
Metamodel for Describing
System Structure and State
Deliverable 2.1

Nature : Deliverable
Due date : 31.01.2009
Start date of project : 01.01.2008
Duration : 36 months

November 19, 2009

Specific Targeted Research Project
Contract no.214898
Seventh Framework Programme: FP7-ICT-2007-1

A list of the authors and reviewers

Project acronym MANCOOSI
Project full title Managing the Complexity of the Open Source Infrastructure
Project number 214898
Authors list Davide Di Ruscio <diruscio@di.univaq.it>

Patrizio Pelliccione <pellicci@di.univaq.it>
Alfonso Pierantonio <alfonso@di.univaq.it>
Stefano Zacchiroli <zack@pps.jussieu.fr>

Internal review Sophie Cousin, Arnaud Laprevote, Paulo Trezentos
Workpackage number WP2
Deliverable number 1
Document type Deliverable
Version 1
Due date 31/01/2009
Actual submission date 03/02/2009
Distribution Public
Project coordinator Roberto Di Cosmo <roberto@dicosmo.org>

Deliverable D2.1 Version 1.0 page 2 of 104

mailto:diruscio@di.univaq.it
mailto:pellicci@di.univaq.it
mailto:alfonso@di.univaq.it
mailto:zack@pps.jussieu.fr
mailto:roberto@dicosmo.org

November 19, 2009

Abstract

Today’s software systems are very complex modular entities, made up of many interacting
components that must be deployed and coexist in the same context. Modern operating systems
provide the basic infrastructure for deploying and handling all the components that are used as
the basic blocks for building more complex systems even though a generic and comprehensive
support is far from being provided. In fact, in Free and Open Source Software (FOSS) systems,
components evolve independently from each other and because of the huge amount of available
components and their different project origins, it is not easy to manage the life cycle of a
distribution. Users are in fact allowed to choose and install a wide variety of alternatives whose
consistency cannot be checked a priori to their full extent. It is possible to easily make the
system unusable by installing or removing some packages that “break” the consistency of what
is installed in the system itself.

This document proposes a model-driven approach to simulate system upgrades in advance and to
detect predictable upgrade failures, possibly by notifying the user before the system is affected.
The approach relies on an abstract representation of the systems and packages which are given in
terms of models that are expressive enough to isolate inconsistent configurations (e.g., situations
in which installed components rely on the presence of disappeared sub-components) that are
currently not expressible as inter-package relationships.

Deliverable D2.1 Version 1.0 page 3 of 104

November 19, 2009

Deliverable D2.1 Version 1.0 page 4 of 104

Contents

1 Introduction 9

1.1 Structure of the deliverable . 11

1.2 Glossary . 11

2 Standard life-cycle of FOSS distributions 15

2.1 Packages . 15

2.2 Upgrades . 16

2.3 Failures . 18

3 Models for supporting the upgrades in FOSS distributions 21

3.1 Model Driven Engineering . 21

3.1.1 Models and Meta-models . 22

3.1.2 Model Transformations . 24

3.2 MDE and FOSS distributions upgrades . 25

4 Analysis of FOSS distributions 27

4.1 Maintainer script analysis: Debian GNU/Linux 28

4.1.1 Scripts generated from helpers . 29

4.1.2 Analysis of scripts “by hand” . 31

4.2 Maintainer script analysis: RPM-based distributions 39

4.3 Stemming out the elements to be modeled . 49

4.4 Uncovered elements . 51

5 MANCOOSI metamodels 53

5.1 System Configuration metamodel . 53

5.2 Package metamodel . 55

5.2.1 Script metaclass . 56

5.2.2 Statement metaclass . 58

5

November 19, 2009

If metaclass . 60

Case metaclass . 60

Iterator metaclass . 62

Return metaclass . 62

5.2.3 Template metaclasses . 63

5.3 Log metamodel . 68

6 Supporting the evolution of the MANCOOSI metamodels 71

6.1 Metamodel evolution and model co-evolution . 71

6.2 Metamodel difference representation . 76

6.3 Transformational adaptation of models . 80

6.3.1 Parallel independent changes . 82

6.3.2 Parallel dependent changes . 84

7 Conclusion 87

A Autoscript templates 89

A.1 Debian debhelper autoscript templates . 89

A.2 Fedora “autoscript” snippets . 96

A.3 Mandriva macros . 98

Deliverable D2.1 Version 1.0 page 6 of 104

List of Figures

3.1 Models conforming to a sample metamodel . 23

3.2 The four layers meta-modeling architecture . 23

3.3 MDA based development Process . 24

3.4 Basic Concepts of Model Transformation . 25

3.5 Proposed approach . 26

5.1 Metamodels and their inter-dependencies . 54

5.2 Graphical representation of the Configuration metamodel 54

5.3 Sample Configuration model . 55

5.4 Overview of the Package metamodel . 56

5.5 Sample Package model . 57

5.6 Incorrect package removal . 57

5.7 Fragment of the libapache2-mod-php5 5.2.6-5 amd64.deb.postinst script . . 59

5.8 Fragment of the Log metamodel . 68

5.9 Sample Log model . 69

6.1 Petri Net metamodel evolution . 72

6.2 Sample Petri Net model adaptation . 73

6.3 Sample Petri Net model which requires human intervention 74

6.4 KM3 metamodel . 76

6.5 Overall structure of the model difference representation approach 77

6.6 Generated difference KM3 metamodel . 78

6.7 Subsequent Petri Net metamodel adaptations . 79

6.8 Overall co-evolution approach . 81

7

November 19, 2009

Deliverable D2.1 Version 1.0 page 8 of 104

Chapter 1

Introduction

Traditionally, software systems are designed with a set of requirements and pre-established
context assumptions. On the contrary, the modern society asks for software systems for which
the evolution of both requirements and context is the norm rather than the exception. A
clear, yet extreme, example is offered by network services, where the context frequently changes
to the points where systems must be changed in the shortest possible time frame to account
for security software upgrades. When the requirements and the context change that rapidly,
evolving software system must be able to face changes in an effective way with minimal human
intervention otherwise it will soon become obsolete. Mechanisms for run-time evolution are
needed to manage system and context changes. The joint ability to effectively react to changes
without degrading the level of dependability is the key factor for delivering successful systems
that continuously satisfy evolving user requirements [SS04].

In the domain of Component-Based (“CB” for short) software systems [Szy98, Szy03], run-
time evolution deals with the difficult problems arising when one wants to efficiently and safely
modify the set of the software components and their interactions in complex software infras-
tructures. In fact, a CB system is an assembly of software components (usually implemented
by means of either third-party libraries or in-house components), designed to meet the system
requirements that were identified during the analysis phase. In this setting, the addition of new
components, the deletion or upgrade of existing ones need to be effectively managed in order
not to compromise the correct run-time behavior of the overall system [BTLd].

Free and Open Source Software (FOSS) distributions are among the most complex software sys-
tems known, being made of tens of thousands of components evolving rapidly without centralized
coordination. Similarly to other software distribution infrastructures, FOSS components are
provided in “packaged” form by distribution editors. Packages define the granularity at which
components are managed (installed, removed, upgraded to newer version, etc.) using package
manager applications, such as APT [Nor08] or Apache maven [Mav08]. Furthermore, the system
openness affords an anarchic array of dependency modalities between the adopted packages.
These usually contain maintainer scripts, which are executed during the upgrade process to
finalize component configuration. The adopted scripting languages have rarely been formally
investigated, thus posing additional difficulties in understanding their side-effects which can
spread throughout the system. In other words, even though a package might be viewed as a
software unit, it lives without a proper component model which usually defines standards (e.g.,
how a component interface has to be specified and how components communicate) [Szy98, Szy03]
that facilitate integration assuring that components can be upgraded in isolation.

9

November 19, 2009

The problem of maintaining FOSS installations, or similarly structured software distributions, is
intrinsically difficult and is missing a satisfactory solution. Today’s available package managers
lack several important features such as complete dependency resolution and roll-back of failed
upgrades [DTZ08]. Moreover, there is no support to simulate upgrades taking the behavior
of maintainer scripts into account. In fact, current tools mostly consider only inter-package
relationships which are not sufficient to predict side-effects and system inconsistencies which
are encountered during upgrades. It is however important to take into account maintainer
scripts since they can have system-wide effects, and hence cannot be narrowed to the involved
packages only. In this respect, proposals like [Oli04, TDL+07] represent a first step toward
roll-back management. In fact, they support the re-creation of removed packages on-the-fly, so
that they can be re-installed to undo an upgrade. However, such approaches can track only files
which are under package manager control and, in some cases, only files flagged as ”configuration
files”. Therefore, unlike us, none of such approaches can undo maintainer script side effects.

An interesting proposal to support the upgrade of a system, called NixOS, is presented in [DL08].
It is a purely functional distribution meaning that all static parts of a system (such as software
packages, configuration files and system startup scripts) are built by pure functions. Among the
main limitations of NixOS there is the fact that some actions related to upgrade deployment can
not be made purely functional (e.g., user database management). Moreover, NixOS solution to
the upgrade problem does not consider maintainer scripts.

[McQ05] proposes an attempt to monitor the upgrade process with the aim to discover what
is actually being touched by an upgrade. Unfortunately, it is not sufficient to know which files
have been involved in the maintainer scripts execution but we also have to consider system
configuration, running services etc., as taken into account by our metamodels. Even focusing
on touched files only, it is not always possible to undo an upgrade by simply recopying the old
file [DTZ08].

Interesting techniques for static analysis of (shell) scripts have also been proposed. Some pre-
vious work [XA06] deals with SQL injection detection for PHP scripts, but it did not con-
sider the most dynamic parts of the PHP language, quite common in scripting languages.
Whereas, [MZ07] presents an “arity” bug detection in shell scripts, but once more only con-
siders a tiny fragment of the shell language. Both works are hence far even from the minimal
requirement of determining a priori the set of files touched by script execution, letting aside how
restricted were the considered shell language subsets. Given these premises, we are skeptical
that static analysis can fully solve the problem illustrated in our work.

On the contrary, we propose a model-driven approach to specify system configurations and
available packages. Even maintainer scripts are described in terms of models which abstract
from the real system, but are expressive enough to predict several of their effects on package
upgrades. This is an innovative aspect which distinguishes our proposal from the existing
systems summarized above. Intuitively, we provide an abstract interpretation of scripts, in
the spirit of [Cou06], which focuses on the relevant aspects to predict the operation effects
on the software distribution. To this end, models can be used to drive roll-back operations
to recover previous configurations according to user decisions or after upgrade failures. To
summarize, Mancoosi works on models to (i) simulate the execution of maintainer scripts, (ii)
predict side-effects and system inconsistencies which might be raised by package upgrades, and
(iii) instruct roll-back operations to recover previous configurations according to user decisions
or after upgrade failures.

File modifications performed by users between transactions are not supported by model-based
rollback, since they cannot be captured in the model. However, versioning systems might be

Deliverable D2.1 Version 1.0 page 10 of 104

November 19, 2009

taken into account in conjunction with the proposed model-based approach in order to maintain
the different versions of the files which have been manually modified.

1.1 Structure of the deliverable

The present deliverable is structured as follows:

• Chapter 2 describes the life-cycle of FOSS distributions with particular attention to the
upgrade process of FOSS packages;

• Chapter 3 describes the use of models for supporting the upgradeability of FOSS dis-
tributions. After an introduction to Model Driven Engineering (MDE), we present the
Mancoosi model driven approach to (i) specify system configurations and packages, (ii)
simulate the installation of software packages and (iii) assist roll-backs;

• Chapter 4 analyzes the FOSS domain, in particular the Debian and RPM-based distri-
butions, stemming out the required modeling elements. The analysis has been performed
in several steps both automated and manual and reached a satisfactory coverage of the
considered scripts;

• Building on that, Chapter 5 presents the metamodels on which the Mancoosi approach
is based. In particular, three interrelated metamodels are proposed: (i) a package meta-
model, which describes the metamodel of packages that compose the system (ii) a con-
figuration metamodel for modeling package settings, and (iii) a log metamodel to store
the operations performed in upgrading and to instruct the rollback. For this reason it is
based on the concept of transactions which represent a set of statements which change
the system configurations;

• Chapter 6 presents techniques to support the evolution of the proposed metamodels and
the automatic adaptation of the already existing models which conform to the changed
metamodels;

• Finally, Chapter 7 concludes the deliverable by summarizing its content.

1.2 Glossary

This section contains a glossary of essential terms which are used throughout this specification.

Distribution A collection of software packages that are designed to be installed on a common
software platform. Distributions may come in different flavors, and the set of available
software packages generally varies over time. Examples of distributions are Mandriva,
Caixa Mágica, Pixart, Fedora or Debian, which all provide software packages for the the
GNU/Linux platform (and probably others). The term distribution is used to denote both
a collection of software packages, such as the lenny distribution of Debian, and the entity
that produces and publishes such a collection, such as Mandriva, Caixa Mágica or Pixart.
The latter are sometimes also referred to as distribution editors. The role of distribution
editors is to coordinate packaging of software applications and to develop installation and
configuration tools aimed to facilitate system deploy and management.

Deliverable D2.1 Version 1.0 page 11 of 104

November 19, 2009

Still, the notion of distribution is not necessarily bound to FOSS package distributions,
other platforms (e.g. Eclipse plugins, LaTeX packages, Perl packages, etc.) have similar
distributions, similar problems, and can have their upgrade problems encoded in CUDF.

Installer The software tool actually responsible for physically installing (or de-installing) a
package on a machine. This task particularly consists in unpacking files that come as
an archive bundle, installing them on the user machine in persistent memory, probably
executing configuration programs specific to that package, and updating the global sys-
tem information on the user machine. Downloading packages and resolving dependencies
between packages are in general beyond the scope of the installer. For instance, the in-
staller of the Debian distribution is dpkg, while the installer used in the RPM family of
distributions is rpm.

Meta-installer The software tool responsible for organizing a user request to modify the col-
lection of installed packages. This particularly involves determining the secondary actions
that are necessary to satisfy a user request to install or de-install packages. To this end, a
package system allows to declare relations between packages such as dependencies or con-
flicts. The meta-installer is also responsible for choosing the origin, the retrieving method
and downloading necessary packages. Examples of meta-installers are apt-get, aptitude
and URPMi.

Model According to Mellor et al. [MCF03] a model “is a coherent set of formal elements
describing something (e.g., a system, bank, phone, or train) built for some purpose that is
amenable to a particular form of analysis” such as communication of ideas between people
and machines, test case generation, transformation into an implementation etc. Moreover,
a model is defined to answer questions in place of the actual system.

Metamodel A metamodel consists of “concepts” (things, terms, etc.) proper of a certain do-
main. It’s an abstraction which highlights properties of models which are said to conform
to its metamodel like a program conforms to the grammar of the programming language
in which it is written [B0́5].

Model transformation Kleppe et al. [KW03] defines a model transformation as the automatic
generation of a target model from a source model, according to a transformation definition.
A transformation definition is a set of transformation rules that together describe how a
model in the source language can be transformed to a model in the target language. A
transformation rule is a description of how one or more constructs in the source language
can be transformed to one or more constructs in the target language.

Package A bundle of software artifacts that may be installed on a machine as an atomic unit,
i.e. packages define the granularity at which software can be added to or removed from
machines. A package typically contains an archive of files to be installed on a machine,
programs to be executed at various stages of the installation or de-installation of a package,
and metadata.

Package status A set of metadata maintained by the installer about packages currently in-
stalled on a machine. The package status is used by the installer as a model of the software
installed on a machine and kept up to date upon package installation and removal. The
kind of metadata stored for each package varies from distribution to distribution, but
typically comprises package identifiers (usually name and version), human-oriented infor-
mation such as a description of what the package contains and a formal declaration of
the inter-package relationships of a package. Inter-package relationships can usually state

Deliverable D2.1 Version 1.0 page 12 of 104

November 19, 2009

package requirements (which packages are needed for a given one to work properly) and
conflicts (which packages cannot coexist with a given one).

Package universe The collection of packages known to the meta-installer in addition to those
already known to the installer, which are stored in the package status. Packages belonging
to the package universe are not necessarily available on the local machine—while those
belonging to the package status usually are—but are accessible in some way, for example
via download from remote package repositories.

Upgrade request A request to alter the package status issued by a user (typically the system
administrator) using a meta-installer. The expressiveness of the request language varies
with the meta-installer, but typically enables requiring the installation of packages which
were not previously installed, the removal of currently installed packages, and the upgrade
to newer version of packages currently installed.

Upgrade problem The situation in which a user submits an upgrade request, or any abstract
representation of such a situation. The representation includes all the information needed
to recreate the situation elsewhere, at the very minimum they are: package status, package
universe and upgrade request. Note that, in spite of its name, an upgrade problem is not
necessarily related to a request to “upgrade” one or more packages to newer versions, but
may also be a request to downgrade, install or remove packages. Both DUDF and CUDF
documents are meant to encode upgrade problems for different purposes.

Deliverable D2.1 Version 1.0 page 13 of 104

November 19, 2009

Deliverable D2.1 Version 1.0 page 14 of 104

Chapter 2

Standard life-cycle of FOSS
distributions

Overall, the architectures of all FOSS distributions are similar. Each user machine has a local
package status recording which packages are currently installed and which are available from
remote repositories. Package managers are used to manipulate the package status and can
be classified in two categories [EDO06]: installers, which deploy individual packages on the
filesystem (possibly aborting the operation if problems are encountered) and meta-installers,
which act at the inter-package level, solving dependencies and conflicts, and retrieving packages
from remote repositories as needed.

We use the term upgrade problem to refer generically to any request (e.g., install, remove,
upgrade to a newer version) that change the package status. Such problems are usually solved
by meta-installers, the aim of which is to find a suitable upgrade plan, if one exists. In the
rest of the chapter we give a brief description of packages (as they can be found in current
distributions), their role in the upgrade process, and the failures that can impact on upgrade
deployment.

2.1 Packages

Abstracting over format-specific details1, a package is a bundle of three main parts:

Package



1. Set of files
1.1. Configuration files

2. Set of valued meta-information
2.1. Inter-package relationships

3. Executable configuration scripts

The set of files (1) is common in all software packaging solutions, it is the filesystem encoding
of what the package is delivering: executable binaries, data, documentation, etc.

Configuration files (1.1) is a distinguished subset of shipped files, identifying those affecting the
runtime behavior of the package and meant to be locally customized with or without package

1Such as those of the .deb package format found in distributions derived from Debian (http://www.debian.
org), or of the .rpm format found in distributions derived from Red Hat (http://www.redhat.com).

15

http://www.debian.org
http://www.debian.org
http://www.redhat.com

November 19, 2009

manager mediation. Configuration files need to be present in the bundle (e.g., to provide sane
defaults or documentation), but need special treatment: during installation of new versions of
a package, they cannot be simply overwritten, as they may contain local changes.

Package meta-information (2) contains information which varies from distribution to distribu-
tion. A common core provides: a unique identifier, software version, maintainer and package
description, but most notably, distributions use meta-information to declare inter-package re-
lationships (2.1). The relationship kinds vary with the installer, but there exists a de facto
common subset including: dependencies (the need of other packages to work properly), con-
flicts (the inability of being co-installed with other packages), feature provisions (the ability to
declare named features as provided by a given package, so that other packages can depend on
them), and restricted boolean combinations of them [EDO06].

Packages come with a set of executable configuration (or maintainer) scripts (3). Their pur-
pose is to let package maintainers attach actions to hook executed by the installer; actions
usually come as POSIX shell scripts. Which hooks are available depends on the installer; dpkg
offers one of the most comprehensive set of hooks: pre/post-unpacking, pre/post-removal, and
upgrade/downgrade to specific versions [JS08].

Example 2.1 A maintainer script embodying one of the most common use case (see Chapter 4)
is the following shell script snippet, to be executed in the postinst phase (i.e., after having copied
package files on disk) of a shared library package:

1 i f ["$1" = " configure "] ; then
2 ldconfig

3 f i

This script simply invokes an external program to update the Linux run-time linker cache.

The following facets of maintainer scripts are noteworthy:

1. Maintainer scripts are full-fledged programs, written in Turing-complete programming
languages. They can do anything permitted to the installer, which is usually run with
system administrator rights;

2. The functionality of maintainer scripts cannot be substituted by just shipping extra files:
the scripts often rely on data which is available only in the target installation machine,
and not in the package itself;

3. Maintainer scripts are required to work “properly”: upgrade runs, in which they fail,
trigger upgrade failures and are usually detected via inspection of script exit code;

4. Maintainer scripts should not require any user interaction or any other external potential
blocking calls such as HTTP request to outside servers and CD-ROM access. Given that
in some scenarios (e.g. distribution upgrade, automatic security updates, etc.) packages
are upgraded in batch this would make it unmanageable.

2.2 Upgrades

Table 2.1 summarizes the different phases of what we call the upgrade process, using as an
example the popular APT meta-installer [Nor08]. The process starts in phase (1) with the

Deliverable D2.1 Version 1.0 page 16 of 104

November 19, 2009

Table 2.1: The package upgrade process

user requesting to alter the local package status. The expressiveness of the requests varies
with the meta-installer, but the aforementioned actions (install, remove, etc.) are ubiquitously
supported.

Once the user request is known, an upgrade problem is properly defined. Abstractly, we can
define it as a triple 〈U, So, R〉, where U is a distribution (i.e., a set of packages), So ⊆ U is a
package status, and R a user request; its solutions are all possible package status S ⊆ U , such
that:2

a. The user request R is satisfied by S;

b. If S contains a package p, it contains all its dependencies;

c. S does not contain two conflicting packages;

d. S has been obtained executing all required hooks and none of the involved maintainer
scripts has failed.

Phase (2) checks whether a package status satisfying (b) and (c) above exists (the problem is
at least NP-complete [EDO06]). If this is the case one is chosen in this phase. Deploying the
new status consists of package retrieval, phase (3), and unpacking, phase (4). Unpacking is the
first phase actually changing both the package status (to keep track of installed packages) and
the filesystem (to add or remove the involved files).

2A few remarks: while (a) is installer-specific, (b) and (c) have been generalized and formalized in [MBC+06];
studies of (d) are still lacking. These are just the functional properties of an upgrade outcome, but there are also
non-functional properties that can be used to choose optimal solutions (e.g., minimality of change, or downtime
length); this issue is among the objectives of workpackages WP4 and WP5. Note that while checks for (b) and
(c) can be performed statically, checks for (d) can only be performed at run-time while executing scripts.

Deliverable D2.1 Version 1.0 page 17 of 104

November 19, 2009

During unpacking, configuration files are treated by checking whether local configuration files
have been manually modified or not. In this case merging is required and it is typically done
by asking the user to manually do it.

Intertwined with package retrieval and unpacking, there can be several configuration phases,
(exemplified by phases (5a) and (5b) in Table 2.1), where maintainer scripts get executed. The
details depend on the available hooks.

