.2 Version 1.0 page 75 of 79

February 10, 2010

726 DLESS : ’<<’;

727

728 DGREAT : ’>>’;

729

730 LESSAND : ’<&’;

731

732 GREATAND : ’>&’;

733

734 LESSGREAT : ’<>’;

735

736 DLESSDASH : ’<<-’;

737

738 CLOBBER : ’>|’;

739

740 LESS : ’<’;

741

742 GREAT : ’>’;

743

744 ANDGREAT : ’&>’;

745

746 DSEMI : ’;;’;

747

748 APSINGLE : ’\u0027 ’;

749

750 TILDE : ’\u007E ’;

751

752 COMMENT @init {

753 skip();

754 }

755 : {getCharPositionInLine () >0}? => ~(BSLASH) SHARP ~(EXCL) (~(’\n’ | ’\r’))* ’\r’?

756 | {getCharPositionInLine ()==0}? => (’ ’ | ’\t’)* SHARP ~(EXCL) (~(’\n’ | ’\r’))* ’\

↪→r’? ’\n’

757 ;

758

759 BLANKLINE

760 : {getCharPositionInLine ()==0}? => (’ ’ | ’\t’)* ’\n’ {skip();};

761

762 NOTNEWLINE : (BSLASH ’\n’) {skip();};

763

764 WS : (’ ’ | ’\t’)+ { $channel=HIDDEN ;};

Deliverable D2.2 Version 1.0 page 76 of 79

Bibliography

[AGRH05] Juan-José Amor-Iglesias, Jesús M. González-Barahona, Gregorio Robles-Mart́ınez,
and Israel Herráiz-Tabernero. Measuring Libre Software Using Debian 3.1 (Sarge)
as A Case Study: Preliminary Results. Upgrade Magazine, August 2005.

[B0́5] J. Bézivin. On the Unification Power of Models. SOSYM, 4(2):171–188, 2005.

[BBF09] Gordon Blair, Nelly Bencomo, and Robert B. France. Models@ run.time. Com-
puter, 42:22–27, 2009.

[BSM+03] F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and T.J. Grose. Eclipse Modeling
Framework. Addison Wesley, 2003.

[CDRP+10] Antonio Cicchetti, Davide Di Ruscio, Patrizio Pelliccione, Alfonso Pierantonio, and
Stefano Zacchiroli. A Model Driven Approach to Upgrade Package Based Software
Systems, chapter Communications in Computer and Information Science. Springer,
2010. In press.

[CIM09] Javier Luis Cánovas Izquierdo and Jesús Garćıa Molina. A domain specific language
for extracting models in software modernization. In ECMDA-FA ’09: Proceedings
of the 5th European Conference on Model Driven Architecture - Foundations and
Applications, pages 82–97, Berlin, Heidelberg, 2009. Springer-Verlag.

[CRP+09] Antonio Cicchetti, Davide Di Ruscio, Patrizio Pelliccione, Alfonso Pierantonio, and
Stefano Zacchiroli. Towards a model driven approach to upgrade complex software
systems. In proceedings of the 4th International Working Conference on Evaluation
of Novel approaches to Software Engineering (ENASE 2009), Milan - Italy, 6 - 10
May 2009.

[DCZT08] Roberto Di Cosmo, Stefano Zacchiroli, and Paulo Trezentos. Package upgrades
in foss distributions: details and challenges. In HotSWUp ’08: Proceedings of the
1st International Workshop on Hot Topics in Software Upgrades, pages 1–5, New
York, NY, USA, 2008. ACM.

[DH07] Eelco Dolstra and Armijn Hemel. Purely functional system configuration manage-
ment. In USENIX’07, pages 1–6, San Diego, CA, 2007.

[DPPZ09] Davide Di Ruscio, Patrizio Pelliccione, Alfonso Pierantonio, and Stefano Zacchiroli.
Metamodel for describing system structure and state. Mancoosi Project deliverable
D2.1, January 2009. http://www.mancoosi.org/reports/d2.1.pdf.

[DTP+09] Davide Di Ruscio, John Thomson, Patrizio Pelliccione, Alfonso Pierantonio, and
Stefano Zacchiroli. First version of the dsl based on the model developed in wp2.

77

http://www.mancoosi.org/reports/d2.1.pdf

February 10, 2010

Mancoosi Project deliverable D3.2, January 2009. http://www.mancoosi.org/

reports/d3.2.pdf.

[Ecl] Eclipse. Modisco project. Available: http://www.eclipse.org/gmt/modisco/.