Example 2.2 The installation of PHP5 (a web scripting language integrated with the Apache
web server) executes the following code defined in a postint script:

1 #!/ bin /sh

2 i f [−e /etc/ apache2 / apache2 . conf] ; then
3 a2enmod php5 >/dev/ null | | true
4 reload_apache

5 f i

The Apache module php5, installed during the unpacking phase, gets enabled by the above snippet
invoking the a2enmod command in line 3; the Apache service is then reloaded (line 4) to make
the change effective. Upon PHP5 removal the reverse will happen, as implemented by PHP5
prerm script:

1 #!/ bin /sh

2 i f [−e /etc/ apache2 / apache2 . conf] ; then
3 a2dismod php5 | | true
4 f i

Note that prerm is executed before removing files from disk, that is necessary to avoid reaching
an inconsistent configuration where the Apache server is configured to rely on no longer existing
files. It is important to observe that the expressiveness of inter-package dependencies is not
enough to encode this kind of dependencies: Apache does not depend on php5 (and should
not, because it is also useful without it), but when php5 is installed, Apache needs specific
configuration to work in harmony with it. The bookkeeping of such configuration is delegated to
maintainer scripts.

2.3 Failures

Each phase of the upgrade process can fail. Dependency resolution can fail either because the
user request is unsatisfiable (e.g., user error or inconsistent distributions [MBC+06]) or because
the meta-installer is unable to find a solution. Completeness, i.e., the guarantee that a solution
will be found whenever one exists, is a desirable meta-installer property unfortunately missing
in most meta-installers, with too few claimed exceptions [TSJL07].

While (ad-hoc) SAT solving has proved to be a suitable complete technique to solve dependen-
cies [MBC+06], handling of user preferences is a novel problem for package upgrades. It boils
down to let users specify which solution to choose among all acceptable solutions. Examples of
preferences are not only policies [Nie08] like minimizing the download size or prioritizing popu-
lar packages, but also more customized requirements such as blacklisting packages maintained
by an untrusted maintainer.

Package deployment can fail as well. Trivial failures, e.g., network or disk failures, can be easily
dealt with when considered in isolation from the other upgrade phases: the whole upgrade
process can be aborted and unpack can be undone, since all the involved files are known.
Maintainer script failures cannot be as easily undone or prevented, given that all non-trivial

Deliverable D2.1 Version 1.0 page 18 of 104

November 19, 2009

properties about scripts are undecidable, including determining a priori which parts of file-
system they affect to revert them a posteriori.

A subtle type of upgrade failure deserves mention: undetected failures, i.e., those failures not
observable by the package manager while the newly installed software can be misbehaving
(e.g., a network service happily restarting after upgrade, but refusing connections). Undetected
failures can take very long (weeks, or even months) before being discovered. They can often be
fixed by configuration tuning, but there are cases in which the desired behavior can no longer
be obtained, leaving upgrade undo as the only solution (in cases where undoing the upgrade is
possible).

To the ends of system modeling, undetected failures are relevant since they show the need of
“out of order” undo. For instance, if three upgrades u1, u2, and u3 are performed subsequently
and if u1 induced an undetected failure, it is not desirable to require the undo of all three
upgrades to counter the failure. It is rather desirable to be able to selectively undo only u1,
because several time has possibly elapsed since u1 and users might already have started to rely
on the (positive) effects of u2 and u3.

Deliverable D2.1 Version 1.0 page 19 of 104

November 19, 2009

Deliverable D2.1 Version 1.0 page 20 of 104

Chapter 3

Models for supporting the upgrades
in FOSS distributions

The problem of maintaining FOSS installations is far from trivial and has not been properly
addressed yet [DTZ08]. In particular, current package managers are neither able to predict nor
to counter vast classes of upgrade failures. The reason is that package managers rely on package
meta-information only (in particular on inter-package relationships), which are not expressive
enough. Our proposal consists in maintaining a model-based description of the system and
simulate upgrades in advance on top of it, to detect predictable upgrade failures and notify
the user before the system is affected. More generally, the models are expressive enough to
isolate inconsistent configurations (e.g., situations in which installed components rely on the
presence of disappeared sub-components), which are currently not expressible as inter-package
relationships.

In this chapter we promote the adoption of model-driven techniques since they present several
advantages: a) models can be given at any level of abstraction depending on the analysis
and operations one would like to perform as opposed to actual package dependency information
whose granularity is fixed and often too coarse; b) complex and powerful analysis techniques are
already available to detect model conflicts and inconsistencies [MSD06, CRP08]. In particular,
contradictory patterns can be specified in a structural way by referring to the domain underlying
semantics in contrast with text-based tools like version control systems where conflicts are
defined at a much lower level of abstraction as diverging modifications of the same lexical
element.

The remaining of the chapter is organized as follows: Section 3.1 provides the reader with the
essential concepts of MDE which underpin the approach supporting the upgradeability process
which is described in Section 3.2.

3.1 Model Driven Engineering

Model-Driven Engineering (MDE) [Sch06b] refers to the systematic use of models as first class
entities throughout the software engineering life cycle. Model-driven approaches shift develop-
ment focus from third generation programming language codes to models expressed in proper
domain specific modeling languages. The objective is to increase productivity and reduce time
to market by enabling the development of complex systems by means of models defined with

21

November 19, 2009

concepts that are much less bound to the underlying implementation technology and are much
closer to the problem domain. This makes the models easier to specify, understand, and main-
tain [Sel03] helping the understanding of complex problems and their potential solutions through
abstractions.

The concept of Model Driven Engineering emerged as a generalization of the Model Driven
Architecture (MDA) proposed by the Object Management Group (OMG) in 2001 [Obj03a] and
it relies on a conceptual framework consisting of model, meta-model, and model transformation
which are described in the rest of the section.

3.1.1 Models and Meta-models

Even though MDA and MDE rely on models that are considered “first class citizens”, there is no
common agreement about what a model is. In [Sei03] a model is defined as “a set of statements
about a system under study”. Bézivin and Gerbé in [BG01] define a model as “a simplification
of a system built with an intended goal in mind. The model should be able to answer questions
in place of the actual system”. According to Mellor et al. [MCF03] a model “is a coherent
set of formal elements describing something (e.g., a system, bank, phone, or train) built for
some purpose that is amenable to a particular form of analysis” such as communication of ideas
between people and machines, test case generation, transformation into an implementation,
etc. The MDA guide [Obj03a] defines a model of a system as “a description or specification
of that system and its environment for some certain purposes. A model is often presented as
a combination of drawings and text. The text may be in a modeling language or in a natural
language”. These formulations do not conflict but rather complement one another and represent
the various aspects of the fundamental philosophical category of software. Models are generally
used in order to pursue the following purposes (amongst others):

• to record design decisions, models are generally existing prior to software and are used
either to convey relevant information to the implementors or to be manipulated in tool
chains; the outcome consists in both cases of artefacts, which can range from documenta-
tion and component interfaces to software skeletons or full-fledged systems. The process
typically enriches subsequent models with details which derive from the knowledge the
manipulations rely on, regardless whether automated or manual;

• to analyze a system, highly abstract and incomplete models are verified possibly using a
computer to analyze the system for the presence of desirable properties and the absence
of undesirable ones. This can be done in several ways, including formal (mathematical)
analyses such as performance analysis based on queuing theory or safety-and-liveness
property checking. The analyses can be performed before or after the system comes into
existence depending on the needs.

Techniques and tools to support model-driven engineering nowadays reached a certain degree of
maturity making it practical even in large-scale industrial applications. For a detailed discussion
about the use and meaning of models in MDE please refer to [B0́5].

In MDE models are not considered as merely documentation but precise artifacts that can
be understood by computers and can be automatically manipulated. In this scenario meta-
modeling plays a key role. It is intended as a common technique for defining the abstract
syntax of models and the interrelationships between model elements. Meta-modeling can be
seen as the construction of a collection of “concepts” (things, terms, etc.) within a certain

Deliverable D2.1 Version 1.0 page 22 of 104

November 19, 2009

(a) Graph Metamodel

(b) Graph models

Figure 3.1: Models conforming to a sample metamodel

domain. A model is an abstraction of phenomena in the real world, and a meta-model is yet
another abstraction, highlighting properties of the model itself. This model is said to conform to
its meta-model like a program conforms to the grammar of the programming language in which
it is written [B0́5]. For instance, Fig. 3.1.a depicts a sample metamodel containing the concepts
and the relations proper of graphs. In this respect, the metamodel contains the concept Node
which represents a source and/or target of edges according to the relations between the Node
and Edge metaclasses. In Figure 3.1.b two sample models conforming to graph metamodels
previous mentioned are reported.

OMG has introduced the four-level architecture illustrated in Fig. 3.2. At the bottom level, the
M0 layer is the real system. A model represents this system at level M1. This model conforms to
its meta-model defined at level M2 and the meta-model itself conforms to the metametamodel
at level M3. The metametamodel conforms to itself. OMG has proposed Meta Object Facility
(MOF) [Obj03b] as a standard for specifying meta-models. For example, the Unified Modeling
Language (UML) meta-model [Obj03c] is defined in terms of MOF. A supporting standard of
MOF is XML Metadata Interchange (XMI) [Obj03d], which defines an XML-based exchange
format for models on the M3, M2, or M1 layer. This metamodeling architecture is common to other
technological spaces as discussed by Kurtev et al. in [AKB02]. For example, the organization
of programming languages and the relationships between XML documents and XML schemas
follow the same principles described above (see Fig. 3.2). In addition to metamodeling, model
transformation is also a central operation in MDE as discussed in the next section.

Figure 3.2: The four layers meta-modeling architecture

Deliverable D2.1 Version 1.0 page 23 of 104

November 19, 2009

Figure 3.3: MDA based development Process

3.1.2 Model Transformations

In addition to metamodeling, model transformation is also a central operation in MDA as
depicted in Fig. 3.3. According to the figure, the development of a software system starts by
building a platform independent models (PIM) of that system. Then the PIM is refined and
transformed to one or more platform specific models (PSMs). Finally, the PSMs are transformed
to code. In this way, MDA allows us to preserve the investments in business logic since, being a
PIM totally unrelated to any specific technology, it is possible to map it to different platforms
by means of (semi)automatic transformations which can be defined according to specific needs.
Achieving this goal would enable analysts to focus only on the design, the business logic, and
the overarching architecture.

The MDA guide [Obj03a] defines a model transformation as “the process of converting one
model to another model of the same system”. Kleppe et al. [KW03] defines a transformation as
the automatic generation of a target model from a source model, according to a transformation
definition. A transformation definition is a set of transformation rules that together describe
how a model in the source language can be transformed to a model in the target language. A
transformation rule is a description of how one or more constructs in the source language can
be transformed to one or more constructs in the target language.

Rephrasing these definitions by considering Fig. 3.4, a model transformation program takes as
input models conforming to a given source meta-model and produces as output other models
conforming to a target meta-model. The transformation program, composed of a set of rules,
should itself considered as a model. As a consequence, it is based on a corresponding meta-
model, that is an abstract definition of the used transformation language. Generating lower-
level models, and eventually code, from higher-level models is not the unique use of model
transformations which can be adopted also to support:

- the synchronization of models at the same level or different levels of abstraction, the spec-
ification of complex and large systems might consist of several models which have to be
kept synchronized. This means that a modification performed on a given model has to be
propagated to the other ones.

- the creation of query-based views on a system, complex models can be queried to extract
simpler views which are more suitable for automated manipulation and analysis;

- the co-evolution of models, similarly to other software artefacts, metamodels can evolve
over time too. Accordingly, models need to be co-adapted in order to remain compliant

Deliverable D2.1 Version 1.0 page 24 of 104

November 19, 2009

Figure 3.4: Basic Concepts of Model Transformation

to the metamodel and not become eventually invalid. Model transformations can be used
to adapt existing models with respect to the metamodel modifications;

- the reverse engineering of higher-level models from lower-level ones, specific model trans-
formations can be developed to harvest existing systems and generate corresponding mod-
els which are more abstract and amenable to analyze the system with respect to desirable
properties.

These aspects will be discussed with more details in Chapter 6, which suggests an approach to
support the evolution of the MANCOOSI metamodels presented in Chapter 5.

Many languages and tools have been proposed to specify and execute transformation programs.
In 2002 OMG issued the Query/View/Transformation request for proposal [Obj02] to define a
standard transformation language. Even though a final specification has been adopted at the
end of 2005, the area of model transformation continues to be a subject of intense research. Over
the last years, in parallel to the OMG process a number of model transformation approaches
has been proposed both from academia and industry. The paradigms, constructs, modeling
approaches and tool support distinguish the proposals, each of them with a certain suitability
for a certain set of problems.

3.2 MDE and FOSS distributions upgrades

In this section we propose a model-driven approach to support the upgradeability of FOSS
distributions built of composable units which evolve independently. The approach relies on
the specification of system configurations and available packages. Maintainer scripts are also
described in terms of models which abstract from the real system, but are expressive enough
to predict several of their effects on package upgrades. Intuitively, we provide a more abstract
interpretation of scripts, in the spirit of [Cou06], which focuses on the relevant aspects to predict
the operation effects on the software distribution. To this end, models can be used to drive roll-
back operations to recover previous configurations according to user decisions or after upgrade
failures.

To simulate an upgrade run, two models are taken into account (see Fig. 6.8): the System Model
and the Package Model (see the arrow a©). The former describes the state of a given system
in terms of installed packages, running services, configuration files, etc. The latter provides
information about the packages involved in the upgrade, in terms of inter-package relationships.
Moreover, since a trustworthy simulation has to consider the behavior of the maintainer scripts

Deliverable D2.1 Version 1.0 page 25 of 104

November 19, 2009

Figure 3.5: Proposed approach

which are executed during the package upgrades, the package model specifies also an abstraction
of the behaviors of such scripts. There are two possible simulation outcomes: not valid and valid
(see the arrows c© and d©, respectively). In the former case it is granted that the upgrade on
the real system will fail. Thus, before proceeding with it the problem spotted by the simulation
should be fixed. In the latter case—valid—the upgrade on the real system can be operated (see
the arrow i©). However, since the models are an abstraction of the reality, upgrade failures
might occur due to reasons like a drive IO error.

During package upgrades Log models are produced to store all the transitions between con-
figurations (see arrow b©). The information contained in the system, package, and log models
(arrows e© and f©) are used in case of failures (arrow l©) when the performed changes have to be
undone to bring the system back to the previous valid configuration (arrow g©). Since it is not
possible to specify in detail every single part of systems and packages, trade-offs between model
completeness and usefulness have been evaluated. This analysis is reported in the next chapter.
The result of such a study has been formalized in terms of metamodels (see Chapter 5) which can
be considered one of the constituting concepts of Model Driven Engineering (MDE) [Sch06a].
They are the formal definition of well-formed models, constituting the languages by which a
given reality can be described in some abstract sense [B0́5] defining an abstract interpretation
of the system.

Even though the proposed approach is expressed in terms of simulations, the entailed meta-
models do not mandate a simulator. Hybrid architectures composed by a package manager and
metamodel implementations can be more lightweight than the simulator, yet being helpful to
spot inconsistent configurations not detectable without metamodel guidance.

All the models which are involved in the simulation upgrade are specified by using the model-
ing constructs formalized in specific metamodels which have been conceived during a domain
analysis phase. In this respect, FOSS distributions (Debian installations with more attention)
have been analysed as discussed in the next chapter. Subsequently, the elicited concepts are
formalized in specific metamodels which are reported in chapter 5.

Deliverable D2.1 Version 1.0 page 26 of 104

Chapter 4

Analysis of FOSS distributions

The first step that needs to be performed when defining a metamodel is to accurately study the
domain in order to understand the elements and the artifacts that need to be modeled. This
study helps to understand the right abstraction level, according to the use of the models that
we will have. Therefore, we studied FOSS distributions and in particular the maintainer scripts
that are the most critical part for our modeling needs. Maintainer scripts are executed at various
points during the upgrade process to finalize component configuration. The adopted scripting
languages are mainly POSIX shell. For instance, in the Debian Lenny distribution on a universe
of 25’440 maintainer scripts, only 131 are written in Perl [PER09], 481 are given in Bash [BAS09]
and the remaining 24’822 are implemented in POSIX-compliant Bourne shell [Bou].

Scripting languages have rarely been formally investigated and with no exciting results [XA06,
MZ07], thus posing additional difficulties in understanding their side-effects which can spread
throughout the whole system. Our aim is to describe maintainer scripts in terms of models
which abstract from the real system, but are expressive enough to predict several of their effects
on package upgrades. To this end, models can be used to drive roll-back operations to recover
previous configurations according to user decisions or after upgrade failures. The analysis
phase is then extremely important in order to find the right trade-off among expressiveness and
abstraction.

Due to the large amount of scripts, we tried to collect them in clusters to be able to concentrate
the analysis on representative of the equivalence classes identified.

The procedure we followed for clustering is as follows:

1. Identify scripts generated from helpers: a large number of scripts or part of them is gen-
erated by means of “helper” tools that provide a collection of small, simple and easily
understood tools that are used to automate various common aspects of building a pack-
age. Since these (part of) scripts are automatically generated, for these scripts we can
concentrate the analysis on the helpers themselves, rather than on the result of their
usage.

2. Identify scripts entirely composed of blank lines, comments, etc.: these scripts are not
interesting since they do not contain interesting statements.

Nevertheless, after having analyzed part of the scripts which are generated from helper
tools, it is possible that the remaining part of a given script is entirely composed of
comments and blank lines. In those cases, the resulting “empty” scripts have been ignored,
as their effects can be fully described in terms of their composing snippets coming from

27

November 19, 2009

helper tools.

3. Study of scripts written “by hand”: the remaining scripts need to be more carefully stud-
ied, as they have been written from scratch by package maintainers to address a specific
need, most likely not covered by available helper tools. Actually we worked on identifying
recurrent templates that maintainers use when writing the scripts.

The remaining of this chapter is organized as follows: Section 4.1 reports the analysis we
performed on Debian, Section 4.2 shows the analysis we performed on RPM-based distribution,
and Sections 4.3 and 4.4 conclude the chapter by stemming out elements that must be taken into
account when defining the metamodels and elements that we are unable to cover, respectively.

4.1 Maintainer script analysis: Debian GNU/Linux

We have chosen the Debian GNU/Linux distribution1 as the main data source for our analysis.
The choice is motivated by the size—Debian is the largest package-based FOSS distribution in
terms of packaged software—and by the representativeness of Debian—Debian is amongst the
oldest distributions and possibly the one from which most derivative distributions have spun
off. Morover, Debian packages rely substantially on maintainer scripts to perform sophisticated
configuration handling.

The analysis has been performed considering a “snapshot” of Debian Lenny, the soon to be
released “stable” brand of Debian. The snapshot has been taken on December 4th, 2008,
considering only the amd64 architecture (which will become the most widespread architecture
on end-user machines in the near future), and all the packages shipped by the Debian archive
and targeted at the end user (i.e., sections main, contrib, and non-free). Some aggregated
figures about the distribution entailed by the considered snapshot are reported in the table
below:

binary packages 22’823
source packages 12’681
size (binary only) 20.7 Gb
size (binary + source) 40 Gb

Each (binary) package2 in Debian can come with 5 different kinds of maintainer scripts:

preinst (mnemonic for “pre-installation”) script which is run before the files shipped by a
package being installed have been unpacked on the filesystem of the target machine (see
Section 2.2 for more details about the upgrade process and its unpacking phase).

preinst scripts are seldom used. A typical use case is to move away files belonging to
other packages (“diverting” in Debian terminology) when they can get in the way of the
package being installed.

postinst (mnemonic for “post-installation”) script which is run after the files shipped by a
package have been unpacked on the target filesystem.

1Debian GNU/Linux distribution website: http://www.debian.org.
2From now on, unless otherwise stated, we will use the term “package” to refer to binary packages, since that

is the kind of packages users are faced with, and that defines the granularity at which software components can
be installed or removed on a machine.

Deliverable D2.1 Version 1.0 page 28 of 104

http://www.debian.org

November 19, 2009

postinst scripts are possibly the most common maintainer configuration scripts and are
typically used to update caches or other system-wide registries of information which (also)
depend on files shipped by the just installed package.

prerm (mnemonic for “pre-removal script”) which is the dual to preinst, since prerm scripts
are executed just before removing from the target filesystem those files which belong to
the package which is being removed.

prerm scripts are typically used to undo configuration actions which are strictly related
to a package being removed, and which cannot be undone after the files composing that
package have vanished from the filesystem (e.g., because they need a specific tool, which
is part of the package being removed).

postrm (mnemonic for “post-removal”) which is the dual to postinst, since postrm scripts are
executed just after removing the files belonging to the package being removed from the
filesystem.

postrm scripts are very often used to perform registry update actions similar to those
performed by postinst scripts, because the updates need to be performed both just after
having added and removed files which can possibly affect the registry content.

config (mnemonic for “configuration”) script which is used to configure a software which re-
quires specific user input to be configured. In particular, config scripts are usually paired
with the debconf3 configuration management system, which helps package maintainers
to create interactions with the system administrator in order to ask for configuration pa-
rameters (e.g., “on which port you want to run the network service shipped by the just
installed package”?).

Considering 5 maintainer scripts per package we obtain a (potential) universe of scripts to be
considered of 114’115 scripts (i.e., 22′823 × 5). Luckily, 88’675 (77.7%) of those are actually
missing from the corresponding packages; this means that those potential hooks are vacuously
invoked during upgrades and do not need to be considered. The universe of the remaining
scripts consists of “just” 25’440 scripts (22.3%).

4.1.1 Scripts generated from helpers

Package maintainers use complex toolchains to facilitate their maintenance work which is oth-
erwise prone to repetition of self-similar tasks. In the specific case of Debian, the legacy helpers
used, among other things, to generate (part of) maintainer scripts is the so called debhelper col-
lection4. For the most part, debhelper consists of tools which are invoked at package build time
to automate package-construction tasks such as installing specific file categories (e.g., manual
pages, documentation, . . .) in the location prescribed by the Debian policy [JS08].

Some of these tasks require the set up of configuration actions which are encoded as (part of)
maintainer scripts.

Example 4.1 All shared libraries which get installed (or removed) on a GNU/Linux machine
typically requires triggering an update of the cache used by the Linux run-time linker, to speed
up the loading of shared libraries. Once the .so files composing a shared library are in place on

3http://packages.debian.org/lenny/debconf
4http://packages.debian.org/lenny/debhelper

Deliverable D2.1 Version 1.0 page 29 of 104

http://packages.debian.org/lenny/debconf
http://packages.debian.org/lenny/debhelper

November 19, 2009

the target filesystem, the cache can be updated by simply running the following command as the
administrator:

1 ldconfig

From a packaging point of view, the aforementioned requirement is typically implemented by
adding a shell script snippet both to the postinst and to the postrm maintainer scripts. That
way the linker cache is updated both just after the .so get installed upon package installation
and just after they get removed upon package removal.

Instead of requiring each maintainer to write exactly the same shell script snippets (which
are needed by all packages shipping shared libraries) by hand, debhelper offers a template
mechanism called “autoscripts” which writes down the needed snippets when needed.

Example 4.2 In the specific case of shared libraries, the autoscripts mechanism is triggered
by the invocation of the debhelper tool dh makeshlibs (mnemonic for “make shared library”),
which takes care of adding the following two script snippets respectively to the postinst and
postrm maintainer scripts:

Listing 4.1: postinst-makeshlibs
1 i f ["$1" = " configure "] ; then
2 ldconfig

3 f i

Listing 4.2: postrm-makeshlibs
1 i f ["$1" = " remove "] ; then
2 ldconfig

3 f i

(The “if..then” guards are uninteresting internal details, which only ensure that the cache update
mechanism is not triggered in corner case execution paths of the Debian installer dpkg.)

From the point of view of the package maintainer, the autoscript machinery can be completely
ignored as long as all needs of writing maintainer scripts are addressed by debhelper. In all
such cases the resulting maintainer scripts are entirely generated with no script code manually
written by the maintainer, by just composing together sequentially one or more of the autoscript
templates. To our ends, this means that we can restrict our analysis to the templates themselves,
because they are either verbatim copied in the resulting scripts or—in the worst case scenario—
filled using simple textual “holes” such as the current package names.

We investigated the debhelper code to extract the autoscripts template, finding 52 of them.
All those templates are reported in Appendix A.1. Each one of these templates contains state-
ments that are often jointly executed. For this reason they become special statements in the
metamodel, as can be seen in Chapter 5. In this way maintainers, which are used to write
scripts by means of Debhelper and the previously identified templates, will find suitable and
familiar statements in the metamodel.

When the maintainer needs to add specific code to maintainer scripts, which is not provided
by autoscript templates, debhelper enables mixing generated lines with lines written by hand.
Skipping the details on how the maintainer achieves that, the resulting scripts are composed
by (possibly alternated) sequences of generated and hand-written lines. All generated lines are
tagged with specially-crafted comments, so that they are recognizable mechanically.

Deliverable D2.1 Version 1.0 page 30 of 104

November 19, 2009

Example 4.3 The postrm script of the libxenomai1 library package in the considered Debian
Lenny snapshot reads:

1 #!/ bin /sh

2 set −e
3

4 case "$1" in

5 purge | remove)
6 [! −L /etc/ udev/ rules . d/ xenomai . rules] | | rm /etc/ udev/ rules . d/ xenomai . rule \
7 s

8 ; ;
9 esac

10

11 # Automatically added by dh_makeshlibs

12 i f ["$1" = " remove "] ; then
13 ldconfig

14 f i
15 # End automatically added section

In the script, we can recognize that the final part (lines 11-15) is generated using autoscripts to
update the already discussed linked cache, preceded by a hand written part (lines 4–9) contributed
by the package maintainer. The remaining lines are either inert blank lines or the common
maintainer script “header” (lines 1–2), prescribed by the Debian policy.

Starting from the non-empty maintainer scripts extracted from Debian Lenny (summing up
to 25’440 scripts), we analyzed how many of them are entirely composed by lines generated
using the autoscript mechanism. Also, we produced a “filtered” version of all the remaining
maintainer scripts (i.e., those that contain at least some line written by hand by the package
maintainer) which has been analyzed later on in more details.

The summary of generated (part of) maintainer scripts is as follows (LOC in table is for lines
of code):

n. of scripts LOCs
non-blank 25’440 (100%) 386’688 (100%)
generated (non-blank) 16’348 (64.3%) 162’074 (41.9%)
by hand (non-blank) 9’061 (35.6%) 224’614 (58.1%)

About 2/3 of all the maintainer scripts are composed only of lines generated using the autoscript
mechanism.

4.1.2 Analysis of scripts “by hand”

The scripts that survived to the previous phases are 9061. These scripts are analyzed “by
hand”. The idea of this analysis is to find additional templates or additional statements that
should be considered when defining the metamodel.

The analysis “by hand” has been performed as follows:

1. all the scripts that survived to the previous pruning phases are clustered in groups, where
a group collects scripts that contain exactly the same statements. For each group we then
selected one representative. Table 4.1 shows an excerpt of the groups that we identified,
ordered by occurrence. Therefore, the second column shows the occurrence while the third
column contains the name of the script representative of the group.

Deliverable D2.1 Version 1.0 page 31 of 104

November 19, 2009

Group Occurrence Representative script name
G1 93 libk/libkpathsea4 2007.dfsg.2-4 amd64.deb.preinst
G2 54 d/dict-freedict-swe-eng 1.3-4 all.deb.postinst
G3 54 d/dict-freedict-fra-deu 1.3-4 all.deb.postrm
G4 35 j/jabber-jud 0.5-3+b1 amd64.deb.preinst
G5 35 g/gauche-c-wrapper 0.5.4-2 amd64.deb.postinst
G6 33 w/wogerman 2-25 all.deb.config
G7 31 m/mii-diag 2.11-2 amd64.deb.prerm
G8 30 libs/libsocket6-perl 0.20-1 amd64.deb.postrm
G9 28 m/myspell-it 2.4.0-3 all.deb.postinst
G10 27 libp/libpaper1 1.1.23+nmu1 amd64.deb.postinst
G11 26 i/ibritish 3.1.20.0-4.4 amd64.deb.config
G12 24 e/education-geography 0.837 amd64.deb.postrm
G13 24 e/education-development 0.837 amd64.deb.postinst
G14 23 libt/libtcd-dev 2.2.2-1 amd64.deb.postinst
G15 22 g/gpppon 0.2-4+b1 amd64.deb.postinst
G16 22 m/myspell-en-us 2.4.0-3 all.deb.postrm
G17 21 w/webmagick 2.02-8.3 all.deb.preinst
G18 20 libg/libghc6-stream-doc 0.2.2-2 all.deb.postrm
G19 20 g/guidedog 1.0.0-4 amd64.deb.prerm
G20 20 libg/libghc6-hgl-doc 3.2.0.0-3 all.deb.postinst
G21 18 j/junior-system 1.13 all.deb.postinst
G22 18 j/junior-kde 1.13 all.deb.postrm
G23 18 libs/libsnmp15 5.4.1 dfsg-11 amd64.deb.prerm
G24 17 j/jabber-common 0.5 all.deb.prerm
G25 15 g/gauche 0.8.13-1 amd64.deb.postrm
G26 15 g/gnumeric 1.8.3-5 amd64.deb.config
G27 14 s/science-engineering 0.3 all.deb.postrm
G28 14 g/gtalk 0.99.10-12 amd64.deb.prerm
G29 14 m/mii-diag 2.11-2 amd64.deb.postinst
G30 14 s/science-engineering 0.3 all.deb.postinst
G31 11 d/debian-reference-es 2.17 all.deb.postinst
· · · · · · · · ·

Table 4.1: Excerpt of the obtained groups

Deliverable D2.1 Version 1.0 page 32 of 104

November 19, 2009

For instance, the group G14, reported in Listing 4.3, contains 23 scripts (i.e., 22 scripts
are absolutely equal to the script libtlibtcd-dev 2.2.2-1 amd64.deb.postinst that is
the representative of this group).

Listing 4.3: Script libtlibtcd-dev 2.2.2-1 amd64.deb.postinst
1 set −e
2 case "$1" in

3 configure)
4 ; ;
5 abort−upgrade | abort−remove | abort−deconfigure)
6 ; ;
7 ∗)
8 echo "postinst called with unknown argument \‘$1’" >&2
9 exit 1

10 ; ;
11 esac

12 exit 0

The idea of this step is that, referring to Table 4.1 group G1, 92 scripts are absolutely
equal to the script libk/libkpathsea4 2007.dfsg.2-4 amd64.deb.preinst and then
this script probably contains a potential template.

2. As can been seen in Listing 4.3 the script contains specific statements that can be removed
in order to find a template, such as exit 0 or set -e. Therefore, in this step we identify
templates from these recurrent scripts. Listing 4.4 shows Template2 obtained from the
script libtlibtcd-dev 2.2.2-1 amd64.deb.postinst, group G14.

Listing 4.4: Template2
1 case "$1" in

2 configure)
3 ; ;
4 abort−upgrade | abort−remove | abort−deconfigure)
5 ; ;
6 ∗)
7 echo "postinst called with unknown argument \‘$1’" >&2
8 exit 1
9 ; ;

10 esac

Sometimes we identified different templates inside the same script.

3. The next step consists in identifying the occurrence of the template in the collection of
9061 scripts. For instance the occurrence of Template2 is 69. Table 4.2 shows an excerpt
of the templates occurrences. More precisely the first column describes the occurrence
of the template, the second one shows the template name, the third column contains the
name of the script that originated the template and the last column shows the group in
which the script belongs.

4. Once Templates identified (we identified 116 templates) and the occurrences for each single
template identified, the next step consists in identifying similarities among templates in
order to collect them in classes. In fact, we recall that the occurrences are calculated
with exact matching and that a white space can also compromise the matching. For
instance Template2 and Template4, shown in Listing 4.4 and Listing 4.5 respectively, that
differ only in the exit statement belong to the same class. The result of this step is the
identification of 10 classes.

Listing 4.5: Template4
1 case "$1" in

2 configure)

Deliverable D2.1 Version 1.0 page 33 of 104

November 19, 2009

Occurrence Template Origin Group
93 Template1 G1
97 Template1a G1
97 Template1b G1
97 Template1c G1
97 Template1d G1
97 Template1e G1
69 Template2 G14
16 Template3 G39
41 Template4 G15
31 Template5 G8
· · · · · · · · ·

Table 4.2: Excerpt of the occurrences of the Templates

3 ; ;
4 abort−upgrade | abort−remove | abort−deconfigure)
5 ; ;
6 ∗)
7 echo "postinst called with unknown argument \‘$1’" >&2
8 exit 0
9 ; ;

10 esac

These 10 classes collect 1340 scripts.

5. The next step consists in analyzing each class in order to understand how to deal with
this kind of scripts. In other words, we have to understand whether the already identified
statements are sufficient or whether new statements are required.

Class 1

Class 1 collects postinst scripts that are used to perform actions required after the instal-
lation of a package. Examples of scripts belonging to this class are Template2 and Tem-
plate4. The possible actions performed are: configure, abort-upgrade, abort-remove
and abort-deconfigure. This class collects scripts that enclose these actions in a case
statement. Therefore, the metamodel should contain a special case statement specialized
with these possible actions. Actually, these scripts do absolutely nothing, as can be seen
in Listing 4.5, but it is important to note that this kind of case statement is very recurrent
also in more complex scripts. The same observation holds for Classes 2, 3, and 4.

Class 2

Similarly to Class 1, Class 2 consists in a case statement that contains the different actions
that can be performed. Class 2 collects postrm scripts and then the possible actions
are: purge, remove, upgrade, failed-upgrade, abort-install, abort-upgrade and
disappear. Morover, in this case, the metamodel will have a specialized case statement
with the possible actions.

Listing 4.6 shows Template3 as an example of a template belonging to this class.

Listing 4.6: Template3
1 case "$1" in

2 purge | remove | upgrade | failed−upgrade | abort−install | abort−upgrade | disappear)
3 ; ;
4 ∗)
5 echo "postrm called with unknown argument \‘$1 ’" >&2
6 exit 1
7 ; ;
8 esac

Deliverable D2.1 Version 1.0 page 34 of 104

November 19, 2009

Template Template occurrence
Template2 69
Template4 41
Template9 4
Template23 3
Template24 70
Template25 54
Template29 20
Template31 41
Template36 7
Template38 5
Template40 6
Template41 3
Template43 3
Template44 3
Template46 3
Template47 2
Template48 1

Total 335

Table 4.3: Class 1

Template Template occurrence
Template3 16
Template5 31
Template6 7
Template51 54
Template54 15
Template55 11
Template56 10
Template58 17
Template59 5
Template60 5
Template62 5
Template63 4
Template67 4
Template68 4
Template69 3
Template73 3
Template76 3

Total 197

Table 4.4: Class 2

Deliverable D2.1 Version 1.0 page 35 of 104

November 19, 2009

Template Template occurrence
Template81 48
Template82 48
Template83 46
Template84 20
Template86 20
Template88a 49
Template95 3
Template96 3
Template97 3

Total 240

Table 4.5: Class 3

Template Template occurrence
Template78 37
Template79 22
Template80 23
Template89 5
Template90 4
Template93 3
Template94 3
Template98 3

Total 97

Table 4.6: Class 4

Class 3

Analogously to Class 1 and Class 2, Class 3 is the class for the prerm scripts. The actions
are: remove, upgrade, deconfigure and failed-upgrade. The metamodel will have a
specialized case statement with the possible actions.

Listing 4.7 shows Template81 as an example of a template belonging to this class.

Listing 4.7: Template81
1 case "$1" in

2 remove | upgrade | deconfigure)
3 ; ;
4 failed−upgrade)
5 ; ;
6 ∗)
7 echo "prerm called with unknown argument \‘$1 ’" >&2
8 exit 1
9 ; ;

10 esac

Class 4

Analogously to Class 1, Class 2, and Class 3, Class 4 is the class for the preinst scripts.
The actions are: install, upgrade and abort-upgrade. The metamodel will have a
specialized case statement with the possible actions.

Listing 4.8 shows Template78 as an example of a template belonging to this class.

Listing 4.8: Template78
1 case "$1" in

2 install | upgrade)
3 ; ;
4 abort−upgrade)
5 ; ;
6 ∗)

Deliverable D2.1 Version 1.0 page 36 of 104

November 19, 2009

Template Template occurrence
Template7 21
Template8 18
Template10 4
Template11 5
Template14 4
Template15 3
Template18 5
Template20 33
Template21 3
Template26 34
Template42 3

Total 133

Table 4.7: Class 5

Template Template occurrence
Template27 27
Template17 3

Total 30

Table 4.8: Class 6

7 echo "preinst called with unknown argument \‘$1’" >&2
8 exit 1
9 ; ;

10 esac

Class 5

Class 5 collects postinst scripts. As can be seen in Listing 4.9, this class of scripts is
already covered by the template of debhelper shown in Listing A.22.

Listing 4.9: Template7
1 i f ["$1" = "configure"] ; then
2 ldconfig

3 f i

Class 6

Actually, this class of scripts collects scripts with only one statement, as can be seen in
Listing 4.10 that shows Template27. The only one lesson that we can learn is that the
statement is a statement that potentially modify the environment.

Listing 4.10: Template27
1 . /usr/share/debconf/confmodule

Class 7

This class contains postinst and postrm scripts. What we can see is that the case
structure highlighted by classes 1,2,3 and 4 is also respected in these scripts. Furthermore,
this class contains a very general case statement. This means that for the case statement
we also need a general case statement that can be used for very different cases.

Listing 4.11: Template28
1 i f [−d /etc/cdd −a −f /etc/cdd/cdd . conf] ; then
2 i f [−d /etc/cdd/education −a −f /etc/cdd/education/education . conf] ; then
3 test −x /usr/sbin/cdd−update−menus && /usr/sbin/cdd−update−menus −d

↪→education

4 i f [_"$DEBCONF_REDIR" = _""] ; then

Deliverable D2.1 Version 1.0 page 37 of 104

November 19, 2009

Template Template occurrence
Template28 24
Template30 18
Template32 14
Template34 11
Template66 6
Template70 3
Template71 8
Template74 34
Template75 9

Total 127

Table 4.9: Class 7

Template Template occurrence
Template12 15
Template37 18
Template39 5
Template61 16
Template64 4
Template65 21
Template77 22

Total 101

Table 4.10: Class 8

5 . /usr/share/debconf/confmodule
6 db_version 2 .0
7 f i
8 . /etc/cdd/cdd . conf
9 i f [−s /etc/cdd/education/education . conf] ; then . /etc/cdd/education/

10 education . conf ; f i
11 case "$1" in

12 abort−deconfigure | abort−remove | abort−upgrade)
13 ; ;
14 configure | upgrade)
15 db_get "shared/education -config/usermenus" | | true
16 case "$RET" in

17 "Each package installation")
18 /usr/sbin/cdd−update−usermenus education

19 ; ;
20 "End of installation")
21 touch /var/run/education−config . usermenu
22 ; ;
23 esac

24 ; ;
25 ∗)
26 echo "postinst called with unknown argument \‘$1’" >&2
27 exit 1
28 ; ;
29 esac

30 db_stop

31 f i
32 f i

Class 8

This class of postinst and postrm scripts is composed of an if control statement that
regulates the update of the menu. This class is very similar to the templates of debhelper
shown in Listings A.26 and A.27.

Listing 4.12: Template12
1 i f test −x /usr/bin/update−menus ; then update−menus ; f i

Deliverable D2.1 Version 1.0 page 38 of 104

November 19, 2009

Template Template occurrence
Template87 5
Template91 4

Total 9

Table 4.11: Class 9

Template Template occurrence
Template100 68

Total 68

Table 4.12: Class 10

Class 9

Nothing should be added to the metamodel in order to deal with this class of scripts. An
example of scripts belonging to this class is in Listing 4.13.

Listing 4.13: Template87
1 i f ["$1" = "configure"] ; then
2 fontdirs="koi8 -r.misc koi8 -r.75dpi koi8 -r.100 dpi"

3 for currentdir in $fontdirs ; do
4 longdir=/usr/lib/X11/fonts/$currentdir
5 i f [−d $longdir] ; then
6 i f [$ (find $longdir | egrep −v ’ / (fonts . dir | fonts . alias | encodings . dir)$ ’ |

↪→wc −l) −eq 1] ; then
7 rm $longdir/fonts . dir 2>/dev/null | | true
8 rm $longdir/fonts . alias 2>/dev/null | | true
9 rm $longdir/encodings . dir 2>/dev/null | | true

10 rmdir $longdir

11 f i
12 f i
13 done
14 f i

Class 10

This class is not really a class since it is composed of only one template, i.e., Template
100 shown in Listing 4.14.

Listing 4.14: Template100
1 i f (−e $script) {
2 require $script ;
3 dc_debconf_select ($class) ;
4 }

6. Other 307 scripts have been analyzed in the previous step even thought they cannot be
classified in a Class.

7. The last step has been the analysis of scripts “by hand” with occurrence 1 in order to
understand whether they are already covered or whether they contain statements that we
are not able to deal with. In this last case we analyzed other 43 scripts.

4.2 Maintainer script analysis: RPM-based distributions

RPM (Red Hat Package Manager) is one of the most common software package manager used
for Linux distributions. Although RPM was originally designed to work with Red Hat Linux,

Deliverable D2.1 Version 1.0 page 39 of 104

November 19, 2009

it also works on other rpm-based distributions, such as Mandriva Linux, Fedora, Suse and
Conectiva.

The spec file has one of the main important roles of the RPM’s packaging building process.
In fact, the spec file contains all the information needed to (i) compile the program and build
source and binary rpms, and (ii) install and uninstall the program on the final user’s machine.
A spec file, as can be seen in the one reported in Listing 4.15, is divided into eight sections:

Preamble : it contains information that will be displayed when users request information
about the package, such as the version number of the software, sources, patches, etc;

Prep : it is where the necessary preparations are made prior to the actual building of the
software, such as the unpacking of the sources;

Build : this section contains commands required to compile the sources;

Install : this section is used to perform the commands required to actually install the software;

Install and Uninstall Scripts : this section consists of scripts that will be executed, on the
user’s system, when the package is actually installed or removed (like the maintainer
scripts in Debian);

Verify Script : this is executed for verifying the proper installation of the package;

Clean Script : this is executed to clean things after the build;

File List : it consists of a list of files that will comprise the package;

Each section is denoted by a corresponding keyword like %build in Listing 4.15 which marks the
beginning of the build section which contains the script executed by the RPM package manager
to pack the 855resolution software. It should be noted that, in the strictest sense of the word,
these parts of the spec file are not scripts. For example, they do not start with the traditional
invocation of a shell. However, the contents of each script section are copied into a file and
executed by RPM as a full-fledged script.

Since we are interested in install and uninstall scripts, the rest of the section focuses on the
Install and Uninstall Scripts section only. Similarly to Debian, in the RPM format there are
four kind of scripts, each one meant to be executed at different stages of the package upgrade
process. For further details, please refer to [Bai97]:

• %pre is executed before installation. It is not very common having RPM packages that
require anything to be done prior to installation; none of the 350 packages that comprise
Red Hat Linux Linux 4.0 make use of it;

• %post is executed after installation. A typical %post script consists of the ldconfig
command which updates the list of available shared libraries after a new one has been
installed. If a package uses a %post script to perform some function, quite often it will
include a %postun script that performs the inverse of the %post script, after the package
has been removed;

• %preun is executed before removing packages. This kind of script is used to prepare the
system immediately prior the package deletion;

Deliverable D2.1 Version 1.0 page 40 of 104

November 19, 2009

• %postun is executed after package deletions. Quite often, %postun scripts are used to run
ldconfig to remove newly erased shared libraries from ld.so.cache. As highlighted before,
these scripts typically do the inverse of %post ones.

Listing 4.15 shows an example of spec file, where we can see among the other information the
%post and %preun scripts.

Listing 4.15: Example of a .spec file: 855resolution package
1 # Id

2 # Authority: matthias

3

4 Summary : Change video bios resolutions on laptops with Intel graphic chipsets

5 Name : 855 resolution
6 Version : 0 . 4
7 Release : 4
8 License : Public Domain

9 Group : Applications/System
10 URL : http : // perso . wanadoo . fr/apoirier/
11 Source0 : http : // perso . wanadoo . fr/apoirier /855 resolution−%{version } . tgz
12 Source1 : 855 resolution . init
13 Source2 : 855 resolution . pm−hook
14 BuildRoot : %{_tmppath}/%{name}−%{version}−%{release}−root
15 # This utility doesn ’t make sense on other archs , those chipsets are i386 only

16 ExclusiveArch : i386

17

18 %description

19 This software changes the resolution of an available vbios mode . It is useful

20 when the native screen resolution isn ’ t advertised as available by the video

21 bios by default .
22

23 It patches only the RAM version of the video bios so the new resolution is

24 lost after each reboot . If you want to have the resolution set after each

25 boot , then you need to edit %{_sysconfdir }/ sysconfig /855 resolution .
26

27

28 %prep

29 %setup −n %{name}
30 # Add OPTFLAGS to CFLAGS

31 %{__perl} −pi −e ’ s |−Wall |−Wall \${OPTFLAGS } | g ’ Makefile

32

33

34 %build

35 %{__make} %{?_smp_mflags} OPTFLAGS="%{ optflags}"

36

37

38 %install

39 %{__rm} −rf %{buildroot}
40

41 # Manually install the binary

42 %{__install} −D −m 0755 855 resolution %{buildroot}%{_sbindir }/855 resolution
43

44 # Init script

45 %{__install} −D −m 0755 %{SOURCE1} \
46 %{buildroot}%{_sysconfdir }/rc . d/init . d/855 resolution
47

48 # Power Management hook , as 15 since video is 20 (for suspend to disk)

49 %{__install} −D −m 0755 %{SOURCE2} \
50 %{buildroot}%{_sysconfdir }/pm/hooks /15 resolution
51

52 # Default sysconfig entry.