[EDO06] EDOS Project. Report on formal management of software dependencies. EDOS
Project Deliverable D2.1 and D2.2, March 2006.

[Eff06] S. Efftinge. openarchitectureware 4.1 xtext language reference, August 2006.
http://www.eclipse.org/gmt/oaw/doc/4.1/r80 xtextReference.pdf.

[Eil05] Eldad Eilam. Reversing: Secrets of reverse engineering. Wiley Publishing, Inc.,
2005.

[FBB+07] Franck Fleurey, Erwan Breton, Benoit Baudry, Alain Nicolas, and Jean-Marc
Jézéquel. Model-driven engineering for software migration in a large industrial
context. In MoDELS, pages 482–497, 2007.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns.
Addison-Wesley, Boston, MA, 1995.

[JBB09] Frédéric Jouault, Jean Bézivin, and Mikaël Barbero. Towards an advanced model-
driven engineering toolbox. ISSE, 5(1):5–12, 2009.

[JBK06] Frédéric Jouault, Jean Bézivin, and Ivan Kurtev. TCS: a DSL for the specification
of textual concrete syntaxes in model engineering. In Proceedings of GPCE’06,
pages 249–254. ACM, 2006.

[JJJ08] J.L.C. Izquierdo, J.S. Cuadrado, and J.G. Molina. Gra2MoL: A domain specific
transformation language for bridging grammarware to modelware in software mod-
ernization. In Workshop on Model-Driven Software Evolution, 2008.

[JS08] Ian Jackson and Christian Schwarz. Debian policy manual. http://www.debian.
org/doc/debian-policy/, 2008.

[KU07] V. Khusidman and W. Ulrich. Architecture-driven modernization: Transforming
the enterprise. Technical report, Tactical Strategy Group: white paper, 2007.

[Mav08] Apache maven project. http://maven.apache.org/, 2008.

[Nie08] Gustavo Niemeyer. Smart package manager. http://labix.org/smart, 2008.

[Nor08] Gustavo Noronha Silva. APT howto. http://www.debian.org/doc/manuals/

apt-howto/, 2008.

[Obj03] Object Management Group (OMG). Meta Object Facility (MOF) 2.0 Core Spec-
ification, OMG Document ptc/03-10-04. http://www.omg.org/docs/ptc/03-10-
04.pdf, 2003.

[RGvD06] Thijs Reus, Hans Geers, and Arie van Deursen. Harvesting software systems for
mda-based reengineering. In ECMDA-FA, pages 213–225, 2006.

[RPPZ09] Davide Di Ruscio, Patrizio Pelliccione, Alfonso Pierantonio, and Stefano Zacchiroli.
Towards Maintainer Script Modernization in FOSS Distributions. In proceedings
of the IWOCE2009 - Open Component Ecosystems International Workshop - colo-
cated with ESEC/FSE 2009, Amsterdam, The Netherlands, 24 August 2009.

Deliverable D2.2 Version 1.0 page 78 of 79

http://www.mancoosi.org/reports/d3.2.pdf
http://www.mancoosi.org/reports/d3.2.pdf
http://www.debian.org/doc/debian-policy/
http://www.debian.org/doc/debian-policy/
http://maven.apache.org/
http://labix.org/smart
http://www.debian.org/doc/manuals/apt-howto/
http://www.debian.org/doc/manuals/apt-howto/

February 10, 2010

[Sch06] D. C. Schmidt. Guest Editor’s Introduction: Model-Driven Engineering. IEEE
Computer, 39(2):25–31, 2006.

[sPL03] Robert C. seacord, Daniel Plakosh, and Grace A. Lewis. Modernizing Legacy
Systems: Software Technologies, Engineering Process and Business Practices.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.

[WK06] M. Wimmer and G. Kramler. Bridging grammarware and modelware. In Satellite
Events at the MoDELS 2005 Conference, volume 3844 of LNCS, pages 159–168.
Springer-Verlag, 2006.

Deliverable D2.2 Version 1.0 page 79 of 79

	Introduction
	Structure of the deliverable

	The model driven approach to support the upgrade of FOSS systems
	FOSS distributions
	An overview of the model-driven approach
	Mancoosi Metamodels
	Model Injection

	System configuration injection
	Eclipse Modeling Framework
	The Mancoosi model management
	The Mancoosi model injection infrastructure
	Developing distribution-dependent model injectors

	Configuration injectors for Debian-based systems
	Package injection
	Gra2MoL: A domain specific language for extracting models from source code
	The Mancoosi DSL
	Maintainer script injection

	Failure detection
	Failure Classification
	Static Analysis

	Conclusion