53 %{__mkdir_p} %{buildroot}%{_sysconfdir }/ sysconfig/
54 %{__cat} > %{buildroot}%{_sysconfdir }/ sysconfig /855 resolution << EOF

55 # Mode to overwrite (use "855 resolution -l" to see all available modes)

56 MODE="49"

57 # Resolution to set (i.e. "1280 768", no "x", only a space as the separator)

58 RESOLUTION="1280 768"

59 EOF

Deliverable D2.1 Version 1.0 page 41 of 104

November 19, 2009

60

61 %clean

62 %{__rm} −rf %{buildroot}
63

64

65 %post

66 i f [$1 −eq 1] ; then
67 /sbin/chkconfig −−add 855 resolution
68 f i
69

70 %preun

71 i f [$1 −eq 0] ; then
72 /sbin/chkconfig −−del 855 resolution
73 f i
74

75

76 %files

77 %defattr (− , root , root , 0755)
78 %doc CHANGES . txt LICENSE . txt README . txt
79 %config %{_sysconfdir }/pm/hooks /15 resolution
80 %config %{_sysconfdir }/rc . d/init . d/855 resolution
81 %config (noreplace) %{_sysconfdir }/ sysconfig /855 resolution
82 %{_sbindir }/855 resolution
83

84

85 %changelog

86 ∗ Thu Mar 23 2006 Matthias Saou <http : // freshrpms . net/> 0.4−4
87 − Add pm hook script in order to fix suspend to disk resume , as the video BIOS

88 resolution needs to be overwritten before video is started upon resume too .
89 Thanks to Luke Hutchison for the script and the testing .
90

91 ∗ Fri Mar 17 2006 Matthias Saou <http : // freshrpms . net/> 0.4−3
92 − Release bump to drop the disttag number in FC5 build .
93

94 ∗ Tue Jul 5 2005 Matthias Saou <http : // freshrpms . net/> 0.4−2
95 − Make package ExclusiveArch i386 , it doesn ’ t make sense on other archs .
96 − Fix init script (add subsys lock) to not have it run on each runlevel change .
97 − Enable service by default : People who install this package want it !
98

99 ∗ Mon Jul 4 2005 Matthias Saou <http : // freshrpms . net/> 0.4−1
100 − Initial RPM release .

Similarly to Debian, Fedora, an RPM-based Linux distribution5, also makes use of templates
for the maintainer scripts6. Such templates, called autoscripts, are reported in Appendix A.2.
Mandriva7, another RPM-based Linux distribution, makes use of the macros8 reported in Ap-
pendix A.3.

In this section we analyze the Fedora distribution by considering the .spec which can be down-
loaded at http://svn.rpmforge.net/svn/trunk/rpms/. The available .spec files are 4’704,
and considering that each of them can contain four kinds of scripts, the potential universe that
has to be analyzed consists of 4’704*4=18’816 scripts. Actually, the scripts that are present in
this set are 2’038, that is approximatively 10.8% of 18’816. These scripts are divided as follows:
81 %pre, 911 %post, 234 %preun, and 812 %postun. We extracted the four kinds of scripts
from each spec file and, in order to make the analysis, we created four new files containing the
scripts; the name of the generated files follows the convention <file.spec>.<script type>.

Unfortunately, in this case we are not able to identify scripts that are generated from helpers,
since we have not found particular comments that help in identifying the generated code. For
this reason, we performed analysis “by hand”, similarly to what is described for Debian in

5Fedora Project Web site: http://fedoraproject.org
6Fedora ScriptletSnippets: http://fedoraproject.org/wiki/Packaging/ScriptletSnippets
7Mandriva Web site: http://mandriva.org/
8Mandriva RPM HOWTO: http://wiki.mandriva.com/en/Development/Howto/RPM

Deliverable D2.1 Version 1.0 page 42 of 104

http://svn.rpmforge.net/svn/trunk/rpms/
http://fedoraproject.org
http://fedoraproject.org/wiki/Packaging/ScriptletSnippets
http://mandriva.org/
http://wiki.mandriva.com/en/Development/Howto/RPM

November 19, 2009

Group Occurrence Representative script name
G1 295 ./evolution-rss/evolution-rss.spec.postun
G2 277 ./libewf/libewf.spec.post
G3 147 ./gtkhtml3/gtkhtml3.spec.postun
G4 143 ./gtkhtml3/gtkhtml3.spec.post
G5 30 ./gtranslator/gtranslator.spec.postun
G6 22 ./clamav/clamav.spec.post
G7 21 ./gpgme/gpgme.spec.postun
G8 20 ./kernel-module-madwifi/kernel-module-madwifi.spec.postun
G9 17 ./kernel-module-madwifi/kernel-module-madwifi.spec.post
G10 14 ./dkms-lirc/dkms-lirc.spec.preun
G11 14 ./dkms-lirc/dkms-lirc.spec.post
G12 13 ./epiphany/epiphany.spec.post
G13 12 ./camorama/camorama.spec.postun
G14 10 ./straw/straw.spec.post
G15 10 ./avidemux2/avidemux2.spec.postun
G16 9 ./muine/muine-0.4.spec.post
G17 9 ./camorama/camorama.spec.post
G18 9 ./avidemux2/avidemux2.spec.post
G19 9 ./muine/muine-0.4.spec.postun
G20 9 ./hello/hello.spec.preun
G21 7 ./gtranslator/gtranslator.spec.post
G22 6 ./wol/wol.spec.post
G23 5 ./liferea/liferea.spec.postun
G24 5 ./gstreamer-ffmpeg/gstreamer-ffmpeg-0.8.spec.postun
G25 5 ./kernel-module-hostap/kernel-module-hostap.spec.postun
G26 5 ./liferea/liferea.spec.post
G27 5 ./gstreamer-ffmpeg/gstreamer-ffmpeg-0.8.spec.post
G28 5 ./kernel-module-hostap/kernel-module-hostap.spec.post
G29 4 ./rpm5/rpm5.spec.postun

· · · · · · · · ·

Table 4.13: Excerpt of the obtained groups for Fedora

Section 4.1.2. Then, all the scripts are clustered in groups, where a group collects scripts
that contain exactly the same statements. For each group we then selected one representative.
Table 4.13 shows an excerpt of the groups that we identified, ordered by occurrence.

The group G1 occurs 295 times and it is particularly interesting to see that this group collects
scripts that are, as can be seen in Listing 4.16, exactly the template of Fedora for shared libraries
reported in Listing A.73.

Listing 4.16: Group G1
1 %postun −p /sbin/ldconfig

The group G2 occurs 277 times and in this case this group collects scripts that are gener-
ated, as can be seen in Listing 4.17, from the Fedora template for shared libraries reported in
Listing A.72.

Listing 4.17: Group G2
1 %post −p /sbin/ldconfig

The occurrence of group G3 (see Listing 4.18) is 147 and is a simple modification of Fedora
template for shared libraries in Listing A.71.

Listing 4.18: Group G3
1 %postun

2 /sbin/ldconfig 2>/dev/null

Deliverable D2.1 Version 1.0 page 43 of 104

November 19, 2009

Analogously, group G4 (see Listing 4.19) is a simple modification of the template for shared
libraries in Listing A.70.

Listing 4.19: Group G4
1 %post

2 /sbin/ldconfig 2>/dev/null

Group G5 (see Listing 4.20) is exactly equal to template in Listing A.60 of Fedora for Gnome and
KDE environments that use the scrollkeeper cataloging system to keep track of documentation
installed on the system.

Listing 4.20: Group G5
1 %postun

2 scrollkeeper−update −q | | :

Group G6 (see Listing 4.21) is exactly equal to template in Listing A.70.

Listing 4.21: Group G6
1 %post

2 /sbin/ldconfig

Group G7 (see Listing 4.22) is exactly equal to template in Listing A.71.

Listing 4.22: Group G7
1 %postun

2 /sbin/ldconfig

Group G12 (see Listing 4.23) is the concatenation of two templates: Listing A.91 and List-
ing A.60, respectively.

Listing 4.23: Group G12
1 %post

2 export GCONF_CONFIG_SOURCE="$(gconftool -2 --get -default -source)"

3 gconftool−2 −−makefile−install−rule %{_sysconfdir }/ gconf/schemas/%{name } . schemas &>/dev/
↪→null

4 scrollkeeper−update −q | | :

Group G13 (see Listing 4.24) is a simple modification of Fedora template in Listing A.60.

Listing 4.24: Group G13
1 %postun

2 scrollkeeper−update −q

Group G14 (see Listing 4.25) is the template in Listing A.91.

Listing 4.25: Group G14
1 %post

2 export GCONF_CONFIG_SOURCE="$(gconftool -2 --get -default -source)"

3 gconftool−2 −−makefile−install−rule %{_sysconfdir }/ gconf/schemas/%{name } . schemas &>/dev/
↪→null

Group G15 (see Listing 4.26) is a customization of the template in Listing A.62.

Listing 4.26: Group G15
1 %postun

2 update−desktop−database %{_datadir }/ applications &>/dev/null | | :

Group G16 (see Listing 4.27) is a simple modification of the template for shared libraries in
Listing A.70.

Deliverable D2.1 Version 1.0 page 44 of 104

November 19, 2009

Group Occurrence Template
G1 295 Listing A.73
G2 277 Listing A.72
G3 147 Listing A.71
G4 143 Listing A.70
G5 30 Listing A.60
G6 22 Listing A.70
G7 21 Listing A.71
G12 13 Listing A.91 and Listing A.60
G13 12 Listing A.60
G14 10 Listing A.91
G15 10 Listing A.62
G16 9 Listing A.70
G17 9 Listing A.91 and Listing A.60
G18 9 Listing A.61
G19 9 Listing A.71
G20 9 Listing A.58
G21 7 Listing A.59
G22 6 Listing A.57

Table 4.14: Scripts that can be generated from templates

Listing 4.27: Group G16
1 %post

2 /sbin/ldconfig &>/dev/null

Analogously to Group 12, Group G17 (see Listing 4.28) is the concatenation of two templates:
Listing A.91 and Listing A.60, respectively.

Listing 4.28: Group G17
1 %post

2 export GCONF_CONFIG_SOURCE="$(gconftool -2 --get -default -source)"

3 gconftool−2 −−makefile−install−rule %{_sysconfdir }/ gconf/schemas/%{name } . schemas &>/dev/
↪→null

4 scrollkeeper−update −q

Group G18 is equal to template in Listing A.61.

Listing 4.29: Group G18
1 %post

2 update−desktop−database %{_datadir }/ applications &>/dev/null | | :

Group G19 (see Listing 4.30) is a simple modification of the template for shared libraries in
Listing A.71.

Listing 4.30: Group G19
1 %postun

2 /sbin/ldconfig &>/dev/null

Group G20 (see Listing 4.31) is equal to template in Listing A.58.

Listing 4.31: Group G20
1 %preun

2 /sbin/install−info −−delete %{_infodir}/%{name } . info . gz %{_infodir }/dir

From this first analysis we can say that more than 50% of the scripts can be generated by
templates. Table 4.14 summarizes these scripts and highlights involved templates.

Furthermore, probably new templates can be generated from the groups G8-G11 that apparently
do not match with any template, even though they have good occurrences. They are reported
in the following Listing:

Deliverable D2.1 Version 1.0 page 45 of 104

November 19, 2009

Template Occurrence Group
T1 341 G1
T2 277 G2
T3 164 G3
T4 162 G4
T5 42 G5
T6 73 G6
T7 56 G7
T8 27 G8
T9 25 G9
T10 21 G10
T11 17 G11
T12 15 G12
T13 25 G13
T14 28 G14
T15 38 G15
T16 10 G16
T17 51 G20
T18 13 G21
T19 7 G22

Table 4.15: Matches of templates identified by the groups in Table 4.13

Listing 4.32: Group G8
1 %postun

2 /sbin/depmod −ae %{kversion}−%{krelease} | | :

Listing 4.33: Group G9
1 %post

2 /sbin/depmod −ae %{kversion}−%{krelease} | | :

Listing 4.34: Group G10
1 %preun

2 # Remove all versions from DKMS registry

3 dkms remove −m %{dkms_name} −v %{dkms_vers} %{?quiet} −−all | | :

Listing 4.35: Group G11
1 %post

2 # Add to DKMS registry

3 dkms add −m %{dkms_name} −v %{dkms_vers} %{?quiet} | | :
4 # Rebuild and make available for the currenty running kernel

5 dkms build −m %{dkms_name} −v %{dkms_vers} %{?quiet} | | :
6 dkms install −m %{dkms_name} −v %{dkms_vers} %{?quiet} −−force | | :

Once the scripts previously identified deleted, we continued the analysis, the next step being to
use the identified templates in order to check their matches as part of the code of a script. The
obtained matches are reported in Table 4.15.

It is important to note that groups G17, G18, and G19 do not define templates since they are
already covered by previously reported templates.

Since the matches are always exact, we performed another step of analysis. In what follows we
report the analysis we performed by manually inspecting the scripts and manually identifying the
match. We defined other templates that complement the already defined templates. Table 4.16
shows the matches of these new templates together with the reference with the already defined
templates if this relation exists. If the new templates cannot be considered a refinement of the
previously presented templates but are captured by Fedora templates reported in Appendix A.2,
a link to the corresponding listing is provided. Finally, the Reference field contains the string
New if the template is identified by the analysis.

Deliverable D2.1 Version 1.0 page 46 of 104

November 19, 2009

Refinement Occurrence Reference
Listing 4.36 31 T12
Listing 4.38 16 New
Listing 4.39 12 G8 and G9
Listing 4.40 59 Listing A.69
Listing 4.41 11 New
Listing 4.42 2 New
Listing 4.43 5 Listing A.74, A.75, and A.75
Listing 4.44 344 Listings A.74, A.75, and A.75
Listing 4.45 12 Listings A.63 and A.63
Listing 4.46 42 Listings A.89 and A.90
Listing 4.47 12 Listings A.68 and A.68
Listing 4.48 7 New
Listing 4.49 3 New
Listing 4.50 4 New

Table 4.16: Refinement of the analysis

Listing 4.36 shows the template obtained by suitably modifying the template T12.

Listing 4.36: Template 20
1 export GCONF_CONFIG_SOURCE="$(gconftool -2 --get -default -source)"

2 gconftool−2 −−makefile−uninstall−rule %{_sysconfdir }/ gconf/schemas/%{name } . schemas &>/
↪→dev/null | | :

The analysis found a modification of the scripts by the addition of the line of code shown in
Listing 4.37.

Listing 4.37: Template 20
1 killall −HUP gconfd −2 | | :

Listing 4.38 shows a new identified template.

Listing 4.38: Template 21
1 %postun

2 %{register} &>/dev/null | | :

Listing 4.39 is related to groups G8 and G9.

Listing 4.39: Template 22
1 depmod −ae −F /boot/System . map−%{kernel} %{kernel} >/dev/null

Listing 4.40 reports a different version of the Fedora template in Listing A.69. However, the
%pre template for user adding in Listing A.69 is not perfect as testified by the absence of exact
matching. In fact, by hand we identified other 54 semantically equivalent scripts. The template
should probably be split in different templates, i.e., one for user adding, one for group adding,
etc.

Listing 4.40: Example of modification of the template Listing A.69
1 %pre

2 /usr/sbin/groupadd −g 37 rpm > /dev/null 2>&1
3 /usr/sbin/useradd −r −d /var/lib/rpm −u 37 −g 37 rpm −s
4 /sbin/nologin > /dev/null 2>&1 exit 0
5 %endif

In line with this, we propose the new templates in Listings 4.41 and 4.42 for %postun scripts
managing the user deleting and group deleting, respectively. The found matches are 11 for
Listing 4.41 and 2 for Listing 4.41.

Deliverable D2.1 Version 1.0 page 47 of 104

November 19, 2009

Listing 4.41: Template 24
1 %postun

2 i f [$1 −eq 0] ; then
3 /usr/sbin/userdel USERNAME 2>/dev/null | | :
4 f i

Listing 4.42: Template 25
1 %postun

2 i f [$1 −eq 0] ; then
3 /usr/sbin/groupdel USERNAME 2>/dev/null | | :
4 f i

Listing 4.43 is related to the Fedora template in Listing A.74.

Listing 4.43: Template 26
1 %post

2 /sbin/chkconfig −−add nagios

Listing 4.44 is related to the previous template and then to the Fedora templates as well in
Listing A.74, A.75, and A.76.

Listing 4.44: Template 27
1 # This adds the proper /etc/rc*.d links for the script

2 /sbin/chkconfig −−add <script>

Listing 4.45 is related to the Fedora templates in Listing A.63 and Listing A.64.

Listing 4.45: Template 28
1 update−mime−database %{_datadir }/mime &>/dev/null | | :

Listing 4.46 is related to the Fedora templates in Listing A.89 and Listing A.90.

Listing 4.46: Template 29
1 touch −−no−create %{_datadir }/ icons/hicolor
2 i f [−x %{_bindir }/gtk−update−icon−cache] ; then
3 %{_bindir }/gtk−update−icon−cache −−quiet %{_datadir }/icons/hicolor | | :
4 f i

Listing 4.47 is related to the Fedora templates in Listing A.67 and Listing A.68.

Listing 4.47: Template 30
1 i f [−x %{_bindir }/fc−cache] ; then
2 %{_bindir }/fc−cache %{_datadir }/ fonts | | :
3 f i

Finally, Listings 4.48, 4.49, and 4.50 show new templates that we propose for managing the
%post, %preun, and %postun alternatives, respectively.

Listing 4.48: Template 31
1 %post

2 i f [−x /usr/sbin/alternatives] ; then
3 /usr/sbin/alternatives −−install %{_bindir}/%{name1} %{name1} %{_bindir}/%{name2}
4 f i

Listing 4.49: Template 32
1 %preun

2 i f [$1 −eq 0] ; then
3 i f [−x /usr/sbin/alternatives] ; then
4 /usr/sbin/alternatives −−remove %{name1} %{_bindir}/%{name2}
5 f i
6 f i

Deliverable D2.1 Version 1.0 page 48 of 104

November 19, 2009

Listing 4.50: Template 33
1 %postun

2 i f [$1 −eq 0] ; then
3 i f [−x /usr/sbin/alternatives] ; then
4 /usr/sbin/alternatives −−remove %{name1} %{_bindir}/%{name2}
5 f i
6 f i

To summarize, this analysis demonstrates that, by means of templates, 1’962 scripts among the
2’038 that constitute our universe of scripts can be automatically generated for sure (∼93,6%).
Please also remember that the “potential” amount of scripts, as described at the beginning of
this section, is the number of spec files multiplied by 4 (that is the number of different kinds of
scripts). Then the total amount of potential scripts is 18’816, and the remaining scripts, which
are 76, represent the 0,4% of the total amount. Furthermore, a large part of the remaining 76
scripts is simply a combination of some customized templates or parts of templates that could
be modeled by means of more simple statements. These remaining 76 scripts can be found
at http://www.mancoosi.org/deliverables together with the initial scripts and scripts we
defined for performing the analysis.

One very interesting note is the presence of scripts that contain conversions from an old for-
mat to a new one. An example of these scripts is in Listing 4.51 that reports the script
sendmail/sendmail.spec.post. This kind of scripts raises problems related to the roll-back
support and represents one of the main aspects covered by the Mancoosi deliverable D3.2.

Listing 4.51: sendmail/sendmail.spec.post script
1 %post

2 #

3 # Convert old format to new

4 #

5 i f [−f /etc/mail/deny] ; then
6 cat /etc/mail/deny | \
7 awk ’ BEGIN{ print "# Entries from obsoleted /etc/mail/deny"} \
8 {print $1" REJECT" } ’ >> /etc/mail/access
9 cp /etc/mail/deny /etc/mail/deny . rpmorig

10 f i
11 for oldfile in relay_allow ip_allow name_allow ; do
12 i f [−f /etc/mail/$oldfile] ; then
13 cat /etc/mail/$oldfile | \
14 awk "BEGIN { print \"# Entries from obsoleted /etc/mail/$oldfile

15 \" ;} \
16 { print \$1\" RELAY\" }" >> /etc/mail/access
17 cp /etc/mail/$oldfile /etc/mail/$oldfile . rpmorig
18 f i
19 done

4.3 Stemming out the elements to be modeled

By considering the outcomes of the analysis presented up to now, in this section we stem out the
fundamental concepts building up maintainer scripts and hence, have to be properly formalized
in terms of metamodels. The first observation is that the script statements can be classified in:

• file system statement, that are statements that work on the file system. They can op-
erate with both files and directory and the different actions they can perform are addi-
tion, deletion and modification. Examples of these statements are open/close of files,
rm/copy/mv/mkdir of files and directories, ln for creating symbolic links, etc;

Deliverable D2.1 Version 1.0 page 49 of 104

http://www.mancoosi.org/deliverables

November 19, 2009

• environment statements, they modify services, shared libraries and modules. Examples
are ldconfig, debmod, update menus, etc;

• package settings statements, they affect the package settings and configurations. Examples
are apache-conf, sendmailconfig, etc.

In addition, there are also control statements that control the order in which statements are
run. The recurrent control statements that we discovered are:

• if : this is used to decide whether to do something at a special point, or to decide between
two courses of action;

• case: this is another form conditional statement. It is well structured, but can only be
used in certain cases where: (i) only one variable is tested and all branches must depend
on the value of that variable; (ii) each possible value of the variable can control a single
branch. A final default branch may optionally be used to trap all unspecified cases.

As highlighted before when analyzing classes 1, 2, 3 and 4 we have four specialized case
statements for managing these classes. In particular we have:

– case postinst : the values are configure, abort-upgrade, abort-remove, abort-de-
configure;

– case postrm: the values are purge, remove, upgrade, failed-upgrade, abort-install,
abort-upgrade, disappear;

– case prerm: the values are remove, upgrade, deconfigure, failed-upgrade;

– case preinst : the values are install, upgrade, abort-upgrade;

• iterators: iterators allow us to repeat designed statements for each element of a collection.
The collections that we identified are:

– directories: this allows us to iterate on each element of a directory, such as files,
subdirectories etc. Examples are:

∗ for currentdir in $fontdirs; do· · · from the script x/xfonts-bolkhov-koi8r-
misc 1.1.20001007-6 all.deb.postinst
∗ for dir in /var/spool/MailScanner from the script m/mailscanner 4.68.8-1

all.deb.postinst

– lines of a file: this allows us to iterate on each line of a file. Examples are:

∗ foreach $line (@data) {· · · from the script sslapd 2.4.11-1 amd64.deb.postinst
∗ for file to remove in $log file $pid file ; do · · · where log file=/var/
log/wdm-errors from the script w/wdm 1.28-3 amd64.deb.postrm
∗ while read LINE do · · · from the script libc/libc6 2.7-16 amd64.deb.postinst.

– enumeration: this iterator allows us to execute the body of the iterator for each
element of the enumeration. Examples are:

∗ for db in ‘get database list‘; do· · · from the script sslapd 2.4.11-1 amd64.
deb.postinst
∗ for service in $check; do· · · from the script libc/libc6 2.7-16 amd64.deb.

postinst

– input parameters: this iterator allows us to execute the body of the iterator for each
input parameter. Examples are:

Deliverable D2.1 Version 1.0 page 50 of 104

November 19, 2009

∗ while [$# -gt 0]; do· · · from the script t/tex-common 1.11.3 all.deb.postinst
∗ while [-n "$1"]; do· · · from the script x/x11-common 7.3+18 all.deb.config

– word : this iterator allows us to execute the body of the iterator a number of times
equal to the length of the word. An example is:

∗ while ($len--) {· · · from the script sslapd 2.4.11-1 amd64.deb.postinst.

Finally, we also add neutral statements, i.e., statements that neither modify the file system nor
the configuration nor the package settings. They are:

• messages: they allow us to write messages to both standard output and error output.
They are intended to cover statements like echo, more etc.

• comments: they allow us to write comments to the scripts.

• exit : this allows us to exit from the script. Two different exit values are allowed in order
to represent success, 0, or failure 1.

4.4 Uncovered elements

An important output of the analysis is also the identification of what we are currently not able to
model, and then to manage. In particular, we do not deal with the interaction with the user such
that: while (<STDIN>) {· · · from the script o/openssh-server 5.1p1-3 amd64.deb.postinst.

However, it is important to note that the RPM install is designed to be run with no user inter-
action. This was a design decision taken prior the development of the RPM packaging system.

Deliverable D2.1 Version 1.0 page 51 of 104

November 19, 2009

Deliverable D2.1 Version 1.0 page 52 of 104

Chapter 5

MANCOOSI metamodels

The analysis described in the previous section has induced the definition of different metamodels
which will be described throughout this chapter. In particular, the metamodels have been
defined according to an iterative process consisting of two main steps a) elicitation of new
concepts from the domain to the metamodel b) validation of the formalization of the concepts
by describing part of real systems. The metamodels which have been defined are the following:

– the System Configuration metamodel, which contains all the modeling constructs to specify
the configuration of a given FOSS system in terms of installed packages, configuration
files, services, filesystem state, etc.;

– the Package metamodel, which describes the relevant elements making up a software pack-
age. The metamodel also gives the possibility to specify the maintainer script behaviors
which are currently ignored—beside mere execution—by existing package managers;

– the Log metamodel, which is based on the concept of transactions that represent a set of
statements that change the system configurations. Transitions can be considered as model
transformations [B0́5] which let a configuration C1 evolve into a configuration C2.

As depicted in Fig. 5.1, System Configuration and Package metamodels have mutual depen-
dencies, whereas the Log metamodel has only direct relations with both System Configuration
and Package metamodels. In the rest of the chapter, such metamodels are described in more
details and some explanatory models conforming to them are also provided. Moreover, in order
to have a precise and formal definition of the metamodels, the KM3 [JB06] language and its tool
support are used. KM3 is based on the same core concepts used in OMG/MOF [Obj03b] and
EMF/Ecore [BSM+03] that are classes, attributes and references. The use of KM3 is mainly
justified by its simplicity and flexibility to write metamodels and to produce domain-specific
languages. A number of experimental KM3 metamodels have been specified from both academia
and industry and are currently collected into a library that can be found at [ATL].

5.1 System Configuration metamodel

A system configuration is the composition of artifacts necessary to make computer systems
perform their intended functions [DH07]. In this respect, the metamodel depicted in Fig. 5.2
specifies the main concepts which make up the configuration of a FOSS system. The equivalent

53

November 19, 2009

Figure 5.1: Metamodels and their inter-dependencies

KM3 textual specification is reported in Listing 5.1. The Environment metaclass enables the
specification of loaded modules, shared libraries, and running process as in the sample config-
uration reported in Fig. 5.3. In such a model the reported environment is composed of the
services www, and sendmail (see the instances s1 and s2) corresponding respectively to the
running web and mail servers.

Figure 5.2: Graphical representation of the Configuration metamodel

All the services provided by a system can be used once the corresponding packages have been
installed (see the association between the Configuration and Package metaclasses in Fig. 5.2)
and properly configured (PackageSetting). Moreover, the configuration of an installed package
might depend on other package configurations. For example, considering the PHP5 upgrade
described in Section 2.2, the instances ps1 and ps2 of the PackageSetting metaclass in Fig. 5.3
represent the settings of the installed packages apache2, and libapache-mod-php5, respectively.
The former depends on the latter (see the value of the attribute depends of ps1 in Fig. 5.3)
and both are also associated with the corresponding files which store their configurations. Note
that at the level of package meta-information such a dependency should not be expressed,
in spite of actually occurring on real systems. The ability to express such fine-grained and
installation-specific dependencies is a significant advantage offered by metamodeling.

Listing 5.1: KM3 specification of the Configuration Metamodel
1 class Configuration {
2 reference installedPackages [0−∗] container : Package oppositeOf configuration ;
3 reference runningServices [0−∗] container : Service oppositeOf configuration ;
4 reference packageSettings [0−∗] container : PackageSetting oppositeOf configuration ;
5 reference devices [0−∗] container : HardwareDevice oppositeOf configuration ;
6 reference fileSystem [1−1] container : FileSystem oppositeOf configuration ;
7 reference environment [1−1] container : Environment oppositeOf configuration ;
8 }

Deliverable D2.1 Version 1.0 page 54 of 104

November 19, 2009

Figure 5.3: Sample Configuration model

9 . . .

The configuration metamodel also gives the possibility to specify the hardware devices of a
system by means of the HardwareDevice metaclass. This class has been considered to have a
comprehensive metamodel able to cover both software and hardware concepts even though only
the software aspects are taken into account in this document.

The packages which are installed on a given system are specified by means of the modeling
constructs provided by the Package metamodel described in the next section.

5.2 Package metamodel

The metamodel reported in Fig. 5.4 plays a key role in the overall upgrade simulation approach.
In fact, in addition to the information already available in current package descriptions, the
concepts captured by the metamodel enable the specification of the behavior of maintainer
scripts. In this respect, the metaclass Statement in Fig. 5.4 represents an abstraction of the
commands that can be executed by a given script to affect the environment, the file system or the
package settings of a given configuration (EnvironmentStatement, FileSystemStatement, and
PackageSettingStatement, respectively). For instance, the sample package model in Fig. 5.5
reports the scripts contained in the package libapache-mod-php5 introduced in Section 2.2.
For clarity of presentation, Fig. 5.5 contains only the relevant elements of the postinst and prerm
scripts which are represented by the elements pis1 and prs1, respectively.

According to the model in Fig. 5.5 the represented scripts update the configuration of the
package apache2 (see the element ps1) which depends on libapache-mod-php5. In particular,
the element upss2 corresponds to the statement a2dismod which disables the PHP5 module in
the Apache configuration before removing the package libapache-mod-php5 from the filesys-
tem. This statement is necessary, otherwise inconsistent configurations can be reached like
the one shown in Fig. 5.6. The figure reports the sample Configuration2 which has been
reached by removing libapache-mod-php5 without changing the configuration of apache2.

Deliverable D2.1 Version 1.0 page 55 of 104

November 19, 2009

Figure 5.4: Overview of the Package metamodel

With respect to the underlying semantics of the elements contained in the package metamodel,
such a configuration is not correct given that it contains a dependency between the apache2
and libapache-mod-php5 package settings, whereas only the package apache2 is installed.
Currently, the package managers are not able to predict inconsistencies like the one in Fig. 5.6
since they take into account only information about package dependencies and conflicts. The
metamodel reported in Fig. 5.4 gives the possibility to specify an abstraction of the involved
maintainer scripts which are executed during the package upgrades. This way, consistence
checking possibilities are increased and trustworthy simulations of package upgrades can be
operated.

In the rest of the section, the Package metamodel is described in details by discussing the
KM3 specification of all the metaclasses previously outlined which underpin the script behavior
specification.

5.2.1 Script metaclass

As discussed in Chapter 2, maintainer scripts can be executed at different stages of package
upgrades. In this respect, they are classified into preinst, postinst, prerm, postrm, and config.
The package metamodel fragment reported in Listing 5.2 takes into account this classification by
extending the abstract metaclass Script with PreinstScript, PostinstScript, PrermScript,
PostrmScript, and ConfigScript, respectively (see lines 10-28). The statements building up
a given script and its input parameters are captured in the metaclass Script by means of the
references statements, and inputParameters, respectively (see lines 1-8).

Listing 5.2: KM3 specification of the Script elements in the Package Metamodel
1 class Script extends NamedElement{
2 reference statements [0−∗] container : Statement oppositeOf script ;

Deliverable D2.1 Version 1.0 page 56 of 104

November 19, 2009

Figure 5.5: Sample Package model

Figure 5.6: Incorrect package removal

3 reference inputParameters [0−∗] container : InputParameter oppositeOf script ;
4 }
5

6 class InputParameter extends NamedElement {
7 reference script : Script oppositeOf inputParameters ;
8 }
9

10 class PreinstScript extends Script{
11 reference pkg : "Package" oppositeOf PreinstScript ;
12 }
13

14 class PostinstScript extends Script{
15 reference pkg : "Package" oppositeOf PostinstScript ;
16 }
17

18 class PrermScript extends Script{
19 reference pkg : "Package" oppositeOf PrermScript ;
20 }
21

22 class PostrmScript extends Script{
23 reference pkg : "Package" oppositeOf PostrmScript ;
24 }
25

Deliverable D2.1 Version 1.0 page 57 of 104

November 19, 2009

26 class ConfigScript extends Script{
27 reference pkg : "Package" oppositeOf configScript ;
28 }

5.2.2 Statement metaclass

According to the different configuration elements which can be affected by the execution of a
given script statement, the abstract metaclass Statement in Listing 5.3 is specialized in different
metaclasses that are FileSystemStatement, EnvironmentStatement, and PackageSetting-
Statement (see lines 7-17). Moreover, each of them are in turn specialized for capturing addi-
tions, removals, and upgrades (see lines 24-42). In particular, the statements which add, delete
and modify the FileSystem (see Fig. 5.2) are respectively represented as AdditionFileSystemStatement,
DeletionFileSystemStatement and UpdateFileSystemStatement instances. The shell com-
mands touch, rm and cp, are sample instances of such metaclass.

The statements which modify the Environment of a given configuration are given in terms
of instances of EnvironmentStatement specializations (see lines 31-35). Shell commands
like install-menu, rmmod, ldconfig of Linux distributions, can be respectively modeled as
AdditionEnvironmentStatement, DeletionEnvironmentStatement and UpdateEnvironment-
Statement instances.

As pointed out in the previous chapters, an installed package might depend on settings properly
stored in dedicated configuration files (i.e., the service apache2 depends on the configurations
specified in the file httpd.conf usually stored in the /etc/apache2 directory). The statements
which modify such settings are modeled by means of instances of the PackageSettingStatement
extensions (see lines 38-42). Finally, maintainer scripts might contain statements which do not
change the system configuration but are comments, emit messages, etc. Such cases can be
specified by means of instances of the NeutralStatement metaclass (see line 21).

Listing 5.3: KM3 specification of the Statement elements in the Package Metamodel
1 abstract class Statement extends NamedElement{
2 reference script : Script oppositeOf statements ;
3 reference previous [0−1] : Statement ;
4 reference next [0−1] : Statement ;
5 }
6

7 abstract class FileSystemStatement extends Statement{
8 reference files [1 −∗] : File ;
9 }

10

11 abstract class EnvironmentStatement extends Statement{
12 reference environment : Environment ;
13 }
14

15 abstract class PackageSettingStatement extends Statement {
16 reference pkgsetting : PackageSetting ;
17 }
18

19 abstract class ControlStatement extends Statement {}
20

21 abstract class NeutralStatement extends Statement {}
22

23

24 class AdditionFileSytemStatement extends FileSystemStatement {}
25

26 class DeletionFileSystemStatement extends FileSystemStatement {}
27

28 class UpdateFileSytemStatement extends FileSystemStatement {}
29

Deliverable D2.1 Version 1.0 page 58 of 104

November 19, 2009

30

31 class AdditionEnvironmentStatement extends EnvironmentStatement {}
32

33 class DeletionEnvironmentStatement extends EnvironmentStatement {}
34

35 class UpdateEnvironmentStatement extends EnvironmentStatement {}
36

37

38 class AdditionPackageSettingStatement extends PackageSettingStatement {}
39

40 class DeletionPackageSettingStatement extends PackageSettingStatement {}
41

42 class UpdatePackageSettingStatement extends PackageSettingStatement {}

A summarizing example is depicted in Fig. 5.7 which reports a fragment of the postinst
script of the Debian Lenny libapache2-mod-php5 5.2.6-5 amd64.deb package. The code is
represented in terms of a model (see the right-hand side of the figure) defined by means of the
metaclasses presented above implemented on the Eclipse platform [BSM+03]. In particular, the
copy operation of the file php.ini-dist represents a modification of the file system and is hence
modeled as an UpdateFileSystemStatement element (see the arrow c©). Once the php5 module
has been installed, the configuration of the apache2 package has to be modified by enabling
the new module. This operation is performed by executing the command a2enmod which is
modeled as an AdditionPackageSettingStatement element (see the arrow e©). Finally, the
UpdateEnvironmentStatement element in the model (see the arrow f©) represents the command
which reloads the Apache Web server to update the environment with the previous modification.

Figure 5.7: Fragment of the libapache2-mod-php5 5.2.6-5 amd64.deb.postinst script

The individual statements of a script may require an explicit control flow specifying their execu-
tion order. For instance, in the example depicted in Fig. 5.7 the statements previously discussed
are executed only if some condition is met (see line 2 and line 6). In this respect, the abstract
metaclass ControlStatement has been introduced with a number of specializations consisting
of the following metaclasses

– If

– Case

– Return

– Iterator

which will be described in the rest of the section.

Deliverable D2.1 Version 1.0 page 59 of 104

November 19, 2009

If metaclass

Conditional statements can be described by means of the If metaclass (see Listing 5.4) which
is an extension of ControlStatement. The sample model depicted in Fig. 5.7 uses such a
metaclass to represent the statements at lines 2-4 and lines 6-9.

Listing 5.4: KM3 specification of the If Statement element in the Package Metamodel
1 class If extends ControlStatement {
2 reference condition container : BooleanExpression ;
3 reference then [0−∗] container : Statement ;
4 reference else [0−∗] container : Statement ;
5 }
6

7 class BooleanExpression {
8 attribute value : S t r ing ;
9 }

Case metaclass

Maintainer scripts might also use case statements in order to choose from a sequence of con-
ditions, and execute a corresponding statement. In this respect the abstract metaclass Case
has been introduced as an extension of ControlStatement (see lines 1-4 in Listing 5.5). The
analysis described in the previous chapter has discovered that the case conditions which can be
used depend on the type of the script in which it is specified (see Tab. 5.2.2)

Script type Case conditions
postinst configure, abort-upgrade, abort-remove, abort-deconfigure
postrm purge, remove, upgrade, failed-upgrade, abort-install, abort-upgrade, disappear
prerm remove, upgrade, deconfigure, failed-upgrade
preinst install, upgrade, abort-upgrade

Table 5.1: Case conditions

In this respect, the metaclass Case is specialized in CasePrerm, CasePostrm, CasePreinst,
CasePostinst (see lines 12-38) in order to force the modeler to specify only the conditions
that are admitted by the case statement being defined. For instance, CasePrerm elements can
have conditions the value of which is restricted to the enumeration CasePrermConditionValue
(see lines 52-57).

Listing 5.5: KM3 specification of the Case Statement element in the Package Metamodel
1 abstract class Case extends ControlStatement {
2 attribute selector : S t r ing ;
3 reference "default" container : DefaultCaseCondition ;
4 }
5 abstract class Condition {
6 reference action container : Statement ;
7 }
8

9 class DefaultCaseCondition extends Condition {
10 }
11

12 class CasePrerm extends Case {
13 reference conditions [0−∗] container : CasePrermCondition ;
14 }
15

16 class CasePrermCondition extends Condition {
17 attribute value : CasePrermConditionValue ;
18 }

Deliverable D2.1 Version 1.0 page 60 of 104

November 19, 2009

19

20 class CasePostrm extends Case {
21 reference conditions [0−∗] container : CasePostrmCondition ;
22 }
23

24 class CasePostrmCondition extends Condition {
25 attribute value : CasePostrmConditionValue ;
26 }
27

28 class CasePreinst extends Case {
29 reference conditions [0−∗] container : CasePreinstCondition ;
30 }
31

32 class CasePreinstCondition extends Condition {
33 attribute value : CasePreinstConditionValue ;
34 }
35

36 class CasePostinst extends Case {
37 reference conditions [0−∗] container : CasePostinstCondition ;
38 }
39

40 class CasePostinstCondition extends Condition {
41 attribute value : CasePostinstConditionValue ;
42 }
43

44 class BasicCase extends ControlStatement {
45 reference conditions [0−∗] container : BasicCaseCondition ;
46 }
47

48 class BasicCaseCondition extends Condition{
49 attribute value : S t r ing ;
50 }
51

52 enumeration CasePrermConditionValue {
53 l i t e ra l "remove" ;
54 l i t e ra l "upgrade" ;
55 l i t e ra l "deconfigure" ;
56 l i t e ra l "failed -upgrade" ;
57 }
58

59 enumeration CasePostrmConditionValue {
60 l i t e ra l "purge" ;
61 l i t e ra l "remove" ;
62 l i t e ra l "upgrade" ;
63 l i t e ra l "failed" ;
64 l i t e ra l "upgrade" ;
65 l i t e ra l "abort -install" ;
66 l i t e ra l "abort -upgrade" ;
67 l i t e ra l "disappear" ;
68 }
69

70 enumeration CasePreinstConditionValue {
71 l i t e ra l "install" ;
72 l i t e ra l "upgrade" ;
73 l i t e ra l "abort -upgrade" ;
74 }
75

76 enumeration CasePostinstConditionValue {
77 l i t e ra l "configure" ;
78 l i t e ra l "abort -upgrade" ;
79 l i t e ra l "abort -remove" ;
80 l i t e ra l "abort -deconfigure" ;
81 }

Deliverable D2.1 Version 1.0 page 61 of 104

November 19, 2009

Iterator metaclass

To enable the specification of iterations on collection, the Iterator metaclass is defined with
different specializations. In particular, scripts may have the necessity to iterate on the files con-
tained in a given directory. In order to specify such a statement the metaclass DirectoryIterator
is provided (see lines 4-6). In order to specify iterations on the lines of a given file, the
FileContentIterator is given. As specified in the metaclass Script in Listing 5.2, maintainer
scripts may have input parameters which might be considered by some interations. In this
respect, the InputParameterIterator metaclass is provided to iterate on the input parameters
of a given script (see lines 12-14).

The user might have the need for enumerations which can be specified as ordered sets of
(index, value) couples (see lines 24-31). Once defined, enumerations can be iterated by means
of EnumerationIterator instances (see lines 16-18).

A number of scripts execute iterations on the characters of a string. In order to capture this
case, the mataclass StringIterator at lines 20-22 has been introduced.

Listing 5.6: KM3 specification of the Iterator Statement elements in the Package Metamodel
1 abstract class Iterator extends ControlStatement {
2 }
3

4 class DirectoryIterator extends Iterator {
5 reference directory : File ;
6 }
7

8 class FileContentIterator extends Iterator {
9 reference file : File ;

10 }
11

12 class InputParameterIterator extends Iterator {
13 reference inputParameters [1−∗] : InputParameter ;
14 }
15

16 class EnumerationIterator extends Iterator {
17 reference "enumeration" : Enumeration ;
18 }
19

20 class StringIterator extends Iterator {
21 reference string : StringEl ;
22 }
23

24 class Enumeration {
25 reference elements [1−∗] ordered : EnumerationElement ;
26 }
27

28 class EnumerationElement {
29 attribute index : I n t e g e r ;
30 attribute value : S t r ing ;
31 }

Return metaclass

In order to specify the exit from a script the Return metaclass in Listing 5.7 is provided. The
admitted values are given in the enumeration ReturnStatementValue which contains the literal
0 for specifying success, 1 in case of failures.

Listing 5.7: KM3 specification of the If Return element in the Package Metamodel
1 class Return extends ControlStatement {
2 attribute value : ReturnStatementValue ;

Deliverable D2.1 Version 1.0 page 62 of 104

November 19, 2009

3 }
4

5 enumeration ReturnStatementValue {
6 l i t e ra l "0" ;
7 l i t e ra l "1" ;
8 }

5.2.3 Template metaclasses

The analysis presented in the previous chapter has discovered that a large number of the main-
tainer scripts of the Debian Lenny and Fedora packages are generated by means of predefined
templates which are reported in Appendix A.1 and Appendix A.2. This means that the Package
metamodel has to provide the modeling constructs corresponding to those templates. The KM3
specification reported in Listing 5.8 specifies such metaclasses as an extension of the proper
statements with respect to the modified configuration element. For instance, the Postinst-
Desktop metaclass specified at lines 1,3 extends the UpdateEnvironmentStatements since it
corresponds to the templates in Listing A.1 and Listing A.61 which update the system environ-
ment with the new MimeTypes embedded in the desktop files which have been installed. All
the metaclasses which have been specified are summarized in Tab. 5.2.3: the column Metaclass
contains the metaclasses which have been introduced to model the corresponding templates
reported in the column Represented templates.

Listing 5.8: KM3 specification of the Debhelper templates in the Package Metamodel
1 -- Postinst -desktop

2 class PostinstDesktop extends UpdateEnvironmentStatement {
3 }
4

5 -- Postinst -doc -base

6 class PostinstDocBase extends AdditionEnvironmentStatement {
7 reference document : File ;
8 }
9

10 -- Postinst -emacsen

11 class PostinstEmacsen extends UpdateEnvironmentStatement , UpdatePackageSettingStatement

↪→{
12 reference "package" : File ;
13 }
14

15 -- Postinst -gconf

16 class PostinstGconf extends UpdatePackageSettingStatement {
17 reference schemas [1 −∗] : File ;
18

19 }
20

21 -- Postinst -gconf -defaults

22 class PostinstGconfDefaults extends UpdatePackageSettingStatement {
23 }
24

25 -- Postinst -icons

26 class PostinstIcons extends UpdateEnvironmentStatement {
27 reference directories [1−∗] : File ;
28 }
29

30 -- Postinst -info

31 class PostinstInfo extends UpdateEnvironmentStatement {
32 reference file : File ;
33 }
34

35 -- Postinst -init

36 class PostinstInit extends UpdateEnvironmentStatement {
37 reference scriptParam : Script ;
38 reference initParams [0−∗] : Param ;

Deliverable D2.1 Version 1.0 page 63 of 104

November 19, 2009

Metaclass Represented templates

Postinst-desktop A.1, A.61
Postinst-doc-base A.3
Postinst-emacsen A.5
Postinst-gconf A.9, A.54

Postinst-gconf-defaults A.7
Postinst-icons A.12, A.65
Postinst-info A.14, A.57
Postinst-init A.19, A.74

Postinst-init-nostart A.16
Postinst-init-restart A.17
Postinst-makeshlibs A.22, A.70, A.72

Postinst-menu A.26
Postinst-menu-method A.24

Postinst-mime A.39
Postinst-modules A.28
Postinst-python A.30

Postinst-scrollkeeper A.32, A.59
Postinst-sgmlcatalog A.34

Postinst-sharedmimeinfo A.37, A.63
Postinst-suid A.41
Postinst-udev A.44

Postinst-usrlocal A.45
Postinst-wm A.48

Postinst-wm-noman A.47
Postinst-xfonts A.50, A.67
Postrm-debconf A.52
Postrm-desktop A.2, A.62
Postrm-gconf A.11, A.56

Postrm-gconf-defaults A.8
Postrm-icons A.13
Postrm-init A.21, A.76

Postrm-makeshlibs A.23, A71, A.73
Postrm-menu A.27

Postrm-menu-method A.25
Postrm-mime A.40, A.64

Postrm-modules A.29
Postrm-scrollkeeper A.33, A.60
Postrm-sgmlcatalog A.36

Postrm-sharedmimeinfo A.38, A.66
Postrm-suid A.42
Postrm-xfonts A.51, A.68
Preinst-udev A.43
Preinst-user A.69
Prerm-doc-base A.4
Prerm-emacsen A.6
Prerm-gconf A.10, A.55, A.53
Prerm-info A.15, A.58
Prerm-init A.20, A.75

Prerm-init-norestart A.18
Prerm-python A.31

Prerm-sgmlcatalog A.35
Prerm-usrlocal A.46

Prerm-wm A.49

Table 5.2: Metaclasses representing the recurrent templates

Deliverable D2.1 Version 1.0 page 64 of 104

November 19, 2009

39 }
40

41 -- Postinst -init -nostart

42 class PostinstInitNostart extends UpdateEnvironmentStatement {
43 reference scriptParam : Script ;
44 reference initParams [0−∗] : Param ;
45 reference errorHandler : File ;
46 }
47

48 -- Postinst -init -restart

49 class PostinstInitRestart extends UpdateEnvironmentStatement {
50 reference scriptParam : Script ;
51 reference initParams [0−∗] : Param ;
52 reference errorHandler : File ;
53 }
54

55 -- Postinst -makeshlibs

56 class PostinstMakeshlibs extends UpdateEnvironmentStatement {
57 }
58

59 -- Postinst -menu

60 class PostinstMenu extends UpdateEnvironmentStatement {
61 }
62

63 -- Postinst -menu -method

64 class PostinstMenuMethod extends UpdateEnvironmentStatement {
65 reference "package" : Package ;
66 }
67

68 -- Postinst -mime

69 class PostinstMime extends UpdateEnvironmentStatement {
70 }
71

72 -- Postinst -modules

73 class PostinstModules extends UpdateEnvironmentStatement {
74 reference kvers : StringParam ;
75 }
76

77 -- Postinst -python

78 class PostinstPython extends UpdateEnvironmentStatement {
79 reference pyver : IntParam ;
80 reference dirlist [1−∗] : File ;
81 }
82

83 -- Postinst -scrollkeeper

84 class PostinstScrollkeeper extends UpdateEnvironmentStatement {
85 }
86

87 -- Postinst -sgmlcatalog

88 class PostinstSgmlcatalog extends UpdateEnvironmentStatement {
89 reference centralcat : File ;
90 reference ordcats : File ;
91 }
92

93 -- Postinst -sharedmimeinfo

94 class PostinstSharedmimeinfo extends UpdateEnvironmentStatement {
95 }
96

97 -- Postinst -suid

98 class PostinstSuid extends UpdateEnvironmentStatement , UpdateFileSytemStatement {
99 reference "package" : Package ;
100 reference file : File ;
101 reference owner : StringParam ;
102 reference group : StringParam ;
103 reference perms : StringParam ;
104 }
105

106 -- Postinst -udev

107 class PostinstUdev extends UpdateFileSytemStatement {
108 reference old : File ;

Deliverable D2.1 Version 1.0 page 65 of 104

November 19, 2009

109 reference rule : File ;
110 }
111

112 -- Postinst -usrlocal

113 class PostinstUsrlocal extends UpdateFileSytemStatement {
114 reference dir : StringParam ;
115 reference mode : StringParam ;
116 reference user : StringParam ;
117 reference group : StringParam ;
118 }
119

120 -- Postinst -wm

121 class PostinstWm extends UpdateEnvironmentStatement {
122 reference wm : StringParam ;
123 reference wmman : StringParam ;
124 reference priority : StringParam ;
125 }
126

127 -- Postinst -wm-noman

128 class PostinstWmNoman extends UpdateEnvironmentStatement {
129 reference wm : StringParam ;
130 reference priority : StringParam ;
131 }
132

133 -- Postinst -xfonts

134 class PostinstXfonts extends UpdateEnvironmentStatement {
135 reference cmds [0−∗] : Statement ;
136 }
137

138 -- Postrm -debconf

139 class PostrmDebconf extends UpdateEnvironmentStatement{
140 }
141

142 -- Postrm -desktop

143 class PostrmDesktop extends UpdateEnvironmentStatement {
144 }
145

146 -- Postrm -gconf

147 class PostrmGconf extends DeletionFileSystemStatement {
148 reference schemas [1−∗] : File ;
149 }
150

151 -- Postrm -gconf -defaults

152 class PostrmGconfDefaults extends UpdateEnvironmentStatement {
153 }
154

155 -- Postrm -icons

156 class PostrmIcons extends UpdateEnvironmentStatement {
157 reference dirs [1−∗] : File ;
158 }
159

160 -- Postrm -init

161 class PostrmInit extends UpdateEnvironmentStatement , DeletionFileSystemStatement {
162 reference scriptParam : Script ;
163 }
164

165 -- Postrm -makeshlibs

166 class PostrmMakeshlibs extends UpdateEnvironmentStatement {
167 }
168

169 -- Postrm -menu

170 class PostrmMenu extends UpdateEnvironmentStatement {
171 }
172

173 -- Postrm -menu -method

174 class PostrmMenuMethod extends UpdateEnvironmentStatement , UpdateFileSytemStatement {
175 reference "package" : Package ;
176 }
177

178 -- Postrm -mime

Deliverable D2.1 Version 1.0 page 66 of 104

November 19, 2009

179 class PostrmMime extends UpdateEnvironmentStatement {
180 }
181

182 -- Postrm -modules

183 class PostrmModules extends UpdateEnvironmentStatement {
184 reference kvers : IntParam ;
185 }
186

187 -- Postrm -scrollkeeper

188 class PostrmScrollkeeper extends UpdateEnvironmentStatement {
189 }
190

191 -- Postrm -sgmlcatalog

192 class PostrmSgmlcatalog extends UpdateFileSytemStatement {
193 reference centralcat : File ;
194 }
195

196 -- Postrm -sharedmimeinfo

197 class PostrmSharedmimeinfo extends UpdateEnvironmentStatement {
198 }
199

200 -- Postrm -suid

201 class PostrmSuid extends UpdateEnvironmentStatement {
202 reference "package" : Package ;
203 reference file : File ;
204 }
205

206 -- Postrm -xfonts

207 class PostrmXfonts extends UpdateEnvironmentStatement {
208 reference cmds [0−∗] : Statement ;
209 }
210

211 -- Preinst -udev

212 class PreinstUdev extends DeletionFileSystemStatement {
213 reference old : File ;
214 reference rule : File ;
215 reference "package" : Package ;
216 }
217

218 -- Preinst -user

219 class PreinstUser extends UpdateFileSytemStatement {
220 reference dir : StringParam ;
221 reference mode : StringParam ;
222 reference user : StringParam ;
223 reference group : StringParam ;
224 }
225

226 -- Prerm -doc -base

227 class PrermDocBase extends UpdateEnvironmentStatement {
228 reference doc : File ;
229 }
230

231 -- Prerm -emacsen

232 class PrermEmacsen extends UpdateEnvironmentStatement , UpdatePackageSettingStatement {
233 reference "package" : Package ;
234 }
235

236 -- Prerm -gconf

237 class PrermGconf extends UpdatePackageSettingStatement {
238 reference schemas [0−∗] : File ;
239 }
240

241 -- Prerm -info

242 class PrermInfo extends UpdateEnvironmentStatement , DeletionPackageSettingStatement {
243 reference file : File ;
244 }
245

246 -- Prerm -init

247 class PrermInit extends UpdateEnvironmentStatement {
248 reference scriptParam : File ;

Deliverable D2.1 Version 1.0 page 67 of 104

November 19, 2009

249 }
250

251 -- Prerm -init -norestart

252 class PrermInitNorestart extends UpdateEnvironmentStatement {
253 reference scriptParam : File ;
254 }
255

256 -- Prerm -python

257 class PrermPython extends DeletionFileSystemStatement{
258 reference "package" : Package ;
259 }
260

261 -- Prerm -sgmlcatalog

262 class PrermSgmlcatalog extends UpdateEnvironmentStatement ,
↪→DeletionPackageSettingStatement {

263 reference centralcat : File ;
264 }
265

266 -- Prerm -usrlocal

267 class PrermUsrlocal extends DeletionFileSystemStatement {
268 }
269

270 -- Prerm -wm

271 class PrermWm extends DeletionPackageSettingStatement {
272 reference wm : StringParam ;
273 }
274

275 class Param {
276 attribute value : S t r ing ;
277 }
278

279 class StringParam extends Param {
280 }
281

282 class IntParam extends Param{ }

5.3 Log metamodel

The metamodel depicted in Listing. 5.9 is a step towards the development of a transactional
model of upgradeability that will allow us to roll-back long upgrade history, restoring previous
configurations. In particular, the metaclass Transaction (see lines 5-10) refers to the set
of statements which have been executed from a source configuration leading to a target one.
For instance, according to the sample log model in Fig. 5.9, the installation of the package
libapache-mod-php5 modifies the file system (see the statement afss1 which represents the
addition of the file f1) and updates the Apache configuration (see the element upss1).

Figure 5.8: Fragment of the Log metamodel

Deliverable D2.1 Version 1.0 page 68 of 104

November 19, 2009

Listing 5.9: KM3 specification of the Log metamodel
1 class Log extends NamedElement{
2 reference transactions [0−∗] container : Transaction oppositeOf log ;
3 }
4

5 class Transaction extends NamedElement{
6 reference statements [0−∗] : Statement oppositeOf trans ;
7 reference sourceConfig : Configuration ;
8 reference targetConfig : Configuration ;
9 reference log : Log oppositeOf transactions ;

10 }

Figure 5.9: Sample Log model

The usefulness of log models like the one in Fig. 5.9 is manyfold and accounts for several roll-back
needs:

(a) Preference roll-back: the user wants to recover a previous configuration, for whatever
reason. For instance, the user is not in need of PHP5 anymore and wants to remove
the installed package libapache-mod-php5. In this case, the configuration C1 can be
recovered by executing the dual operation of each statement in the transaction between
C1 and C2. Note that the log models have all the information necessary to roll-back to
any previous valid configuration not necessarily a contiguous one;

(b) Compensate model incompleteness: as already discussed, upgrade simulation is not com-
plete with respect to upgrades, and undetected failures can be encountered while deploying
upgrades on the real system. For instance, the addition of the file php.ini during the
installation of the package libapache-mod-php5 can raise faults because of disk errors. In
this case we can exploit the information stored in the log model to retrieve the fallacious
statements and to roll-back to the configuration from which the broken transaction has
started.

(c) “Live” failures: the proposed approach does not mandate to pre-simulate upgrades. In
fact, it is possible as well to avoid simulation and have metamodeling supervise upgrades
to detect invalid configurations as soon as they are reached. At that point, if any, log
models come into play and enable rolling back deployed changes to bring the system back
to a previous valid configuration.

Deliverable D2.1 Version 1.0 page 69 of 104

November 19, 2009

Deliverable D2.1 Version 1.0 page 70 of 104

Chapter 6

Supporting the evolution of the
MANCOOSI metamodels

Evolution is an inevitable aspect which affects the whole life-cycle of software systems [LB85].
In general, artefacts can be subject to many kinds of changes, which range from requirements
through architecture and design, to source code, documentation and test suites. Similarly to
other software artefacts, metamodels can evolve over time too [Fav03]. Accordingly, models
need to be co-adapted in order to remain compliant to the metamodel and not become even-
tually invalid. When manually operated the adaptation is error-prone and can give place to
inconsistencies between the metamodel and the related artefacts. Such an issue becomes very
relevant when dealing with FOSS systems whose specifications consist of large models and even
small metamodel modifications require adaptation steps to be performed on all the already
existing models.

In this chapter we outline a transformational approach to model co-evolution we have proposed
in [CDEP08]. By means of the introduced techniques, well-defined adaptation steps are gen-
erated directly from the modifications the metamodel underwent. The approach is based on
a model difference representation [CDP07] which is used to specify in a difference model the
metamodel changes. Thus, the co-adaptation is given as a higher-order model transformation
which takes the difference model recording the metamodel evolution and generates a model
transformation able to produce the co-evolution of models.

The overall chapter outlines the co-evolution approach which will be used throughout the dura-
tion of the project in case the metamodels described in the previous chapter have to be refined
and the already existing models have to be consistently adapted.

The chapter is structured as follows: Section 6.1 presents the problem of model co-evolution by
means of a running example which will be used throughout the chapter. Section 6.2 outlines the
techniques which are used to represent the modifications that distinguish two versions of a same
metamodel. The transformational approach to model co-evolution relies on such techniques as
discussed in Section 6.3.

6.1 Metamodel evolution and model co-evolution

Metamodels are expected to evolve during their life-cycle, thus causing possible problems to
existing models which conform to the old version of the metamodel and do not conform to the

71

November 19, 2009

new version anymore. The problem is due to the incompatibility between the metamodel revi-
sions and a possible solution is the adoption of mechanisms of model co-evolution, i.e., models
need to be migrated in new instances according to the changes of the corresponding metamodel.
Unfortunately, model co-evolution is not always simple and presents intrinsic difficulties which
are related to the kind of evolution the metamodel has been subject to. Going into more de-
tails, metamodels may evolve in different ways: some changes may be additive and independent
from the other elements, thus requiring no or little instance revision. In other cases metamodel
manipulations introduce incompatibilities and inconsistencies which cannot be easily (and au-
tomatically) resolved. For instance, additions or refinements to the metamodels presented in
the previous chapter require the adaptation of all the system configuration and package models
to re-establish their conformance to the new metamodels.

Figure 6.1: Petri Net metamodel evolution

To simplify the presentation of the problems related to the co-evolution task the sample Petri
Net metamodel evolution depicted in Fig. 6.1 will be considered in the rest of the chapter. The
initial Petri Net (MM0) consists of Places and Transitions; moreover, places can have source
and/or destination transitions, whereas transitions must link source and destination places (src
and dst association roles, respectively). In the new metamodel MM1, each Net has at least one
Place and one Transition. Besides, arcs between places and transitions are made explicit
by extracting PTArc and TPArc metaclasses. This refinement allows to add further properties

Deliverable D2.1 Version 1.0 page 72 of 104

November 19, 2009

to relationships between places and transitions. For example, the Petri Net formalism can be
extended by annotating arcs with weights. As PTArc and TPArc both represent arcs, they can
be generalized by a superclass, and a new integer metaproperty can be added in it. Therefore,
an abstract class Arc encompassing the integer metaproperty weight has been added in MM2

revision of the metamodel. Finally, Net has been renamed into PetriNet.

The revisions illustrated so far can invalidate existing instances; therefore, each version needs to
be analyzed to comprehend the various kind of updates it has been subject to and, eventually,
to elicit the necessary adaptations of corresponding models. Metamodel manipulations can be
classified by their corrupting or non-corrupting effects on existing instances [GKP07]:

- non-breaking changes: changes which do not break the conformance of models to the
corresponding metamodel;

- breaking and resolvable changes: changes which break the conformance of models even
though they can be automatically co-adapted;

- breaking and unresolvable changes: changes which break the conformance of models which
cannot automatically co-evolved, in which case user intervention is required.

In other words, non-breaking changes consist of additions of new elements in a metamodel MM
leading to MM′ without compromising models which conform to MM and thus, in turn, conform to
MM′. For instance, in the metamodel MM2 illustrated in Fig. 6.1 the abstract metaclass Arc has
been added as a generalization of the PTArc and TPArc metaclasses (without considering the
new attribute weight). After such a modification, models conforming to MM1 still conform to
MM2 and co-evolution is not necessary. Unfortunately, this is not always the case since in general
changes may break models even though sometimes automatic resolution can be performed, i.e.,
when facing breaking and resolvable changes. For instance, the Petri Net metamodel MM1 in
Fig. 6.1 is enriched with the new PTArc and TPArc metaclasses. Such a modification breaks the
models that conform to MM0 since, according to the new metamodel MM1, Place and Transition
instances can not be directly related, but PTArc and TPArc elements are required. However,
models can be automatically migrated by adding for each couple of Place and Transition
entities two additional PTArc and TPArc instances between them. For instance, the sample
Petri Net model depicted in Fig. 6.2.a and which conforms to MM0 can be automatically adapted
leading to the model in Fig. 6.2.b.

Manual interventions are often needed to solve breaking changes like, for instance, the addition
of the new attribute weight to the class Arc of MM2 in Fig. 6.1 which were not specified in MM1.

(a) (b)

Figure 6.2: Sample Petri Net model adaptation

Deliverable D2.1 Version 1.0 page 73 of 104

November 19, 2009

Figure 6.3: Sample Petri Net model which requires human intervention

The models conforming to MM1 cannot be automatically co-evolved since only a human inter-
vention can introduce the missing information related to the weight of the arc being specified,
or otherwise default values have to be considered (see Fig. 6.3). We refer to such situations as
breaking and unresolvable changes.

All the scenarios of model co-adaptations can be managed with respect to the possible meta-
model modifications which can be distinguished into additive, subtractive, and updative. In
particular, with additive changes we refer to metamodel element additions which in turn can
be further distinguished as follows:

– Add metaclass: introducing new metaclasses is a common practice in metamodel evolution
which gives place to metamodel extensions. Adding new metaclasses raises co-evolution
issues only if the new elements are mandatory with respect to the specified cardinality. In
this case, new instances of the added metaclass have to be accordingly introduced in the
existing models;

– Add metaproperty : this is similar to the previous case since a new metaproperty may be oblig-
atory or not with respect to the specified cardinality. The existing models maintain the con-
formance to the considered metamodel if the addition occurs in abstract metaclasses without
subclasses; in other cases, human intervention is required to specify the value of the added
property in all the involved model elements;

– Generalize metaproperty : a metaproperty is generalized when its multiplicity or type are re-
laxed. For instance, if the cardinality 3..n of a sample metaclass MC is modified in 0..n, no
co-evolution actions are required on the corresponding models since the existing instances of
MC still conform to the new version of the metaclass;

– Pull metaproperty : a metaproperty p is pulled in a superclass A and the old one is removed
from a subclass B. As a consequence, the instances of the metaclass A have to be modified by
inheriting the value of p from the instances of the metaclass B;

– Extract superclass: a superclass is extracted in a hierarchy and a set of properties is pulled on.
If the superclass is abstract model instances are preserved, otherwise the effects are referable
to metaproperty pulls.

Subtractive changes consist of the deletion of some of the existing metamodel elements as
described in the following:

– Eliminate metaclass: a metaclass is deleted by giving place to a sub metamodel of the initial
one. In general, such a change induces in the corresponding models the deletions of all the
metaclass instances. Moreover, if the involved metaclass has subclasses or it is referred by
other metaclasses, the elimitation also causes side effects to the related entities;

Deliverable D2.1 Version 1.0 page 74 of 104

November 19, 2009

Change type Change
Non-breaking changes Generalize metaproperty

Add (non-obligatory) metaclass
Add (non-obligatory) metaproperty

Breaking and Extract (abstract) superclass
resolvable changes Eliminate metaclass

Eliminate metaproperty
Push metaproperty
Flatten hierarchy
Rename metaelement
Move metaproperty
Extract/inline metaclass

Breaking and Add obligatory metaclass
unresolvable changes Add obligatory metaproperty

Pull metaproperty
Restrict metaproperty
Extract (non-abstract) superclass

Table 6.1: Changes classification

– Eliminate metaproperty : a property is eliminated from a metaclass, it has the same effect of
the previous modification;

– Push metaproperty : pushing a property in subclasses means that it is deleted from an initial
superclass A and then cloned in all the subclasses C of A. If A is abstract then such a metamodel
modification does not require any model co-adaptation, otherwise all the instances of A and
its subclasses need to be accordingly modified;

– Flatten hierarchy : to flatten a hierarchy means eliminating a superclass and introducing all
its properties into the subclasses. This scenario can be referred to metaproperty pushes;

– Restrict metaproperty : a metaproperty is restricted when its multiplicity or type are enforced.
It is a complex case where instances need to be co-adapted or restricted. Restricting the
upper bound of the multiplicity requires a selection of certain values to be deleted. Increasing
the lower bound requires new values to be added for the involved element which usually are
manually provided. Restricting the type of a property requires type conversion for each value.

Finally, a new version of the model can consist of some updates of already existing elements
leading to updative modifications which can be grouped as follows:

– Rename metaelement : renaming is a simple case in which the change needs to be propagated
to existing instances and can be performed in an automatic way;

– Move metaproperty : it consists of moving a property p from a metaclass A to a metaclass B.
This is a resolvable change and the existing models can be easily co-evolved by moving the
property p from all the instances of the metaclass A to the instances of B;

– Extract/inline metaclass: extracting a metaclass means to create a new class and move the
relevant fields from the old class into the new one. Vice versa, to inline a metaclass means to
move all its features into another class and delete the former. Both metamodel refactorings
induce automated model co-evolutions.

The classification illustrated so far is summarized in Tab. 6.1 and makes evident the fundamental
role of evolution representation. At a first glance, it seems that the classification does not

Deliverable D2.1 Version 1.0 page 75 of 104

November 19, 2009

Figure 6.4: KM3 metamodel

encompass references that are associations amongst metaclasses. However, references can be
considered properties of metaclasses at the same level of attributes.

Metamodel evolutions can be precisely categorized by understanding the kind of modifications
a metamodel undergone. Moreover, starting from the classification it is possible to adopt ade-
quate countermeasures to co-evolve existing instances. Nonetheless, it is worth noting that the
classification summarized in Tab. 6.1 is based on a clear distinction between the metamodel
evolution categories. Unfortunately, in real world experiences the evolution of a metamodel can
not be reduced to a sequence of atomic changes, generally several types of changes are operated
as affecting multiple elements with different impacts on the co-adaptation. Furthermore, the
entities involved in the evolution can be related one another. Therefore, since co-adaptation
mechanisms are based on the described change classification, a metamodel adaptation will need
to be decomposed in terms of the induced co-evolution categories. The possibility to have a set
of dependences among the several parts of the evolution makes the updates not always distin-
guishable as single atomic steps of the metamodel revision, but requires a further refinement of
the classification as introduced in the next section and discussed in details in Sect. 6.3.

6.2 Metamodel difference representation

The problem of model differences is intrinsically complex and requires specialized algorithms
and notations to match the abstraction level of models [LZG04]. Recently, in [CDP07, RV08]
two similar techniques have been introduced to represent differences as models, hereafter called
difference models; interestingly these proposals combine the advantages of declarative difference
representations and enable the reconstruction of the final model by means of automated trans-
formations which are inherently defined in the approaches. In the rest of the section, we recall
the difference representation approach defined in [CDP07] in order to provide the reader with
the technical details which underpin the solution proposed in Sect. 6.3.

Although the work in [CDP07] has been introduced to deal with model revisions, it is also easily
adaptable to metamodel evolutions. In fact, a metamodel is a model itself, which conforms
to a metamodel referred to as the meta metamodel [B0́5]. For presentation purposes, the

Deliverable D2.1 Version 1.0 page 76 of 104

November 19, 2009

Figure 6.5: Overall structure of the model difference representation approach

KM3 language in Fig. 6.4 is considered, even though the solution can be generalized to any
metamodeling language like OMG/MOF [Obj03b] or EMF/Ecore [BSM+03].

The overall structure of the change representation mechanism is depicted in Fig. 6.5: given two
base metamodels MM1 and MM2 which conform to an arbitrary base meta metamodel (KM3 in our
case), their difference conforms to a difference metamodel MMD derived from KM3 by means of
an automated transformation MM2MMD. The base meta metamodel, extended as prescribed by
such a transformation, consists of new constructs able to represent the possible modifications
that can occur on metamodels and which can be grouped as follows:

– additions: new elements are added in the initial metamodel; with respect to the classification
given in Sect. 6.1, Add metaclass and Extract superclass involve this kind of change;

– deletions: some of the existing elements are deleted as a whole. Eliminate metaclass and
Flatten hierarchy fall in this category of manipulations;

– changes: a new version of the metamodel being considered can consist of updates of already
existing elements. For instance, Rename metaelement and Restrict metaproperty require this
type of modification. The addition and deletion of metaproperty (i.e., Add metaproperty and
Eliminate metaproperty, respectively) are also modelled through this construct. In fact, when
a metaelement is included in a container the manipulation is represented as a change of the
container itself.

In order to represent the differences between the Petri Net metamodel revisions, the extended
KM3 meta metamodel depicted in Fig. 6.6 is generated by applying the MM2MMD transformation
in Fig. 6.5 previously mentioned. For each metaclass MC of the KM3 metamodel, the addi-
tional metaclasses AddedMC, DeletedMC, and ChangedMC are generated. For instance, the meta-
class Class in Fig. 6.4 induces the generation of the metaclasses AddedClass, DeletedClass,
and ChangedClass as depicted in Fig. 6.6. In the same way, Reference metaclass induces
AddedReference, DeletedReference, and ChangedReference.

The generated difference metamodel is able to represent all the differences amongst metamodels
which conform to KM3. For instance, the model in Fig. 6.7 conforms to the generated meta-
model in Fig. 6.6 and represents the differences between the Petri Net metamodels specified in
Fig. 6.1. The differences depicted in such a model can be summarized as follows:

Deliverable D2.1 Version 1.0 page 77 of 104

November 19, 2009

Figure 6.6: Generated difference KM3 metamodel

1) the addition of the new class PTArc in the MM1 revision of the Petri Net metamodel is repre-
sented by means of an AddedClass instance, as illustrated by model difference ∆0,1 in Fig. 6.7.
Moreover, the reference between Place and Transition named dst has been updated to link
PTArc with name out. Analogously, the reverse reference named src has been manipulated
to point PTArc and named as in. Two new references have been added through the cor-
responding AddedReference instances to realize the reverse links from PTArc to Place and
Transition, respectively. Finally, the composition relationship between Net and Place has
been updated by prescribing the existence of at least one Place through the lower property
which has been updated from 0 to 1. The same enforcement has been done to the composition
between Net and Transition;

2) the addition of the new abstract class Arc in MM2, together with its attribute weight, is
represented through an instance of the AddedClass and the AddedAttribute metaclasses in
the ∆1,2 delta of Fig. 6.7. In the meanwhile, PTArc and TPArc classes are made specializations
of Arc. Finally, Net entity is renamed as PetriNet.

Difference models like the one in Fig. 6.7 can be obtained by using today’s available tools like
EMFCompare [Tou] and SiDiff [TBWK07], which are not discussed here.

The representation mechanism used so far allows to identify changes which occurred in a meta-
model revision and satisfies a number of properties, as illustrated in [CDP07]. One of them is
the compositionality, i.e., the possibility to combine difference models in interesting construc-
tions like the sequential and the parallel compositions, which in turn result in valid difference

Deliverable D2.1 Version 1.0 page 78 of 104

November 19, 2009

Figure 6.7: Subsequent Petri Net metamodel adaptations

Deliverable D2.1 Version 1.0 page 79 of 104

November 19, 2009

models themselves. For the sake of simplicity, let us consider only two modifications over the
initial model: the sequential composition of such manipulations corresponds to merging the
modifications conveyed by the first document and then, in turn, by the second one in a result-
ing difference model containing a minimal difference set, i.e., only those modifications which
have not been overridden by subsequent manipulations. Whereas, parallel compositions are
exploited to combine modifications operated from the same ancestor in a concurrent way. In
case both manipulations are not affecting the same elements they are said parallel independent
and their composition is obtained by merging the difference models by interleaving the single
changes and assimilating it to the sequential composition. Otherwise, they are referred to as
parallel dependent and conflict issues can arise which need to be detected and resolved [Cic08].

Finally, difference documentation can be exploited to re-apply changes to arbitrary input models
(see [CDP07] for further details) and for managing model co-evolution induced by metamodel
manipulations. In the latter case, once differences between metamodel versions have been
detected and represented, they have to be partitioned in resolvable and non resolvable scenarios
in order to adopt the corresponding resolution strategy. However, this distinction is not always
feasible because of parallel dependent changes, i.e., situations where multiple changes are mixed
and interdependent on one another, like when a resolvable change is in some way related with
a non-resolvable one, for instance. In those cases, deltas have to be decomposed in order to
isolate the non-resolvable portion from the resolvable one, as illustrated in the next section.

6.3 Transformational adaptation of models

This section proposes a transformational approach able to consistently adapt existing models
with respect to the modifications occurred in the corresponding metamodels. The proposal is
based on model transformation and the difference representation techniques presented in the
previous section. In particular, given two versions MM1 and MM2 of the same metamodel (see
Fig. 6.8.a), their differences are recorded in a difference model ∆, whose metamodel KM3Diff
is automatically derived from KM3 as described in Sect. 6.2. In realistic cases, the modifications
consist of an arbitrary combination of the atomic changes summarized in Tab. 6.1. Hence, a
difference model formalizes all kind of modifications, i.e., non-breaking, breaking resolvable
and unresolvable ones. This poses additional difficulties since current approaches (e.g. [Wac07,
GKP07]) do not provide any support to co-adaptation when the modifications are given without
explicitly distinguishing among breaking resolvable and unresolvable changes. Our approach
consists of the following steps:

i) automatic decomposition of ∆ in two disjoint (sub) models, ∆R and ∆¬R, which denote
breaking resolvable and unresolvable changes;

ii) if ∆R and ∆¬R are parallel independent (see previous section) then we separately generate
the corresponding co-evolutions;

iii) if ∆R and ∆¬R are parallel dependent, they are further refined to identify and isolate the
interdependencies causing the interferences.

The distinction between ii) and iii) is due to the fact that when two modifications are not
independent their effects depend on the order in which the changes occur leading to non confluent
situations. The confluence can still be obtained by removing those modifications which caused
the conflicts as described in Sect. 6.3.2.

Deliverable D2.1 Version 1.0 page 80 of 104

November 19, 2009

Figure 6.8: Overall co-evolution approach

The general approach is outlined in Fig. 6.8 where dotted and solid arrows represent conformance
and transformation relations, respectively, and square boxes are any kind of models, i.e., mod-
els, difference models, metamodels, and even transformations. In particular, the decomposition
of ∆ is given by two model transformations, TR and T¬R (right-hand side of Fig. 6.8.a). Co-
evolution actions are directly obtained as model transformations from metamodel changes by
means of higher-order transformations, i.e., transformations which produce other transforma-
tions [B0́5]. More specifically, the higher-order transformations HR and H¬R (see Fig. 6.8.b
and 6.8.c) take ∆R and ∆¬R and produce the (co-evolving) model transformations CTR and
CT¬R, respectively. Since ∆R and ∆¬R are parallel independent CTR and CT¬R can be applied
in any order because they operate to disjoint sets of model elements, or in other words

(CT¬R · CTR)(M1) = (CTR · CT¬R)(M1) = M2

with M1 and M2 models conforming to the metamodel MM1 and MM2, respectively (see Fig. 6.8.d).

The next sections illustrate the approach and its implementation. In particular, we describe the
decomposition of ∆ and the generation of the co-evolving model-transformations for the case
of parallel independent breaking resolvable and unresolvable changes. Finally, in Sect. 6.3.2 we
outline how to remove interdependencies from parallel dependent changes in order to generalize
the solution provided in Sect. 6.3.1.

Deliverable D2.1 Version 1.0 page 81 of 104

November 19, 2009

6.3.1 Parallel independent changes

The generation of the co-evolving model transformations is described in the rest of the section
by means of the evolutions the PetriNet metamodel has been subject to in Fig. 6.1. The
differences between the subsequent metamodel versions are given in Fig. 6.7 and have, in turn,
to be decomposed to distinguish breaking resolvable and unresolvable modifications.

In particular, the difference ∆(0,1) from MM0 to MM1 consists of two atomic modifications, i.e.,
an Extract metaclass and a Restrict metaproperty change (according to the classification in
Tab. 6.1), which are referring to different sets of model elements. The approach is able to detect
parallel independence by verifying that the eventual decomposed differences have an empty
intersection. Since a) the previous atomic changes are breaking resolvable and unresolvable,
and b) they do not share any model element, then ∆(0,1) is decomposed by TR and T¬R into the
parallel independent ∆R(0,1) and ∆¬R(0,1), respectively. In fact, the former contains the extract
metaclass action which affects the elements Place and Transition, whereas the latter holds
the restrict metaproperty changes consisting of the reference modifications in the metaclass
Net. Analogously, the same decomposition can be operated on ∆(1,2) (denoting the evolution
from MM1 to MM2) to obtain ∆R(1,2) and ∆¬R(1,2) since the denoted modifications do not conflict
one another. In fact, the Rename metaelement change (represented by cc1 and c1 in Fig. 6.7.b)
is applied to Net, whereas the Add obligatory metaproperty operation involves the new metaclass
Arc which is supertype of the PTArc and TPArc metaclasses.

As previously said, once the ∆ is decomposed the higher-order transformations HR and H¬R

detect the occurred metamodel changes and accordingly generate the co-evolution to adapt the
corresponding models. In the current implementation, model transformations are given in ATL,
a QVT compliant language part of the AMMA platform [BJRV04] which contains a mixture
of declarative and imperative constructs. A fragment of the HR transformation is reported
In the Listing 6.1: it consists of a module specification containing a header section (lines 1-2),
transformation rules (lines 4-41) and a number of helpers which are used to navigate models
and to define complex calculations on them. In particular, the header specifies the source
models, the corresponding metamodels, and the target ones. Since the HR transformation is
higher-order, the target model conforms to the ATL metamodel which essentially specifies the
abstract syntax of the transformation language. Moreover, HR takes as input the model which
represents the metamodel differences conforming to KM3Diff.

The helpers and the rules are the constructs used to specify the transformation behaviour. The
source pattern of the rules (e.g. lines 15-20) consists of a source type and an Object Constraint
Language (OCL) [Obj06] guard stating the elements to be matched. Each rule specifies a target
pattern (e.g. lines 21-25) which is composed of a set of elements, each of them (as the one at lines
22-25) specifies a target type from the target metamodel (for instance, the type MatchedRule

from the ATL metamodel) and a set of bindings. A binding refers to a feature of the type, i.e.,
an attribute, a reference or an association end, and specifies an expression whose value initializes
the feature. HR consists of a set of rules each of them devoted to the management of one of the
resolvable metamodel changes reported in Tab. 6.1. For instance, the Listing 6.1 contains the
rules for generating the co-evolution actions corresponding to the Rename metaelement and the
Extract metaclass changes.

Listing 6.1: Fragment of the HOTR transformation
1 module H_R ; create OUT : ATL from Delta : KM3Diff ; . . . rule
2 atlModule {
3 from
4 s : KM3Diff ! Metamodel
5 to

Deliverable D2.1 Version 1.0 page 82 of 104

November 19, 2009

6 t : ATL ! Module (
7 name <− ’CTR’ ,
8 outModels <− Sequence {tm } ,
9 inModels <− Sequence {sm } , . . .

10) , . . .
11 } rule CreateRenaming {
12 from
13 input : KM3Diff ! Class ,
14 delta : KM3Diff ! ChangedClass
15 . . .
16 (not input . isAbstract
17 and input . name <> delta . updatedElement . name . . .)
18 to
19 matchedRule : ATL ! MatchedRule (
20 name<−input . name + ’2’ + delta . updatedElement . name ,
21 . . .
22) , . . .
23 } rule CreateExtractMetaClass {
24 from
25 cr1 : KM3Diff ! ChangedReference , cr2 : KM3Diff ! ChangedReference , r1 : KM3Diff !

↪→Reference , r2 : KM3Diff ! Reference , c1 : KM3Diff ! Class ,
26 c2 : KM3Diff ! Class , . . .
27 (cr1 . updatedElement = r2 and cr1 . owner = c2

28 and cr1 . type = c1 and . . .)
29 to
30 -- MatchedRule generation

31 matchedRule_i_c2 : ATL ! MatchedRule (
32 name<−i_c2 . name + ’2’ + i_c2 . name ,
33 inPattern <− ip_i_c2 ,
34 outPattern <− op_i_c2 ,
35 . . .
36) , . . .
37 } . . .

The application of HR to the metamodel MM0 in Fig. 6.1 and the difference model ∆R(0,1) in
Fig. 6.7 generate the model transformation reported in the Listing 6.2. In fact, the source
pattern of the CreateExtractMetaClass rule (lines 28-32 in the Listing 6.1) matches with the
two Extract metaclass changes represented in ∆R(0,1). They consist of the additions of the PTArc

and TPArc metaclasses instead of the direct references between the existing elements Place and
Transition. Consequently, according to the structural features of the involved elements, the
CreateExtractMetaClass rule generates the transformation CTR(0,1) which is able to co-evolve
all the models conforming to MM0 by adapting them with respect to the new metamodel MM1 (see
line 1-2 of the Listing 6.2). In particular, each element of type Place has to be modified by
changing all the references to elements of type Transition with references to new elements of
type PTArc (see lines 4-23 in the Listing 6.2). The same modification has to be performed for
all the elements of type Transition by creating new elements of type TPArc which have to be
added instead of direct references between Transition and Place instances (see lines 24-42).

Listing 6.2: Fragment of the generated CTR(0,1) transformation
1 IN : MM0 ; . . . rule Place2Place {
2 from
3 s : MM1 ! Place
4 . . .
5 to
6 t : MM2 ! Place (
7 name <− s . name ,
8 net <− s . net ,
9 out <− s . dst−>collect (e |

10 thisModule . createPTArc (e , t)
11)
12)
13 } rule createPTArc (s : OclAny , n : OclAny) {
14 to
15 t : MM2 ! PTArc (

Deliverable D2.1 Version 1.0 page 83 of 104

November 19, 2009

16 src <− s ,
17 dst <− n

18) , . . .
19 } rule Transition2Transition {
20 from
21 s : MM1 ! Transition
22 . . .
23 to
24 t : MM2 ! Transition (
25 net <− s . net ,
26 in <− s . dst−>collect (e |
27 thisModule . createTPArc (e , t)
28)
29)
30 } rule createTPArc (s : OclAny , n : OclAny) {
31 to
32 t : MM2 ! PTArc (
33 dst <− s ,
34 src <− n

35) , . . .
36 } . . .

The management of the breaking and unresolvable modifications is based on the same techniques
presented so far for the breaking resolvable case. However, as mentioned in Sect. 6.1, the involved
transformations cannot automatically co-adapt the models but are limited to default actions
which have to be refined by the designer.

6.3.2 Parallel dependent changes

As mentioned above, the automatic co-adaptation of models relies on the parallel independence
of breaking resolvable and unresolvable modifications, or more formally

∆R|∆¬R = ∆R; ∆¬R + ∆¬R; ∆R (6.1)

where + denotes the non-deterministic choice. In essence, their application is not affected by
the adopted order since they do not present any interdependencies. In case the modifications in
Tab. 6.1 refer to the same elements, then the order in which such modifications take place mat-
ters and does not allow the decomposition of a difference model as, for instance, when evolving
MM0 directly to MM2 (although the sub steps MM0 − MM1 and MM1 − MM2 are directly manageable as
described in the previous section).

A possible approach, which is only sketched in the following, consists in isolating the interdepen-
dencies whenever (6.1) does not hold. The intention is to define an iterative process consisting
in diminishing the modifications between two metamodels until the corresponding breaking
resolvable and unresolvable differences are parallel independent. In particular, let ∆ be a dif-
ference between two metamodels, then we denote by P(∆) the difference powermodel, that is
the (partially ordered) set of all possible valid sub models of ∆ (i.e., fragments of the difference
model which are still conforming to the difference metamodel):

P(∆) = {δ0 = φ, · · · , δi, δi+1, · · · , δn = ∆}
Then, the solution is the smallest k in {0, · · · , n} such that

∆(k); δk = ∆

where ∆(k) is the difference model between ∆ and δk, and

∆(k) = ∆(k)
R |∆

(k)
¬R

Deliverable D2.1 Version 1.0 page 84 of 104

November 19, 2009

with ∆(k)
R and ∆(k)

¬R parallel independent. Hence, the problem of parallel dependence is reduced
to the following

∆ = (∆(k)
R |∆

(k)
¬R); δk

by applying the higher-order transformation introduced in the previous section. For instance,
if we consider (MM2 − MM0) the solution consists in iteratively finding a difference model which
maps MM0 to the intermediate metamodel corresponding to MM2 without the attribute weight of
the Arc metaclass. Therefore, the remaining δk in this example is a non resolvable change, while
in general it may demand further iterations of the decomposition process.

Deliverable D2.1 Version 1.0 page 85 of 104

November 19, 2009

Deliverable D2.1 Version 1.0 page 86 of 104

Chapter 7

Conclusion

In this deliverable we presented a model-driven approach to manage the upgrade of FOSS
distributions. More specifically, we presented the metamodels on which our approach is based
and we showed by means of simple examples how the proposed metamodels allow a reasonable
description of the state of the system and representation of its evolution over time.

This approach represents an important result for the Mancoosi project in the following direc-
tions:

• it provides the base on which to develop features to complete resolve packages dependen-
cies, also considering package settings. An example of this is introduced in Chapter 2
and is used in Chapter 5 in order to show how the presented approach is able to predict
inconsistencies that actual package managers are not able to deal with.

• using this approach, the goal of WP3 is to provide tools and algorithms to keep track
of the evolution of the system and to revert the system to previous (working) states and
retrieve it in an efficient way. In order to do so, it is extremely important to simulate
the execution of maintainer scripts as well. It will be possible by describing maintainer
scripts in terms of models.

In fact, the intention is to specify how installation scripts affect the state of a client system in
order to treat the upgrades in a transactional way. The metamodels proposed in this deliverable
will be the foundation to define a new Domain Specific Language (DSL) to specify the behavior
of the scripts. The DSL should be defined according to the modeling primitives given by
a coordinated set of metamodels which are formalized in this deliverable. Such metamodels
represent the modeling languages for describing system configuration, packages and upgrade
history. The definition of the DSL consists of abstract syntax, concrete syntax and dynamic
semantics: while the abstract syntax is given through the metamodels, the concrete syntax and
the dynamic semantics are among the main objectives of Deliverable D3.2.

Furthermore, we will instantiate the metamodel on a widely used GNU/Linux distribution,
according to Deliverable D2.2, and we will implement a model-based framework for managing
the complexity and the state of the GNU/Linux instantiation, according to Deliverable D2.3.

87

November 19, 2009

Deliverable D2.1 Version 1.0 page 88 of 104

Appendix A

Autoscript templates

A.1 Debian debhelper autoscript templates

Desktop

Listing A.1: postinst-desktop
1 i f ["$1" = "configure"] && which update−desktop−database >/dev/null 2>&1 ; then
2 update−desktop−database −q
3 f i

Listing A.2: postrm-desktop
1 i f ["$1" = "remove"] && which update−desktop−database >/dev/null 2>&1 ; then
2 update−desktop−database −q
3 f i

Doc-base

Listing A.3: postinst-doc-base
1 i f ["$1" = configure] && which install−docs >/dev/null 2>&1; then
2 install−docs −i /usr/share/doc−base/#DOC -ID#
3 f i

Listing A.4: prerm-doc-base
1 i f ["$1" = remove] | | ["$1" = upgrade] && \
2 which install−docs >/dev/null 2>&1; then
3 install−docs −r #DOC -ID#

4 f i

emacs

Listing A.5: postinst-emacsen
1 i f ["$1" = "configure"] && [−x /usr/lib/emacsen−common/emacs−package−install]
2 then
3 /usr/lib/emacsen−common/emacs−package−install #PACKAGE#

4 f i

Listing A.6: prerm-emacsen
1 i f [−x /usr/lib/emacsen−common/emacs−package−remove] ; then
2 /usr/lib/emacsen−common/emacs−package−remove #PACKAGE#

3 f i

89

November 19, 2009

gconf

Listing A.7: postinst-gconf-defaults
1 i f ["$1" = "configure"] && which update−gconf−defaults >/dev/null 2>&1; then
2 update−gconf−defaults
3 f i

Listing A.8: postrm-gconf-defaults
1 i f which update−gconf−defaults >/dev/null 2>&1; then
2 update−gconf−defaults
3 f i

Listing A.9: postinst-gconf
1 i f ["$1" = "configure"] ; then
2 gconf−schemas −−register #SCHEMAS#

3 f i

Listing A.10: prerm-gconf
1 i f ["$1" = remove] | | ["$1" = upgrade] ; then
2 gconf−schemas −−unregister #SCHEMAS#

3 f i

Listing A.11: postrm-gconf
1 i f ["$1" = purge] ; then
2 OLD_DIR=/etc/gconf/schemas
3 SCHEMA_FILES="#SCHEMAS#"

4 i f [−d $OLD_DIR] ; then
5 for SCHEMA in $SCHEMA_FILES ; do
6 rm −f $OLD_DIR/$SCHEMA
7 done
8 rmdir −p −−ignore−fail−on−non−empty $OLD_DIR

9 f i
10 f i

icons

Listing A.12: postinst-icons
1 i f which update−icon−caches >/dev/null 2>&1 ; then
2 update−icon−caches #DIRLIST#

3 f i

Listing A.13: postrm-icons
1 i f which update−icon−caches >/dev/null 2>&1 ; then
2 update−icon−caches #DIRLIST#

3 f i

info

Listing A.14: postinst-info
1 i f ["$1" = "configure"] ; then
2 install−info −−quiet #FILE#

3 f i

Listing A.15: prerm-info
1 i f ["$1" = remove] | | ["$1" = upgrade] ; then
2 install−info −−quiet −−remove #FILE#

3 f i

Deliverable D2.1 Version 1.0 page 90 of 104

November 19, 2009

init

Listing A.16: postinst-init-nostart
1 i f [−x "/etc/init.d/# SCRIPT#"] ; then
2 update−rc . d #SCRIPT# #INITPARMS# >/dev/null || #ERROR_HANDLER#

3 f i

Listing A.17: postinst-init-restart
1 i f [−x "/etc/init.d/# SCRIPT#"] ; then
2 update−rc . d #SCRIPT# #INITPARMS# >/dev/null

3 i f [−n "$2"] ; then
4 _dh_action=restart

5 else
6 _dh_action=start

7 f i
8 i f [−x "‘which invoke -rc.d 2>/dev/null ‘"] ; then
9 invoke−rc . d #SCRIPT# $_dh_action || #ERROR_HANDLER#

10 else
11 /etc/init . d/#SCRIPT# $_dh_action || #ERROR_HANDLER#

12 f i
13 f i

Listing A.18: prerm-init-norestart
1 i f [−x "/etc/init.d/# SCRIPT#"] && ["$1" = remove] ; then
2 i f [−x "‘which invoke -rc.d 2>/dev/null ‘"] ; then
3 invoke−rc . d #SCRIPT# stop || #ERROR_HANDLER#

4 else
5 /etc/init . d/#SCRIPT# stop || #ERROR_HANDLER#

6 f i
7 f i

Listing A.19: postinst-init
1 i f [−x "/etc/init.d/# SCRIPT#"] ; then
2 update−rc . d #SCRIPT# #INITPARMS# >/dev/null

3 i f [−x "‘which invoke -rc.d 2>/dev/null ‘"] ; then
4 invoke−rc . d #SCRIPT# start || #ERROR_HANDLER#

5 else
6 /etc/init . d/#SCRIPT# start || #ERROR_HANDLER#

7 f i
8 f i

Listing A.20: prerm-init
1 i f [−x "/etc/init.d/# SCRIPT#"] ; then
2 i f [−x "‘which invoke -rc.d 2>/dev/null ‘"] ; then
3 invoke−rc . d #SCRIPT# stop || #ERROR_HANDLER#

4 else
5 /etc/init . d/#SCRIPT# stop || #ERROR_HANDLER#

6 f i
7 f i

Listing A.21: postrm-init
1 i f ["$1" = "purge"] ; then
2 update−rc . d #SCRIPT# remove >/dev/null || #ERROR_HANDLER#

3 f i

Make shared libraries

Listing A.22: postinst-makeshlibs
1 i f ["$1" = "configure"] ; then
2 ldconfig

3 f i

Deliverable D2.1 Version 1.0 page 91 of 104

November 19, 2009

Listing A.23: postrm-makeshlibs
1 i f ["$1" = "remove"] ; then
2 ldconfig

3 f i

Menu

Listing A.24: postinst-menu-method
1 inst=/etc/menu−methods/#PACKAGE#
2 i f [−f $inst] ; then
3 chmod a+x $inst

4 i f [−x "‘which update -menus 2>/dev/null ‘"] ; then
5 update−menus
6 f i
7 f i

Listing A.25: postrm-menu-method
1 inst=/etc/menu−methods/#PACKAGE#
2 i f ["$1" = "remove"] && [−f "$inst"] ; then chmod a−x $inst ; f i
3 i f [−x "‘which update -menus 2>/dev/null ‘"] ; then update−menus ; f i

Listing A.26: postinst-menu
1 i f ["$1" = "configure"] && [−x "‘which update -menus 2>/dev/null ‘"] ; then
2 update−menus
3 f i

Listing A.27: postrm-menu
1 i f [−x "‘which update -menus 2>/dev/null ‘"] ; then update−menus ; f i

Modules

Listing A.28: postinst-modules
1 i f ["$1" = "configure"] ; then
2 i f [−e /boot/System . map−#KVERS#]; then

3 depmod −a −F /boot/System . map−#KVERS# #KVERS# || true

4 f i
5 f i

Listing A.29: postrm-modules
1 i f [−e /boot/System . map−#KVERS#]; then

2 depmod −a −F /boot/System . map−#KVERS# #KVERS# || true

3 f i

python

Listing A.30: postinst-python
1 PYTHON=#PYVER#

2 i f which $PYTHON >/dev/null 2>&1 && [−e /usr/lib/$PYTHON/compileall . py] ; then
3 DIRLIST="#DIRLIST#"

4 for i in $DIRLIST ; do
5 $PYTHON /usr/lib/$PYTHON/compileall . py −q $i

6 done
7 f i

Listing A.31: prerm-python
1 dpkg −L #PACKAGE# |

2 awk ’ $0 ˜/\ . py$/ {print $0"c\n" $0"o" } ’ |
3 xargs rm −f >&2

Deliverable D2.1 Version 1.0 page 92 of 104

November 19, 2009

scrollkeeper

Listing A.32: postinst-scrollkeeper
1 i f ["$1" = "configure"] && which scrollkeeper−update >/dev/null 2>&1; then
2 scrollkeeper−update −q
3 f i

Listing A.33: postrm-scrollkeeper
1 i f ["$1" = "remove"] && which scrollkeeper−update >/dev/null 2>&1; then
2 scrollkeeper−update −q
3 f i

sgmlcatalog

Listing A.34: postinst-sgmlcatalog
1 i f ["$1" = "configure"] ; then
2 rm −f #CENTRALCAT#

3 for ordcat in #ORDCATS #; do

4 update−catalog −−quiet −−add #CENTRALCAT# ${ordcat}

5 done
6 update−catalog −−quiet −−add −−super #CENTRALCAT#

7 f i

Listing A.35: prerm-sgmlcatalog
1 i f ["$1" = "remove"] | | ["$1" = "upgrade"] ; then
2 update−catalog −−quiet −−remove −−super #CENTRALCAT#

3 f i

Listing A.36: postrm-sgmlcatalog
1 i f ["$1" = "purge"] ; then
2 rm −f #CENTRALCAT# #CENTRALCAT #.old

3 f i

mime

Listing A.37: postinst-sharedmimeinfo
1 i f ["$1" = "configure"] && [−x "‘which update -mime -database 2>/dev/null ‘"] ; then
2 update−mime−database /usr/share/mime
3 f i

Listing A.38: postrm-sharedmimeinfo
1 i f [−x "‘which update -mime -database 2>/dev/null ‘"] ; then
2 update−mime−database /usr/share/mime
3 f i

Listing A.39: postinst-mime
1 i f ["$1" = "configure"] && [−x "‘which update -mime 2>/dev/null ‘"] ; then
2 update−mime
3 f i

Listing A.40: postrm-mime
1 i f which update−mime >/dev/null 2>&1; then update−mime ; f i

suid

Deliverable D2.1 Version 1.0 page 93 of 104

November 19, 2009

Listing A.41: postinst-suid
1 i f ["$1" = "configure"] ; then
2 i f which suidregister >/dev/null 2>&1 && [−e /etc/suid . conf] ; then
3 suidregister −s #PACKAGE# /#FILE# #OWNER# #GROUP# #PERMS#

4 elif [−e /#FILE#]; then

5 chown #OWNER #:# GROUP# /#FILE#

6 chmod #PERMS# /#FILE#

7 f i
8 f i

Listing A.42: postrm-suid
1 i f ["$1" = remove] && [−e /etc/suid . conf] && \
2 which suidunregister >/dev/null 2>&1; then
3 suidunregister −s #PACKAGE# /#FILE#

4 f i

udev

Listing A.43: preinst-udev
1 i f ["$1" = install] | | ["$1" = upgrade] ; then
2 i f [−e "#OLD#"] ; then
3 i f ["‘md5sum \"#OLD #\" | sed -e \"s/ .*//\" ‘" = \

4 "‘dpkg -query -W -f=’${Conffiles}’ #PACKAGE# | sed -n -e \" \\\\ ’ #OLD#’s/.*

↪→//p\"‘"]

5 then
6 rm −f "#OLD#"

7 f i
8 f i
9 i f [−L "#RULE#"] ; then

10 rm −f "#RULE#"

11 f i
12 f i

Listing A.44: postinst-udev
1 i f ["$1" = configure] ; then
2 i f [−e "#OLD#"] ; then
3 echo "Preserving user changes to #RULE# ..."

4 i f [−e "#RULE#"] ; then
5 mv −f "#RULE#" "#RULE#.dpkg -new"

6 f i
7 mv −f "#OLD#" "#RULE#"

8 f i
9 f i

usrlocal

Listing A.45: postinst-usrlocal
1 i f ["$1" = configure] ; then
2 (
3 while read line ; do
4 set −− $line

5 dir="$1" ; mode="$2" ; user="$3" ; group="$4"

6 i f [! −e "$dir"] ; then
7 i f mkdir "$dir" 2>/dev/null ; then
8 chown "$user" : "$group" "$dir"

9 chmod "$mode" "$dir"

10 f i
11 f i
12 done
13) << DATA

14 #DIRS#

15 DATA

16 f i

Deliverable D2.1 Version 1.0 page 94 of 104

November 19, 2009

Listing A.46: prerm-usrlocal
1 (
2 while read dir ; do
3 rmdir "$dir" 2>/dev/null | | true
4 done
5) << DATA

6 #JUSTDIRS#

7 DATA

wm

Listing A.47: postinst-wm-noman
1 i f ["$1" = "configure"] ; then
2 update−alternatives −−install /usr/bin/x−window−manager \
3 x−window−manager #WM# #PRIORITY#

4 f i

Listing A.48: postinst-wm
1 i f ["$1" = "configure"] ; then
2 update−alternatives −−install /usr/bin/x−window−manager \
3 x−window−manager #WM# #PRIORITY# \

4 −−slave /usr/share/man/man1/x−window−manager . 1 . gz \
5 x−window−manager . 1 . gz #WMMAN#

6 f i

Listing A.49: prerm-wm
1 i f ["$1" = "remove"] ; then
2 update−alternatives −−remove x−window−manager #WM#

3 f i

xfonts

Listing A.50: postinst-xfonts
1 i f which update−fonts−dir >/dev/null 2>&1; then
2 #CMDS#

3 f i

Listing A.51: postrm-xfonts
1 i f [−x "‘which update -fonts -dir 2>/dev/null ‘"] ; then
2 #CMDS#

3 f i

debconf

Listing A.52: postrm-debconf
1 i f ["$1" = purge] && [−e /usr/share/debconf/confmodule] ; then
2 . /usr/share/debconf/confmodule
3 db_purge

4 f i

Deliverable D2.1 Version 1.0 page 95 of 104

November 19, 2009

A.2 Fedora “autoscript” snippets

gconf

Listing A.53: pre-gconf
1 %pre

2 i f ["$1" −gt 1] ; then export
3 GCONF_CONFIG_SOURCE=gconftool−2 −−get−default−source
4 gconftool−2 −−makefile−uninstall−rule \
5 %{_sysconfdir }/ gconf/schemas / [NAME] . schemas >/dev/null | | :
6 f i

Listing A.54: post-gconf
1 %post

2 export GCONF_CONFIG_SOURCE=gconftool−2
3 −−get−default−source gconftool−2 −−makefile−install−rule \
4 %{_sysconfdir }/ gconf/schemas / [NAME] . schemas > /dev/null | | | :

Listing A.55: preun-gconf
1 %preun

2 i f ["$1" −eq 0] ; then export
3 GCONF_CONFIG_SOURCE=gconftool−2 −−get−default−source
4 gconftool−2 −−makefile−uninstall−rule \
5 %{_sysconfdir }/ gconf/schemas / [NAME] . schemas > /dev/null | | :
6 f i

Listing A.56: postun-gconf
1 %postun

2 export GCONF_CONFIG_SOURCE="$(gconftool -2 --get -default -source)"

3 gconftool−2 −−makefile−uninstall−rule %{_sysconfdir }/ gconf/schemas/%{name } . schemas &>/
↪→dev/null | | :

info

Listing A.57: post-texinfo
1 %post

2 /sbin/install−info %{_infodir}/%{name } . info %{_infodir }/dir | | :

Listing A.58: preun-texinfo
1 %preun

2 i f [$1 = 0] ; then
3 /sbin/install−info −−delete %{_infodir}/%{name } . info %{_infodir }/dir | | :
4 f i

scrollkeeper

Listing A.59: post-scrollkeeper
1 %post

2 scrollkeeper−update −q −o %{_datadir }/omf/%{name} | | :

Listing A.60: postun-scrollkeeper
1 %postun

2 scrollkeeper−update −q | | :

Desktop

Deliverable D2.1 Version 1.0 page 96 of 104

November 19, 2009

Listing A.61: post-desktop-database
1 %post

2 update−desktop−database &> /dev/null | | :

Listing A.62: postun-desktop-database
1 %postun

2 update−desktop−database &> /dev/null | | :

mime

Listing A.63: post-mimeinfo
1 %post

2 update−mime−database %{_datadir }/mime &> /dev/null | | :

Listing A.64: postun-mimeinfo
1 %postun

2 update−mime−database %{_datadir }/mime &> /dev/null | | :

icons

Listing A.65: post-icon
1 %post

2 touch −−no−create %{_datadir }/ icons/hicolor
3 i f [−x %{_bindir }/gtk−update−icon−cache] ; then
4 %{_bindir }/gtk−update−icon−cache −−quiet %{_datadir }/icons/hicolor | | :
5 f i

Listing A.66: postun-icon
1 %postun

2 touch −−no−create %{_datadir }/ icons/hicolor
3 i f [−x %{_bindir }/gtk−update−icon−cache] ; then
4 %{_bindir }/gtk−update−icon−cache −−quiet %{_datadir }/icons/hicolor | | :
5 f i

xfonts

Listing A.67: post-fonts
1 %post

2 i f [−x %{_bindir }/fc−cache] ; then
3 %{_bindir }/fc−cache %{_datadir }/ fonts | | :
4 f i

Listing A.68: postun-fonts
1 %postun

2 i f ["$1" = "0"] ; then
3 i f [−x %{_bindir }/fc−cache] ; then
4 %{_bindir }/fc−cache %{_datadir }/ fonts | | :
5 f i
6 f i

usrlocal

Listing A.69: pre-user
1 %pre

2 getent group GROUPNAME >/dev/null | | groupadd −r GROUPNAME

3 getent passwd USERNAME >/dev/null | | \
4 useradd −r −g GROUPNAME −d HOMEDIR −s /sbin/nologin \
5 −c "Useful comment about the purpose of this account" USERNAME

6 exit 0

Deliverable D2.1 Version 1.0 page 97 of 104

November 19, 2009

Make shared libraries

Listing A.70: post-sharedlibs
1 %post

2 /sbin/ldconfig

Listing A.71: postun-sharedlibs
1 %postun

2 /sbin/ldconfig

It is also common to invoke these shared libraries scripts with the ’-p’ option as they are often
the only program invoked in a scriptlet:

Listing A.72: post-sharedlibs-p
1 %post −p /sbin/ldconfig

Listing A.73: postun-sharedlibs-p
1 %postun −p /sbin/ldconfig

init

Listing A.74: post-initscript
1 %post

2 # This adds the proper /etc/rc*.d links for the script

3 /sbin/chkconfig −−add <script>

Listing A.75: preun-initscript
1 %preun

2 i f [$1 = 0] ; then
3 /sbin/service <script> stop >/dev/null 2>&1
4 /sbin/chkconfig −−del <script>
5 f i

Listing A.76: postun-initscript
1 %postun

2 i f ["$1" −ge "1"] ; then
3 /sbin/service <script> condrestart >/dev/null 2>&1 | | :
4 f i

A.3 Mandriva macros

info

Listing A.77: Info post macro
1 \%post

2 \%_install_info \%\{name \} . info

Listing A.78: Info preun macro
1 \%preun

2 \%_remove_install_info

3 \%\{name \} . info

Menu

Deliverable D2.1 Version 1.0 page 98 of 104

November 19, 2009

Listing A.79: update post menu macro
1 \%post

2 \%{update_menus}

Listing A.80: update postun menu macro
1 \%postun

2 \%{clean_menus}

init

Listing A.81: initscript post macro
1 \%post

2 \%_post_service \<initscript−name\>

Listing A.82: initscript preun macro
1 \%preun

2 \%_preun_service \<initscript−name\>

ghostfile

Listing A.83: ghostfile post macro
1 \%post

2 \%create_ghostfile /\var/lib/games/powermanga . hi root games 664

Where the %create ghostfile macro will expand to:

Listing A.84: create ghostfile
1 \ i f \ [\ ! −f /\var/lib/games/powermanga . hi \] ; then
2 touch /\var/lib/games/powermanga . hi
3 chown root . games /\var/lib/games/powermanga . hi
4 chmod 664 /\var/lib/games/powermanga . hi
5 \ f i

Desktop

Listing A.85: update-desktop-database post macro
1 %post

2 %update_desktop_database

Listing A.86: update-desktop-database postun macro
1 %postun

2 %clean_desktop_database

mime

Listing A.87: update-mime-database post macro
1 %post

2 %update_mime_database

Listing A.88: update-mime-database postun macro
1 %postun

2 %clean_mime_database

icons

Deliverable D2.1 Version 1.0 page 99 of 104

November 19, 2009

Listing A.89: icon post macro
1 %post

2 %update_icon_cache hicolor

3 %update_icon_cache crystalsvg

Listing A.90: icon postun macro
1 %postun

2 %update_icon_cache hicolor

3 %update_icon_cache crystalsvg

gconf

Listing A.91: GConf post macro
1 %post

2 %post_install_gconf_schemas %{schemas}

Listing A.92: GConf preun macro
1 %preun

2 %preun_uninstall_gconf_schemas %{schemas}

scrollkeeper

Listing A.93: scrollkeeper post macro
1 %post

2 %update_scrollkeeper

Listing A.94: scrollkeeper postun macro
1 %postun

2 %clean_scrollkeeper

Deliverable D2.1 Version 1.0 page 100 of 104

Bibliography

[AKB02] M. Aksit, I. Kurtev, and J. Bézivin. Technological Spaces: an Initial Appraisal.
International. Federated Conf. (DOA, ODBASE, CoopIS), Industrial Track, Los
Angeles, 2002.

[ATL] ATLAS Group. The Atlantic Zoo. http://www.eclipse.org/gmt/am3/~zoos/
atlanticZoo/.

[B0́5] J. Bézivin. On the Unification Power of Models. SOSYM, 4(2):171–188, 2005.

[Bai97] Bailey, Edward C. Maximum RPM: Taking the Red Hat Pack-
age Manager to the Limit. Sams; 1st edition (August 16, 1997):
http://onlinebooks.library.upenn.edu/webbin/book/lookupid?key=olbp11202,
1997.

[BAS09] Bash shell. http://www.gnu.org/software/bash/, Last visited January 2009.

[BG01] J. Bézivin and O. Gerbé. Towards a Precise Definition of the OMG/MDA Frame-
work. In Automated Software Engineering (ASE 2001), pages 273–282, Los Alamitos
CA, 2001. IEEE Computer Society.

[BJRV04] J. Bézivin, F. Jouault, P. Rosenthal, and P. Valduriez. Modeling in the Large and
Modeling in the Small. In Model Driven Architecture, European MDA Workshops:
Foundations and Applications, volume 3599 of LNCS, pages 33–46. Springer, 2004.

[Bou] Stephen R. Bourne. An introduction to the unix shell. Unix Seventh Edition
Manual, Volume 2. (1979).

[BSM+03] F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and T.J. Grose. Eclipse Modeling
Framework. Addison Wesley, 2003.

[BTLd] Paulo Barata, Paulo Trezentos, Inês Lynce, and Davide di Ruscio. Man-
coosi deliverable d3.1: Survey of the state of the art technologies
for handling versioning, rollback and state snapshot in complex systems.
http://www.mancoosi.org/deliverables/d3.1.pdf.

[CDEP08] A. Cicchetti, D. Di Ruscio, R. Eramo, and A. Pierantonio. Automating co-evolution
in model-driven engineering. In 12th IEEE International EDOC Conference (EDOC
2008), pages 222–231, München (Germany), 2008. IEEE Computer Society.

[CDP07] A. Cicchetti, D. Di Ruscio, and A. Pierantonio. A Metamodel Independent Ap-
proach to Difference Representation. Journal of Object Technology, 6(9):165–185,
October 2007.

101

http://www.eclipse.org/gmt/am3/~zoos/atlanticZoo/
http://www.eclipse.org/gmt/am3/~zoos/atlanticZoo/
http://www.gnu.org/software/bash/

November 19, 2009

[Cic08] A. Cicchetti. Difference Representation and Conflict Management in Model-Driven
Engineering. PhD thesis, University of L’Aquila, Computer Science Dept., 2008.

[Cou06] Patrick Cousot. Abstract interpretation. ACM Computing Surveys, 28(2), 2006.

[CRP08] Antonio Cicchetti, Davide Di Ruscio, and Alfonso Pierantonio. Managing model
conflicts in distributed development. In MoDELS 2008, volume 5301 of LNCS,
pages 311–325, 2008.

[DH07] Eelco Dolstra and Armijn Hemel. Purely functional system configuration manage-
ment. In USENIX’07, pages 1–6, San Diego, CA, 2007.

[DL08] Eelco Dolstra and Andres Löh. NixOS: A purely functional linux distribution. In
ICFP, 2008. To appear.

[DTZ08] Roberto Di Cosmo, Paulo Trezentos, and Stefano Zacchiroli. Package upgrades in
FOSS distributions: Details and challenges. In HotSWup’08, 2008. To appear.

[EDO06] EDOS Project. Report on formal management of software dependencies. EDOS
Project Deliverable D2.1 and D2.2, March 2006.

[Fav03] Jean-Marie Favre. Meta-Model and Model Co-evolution within the 3D Software
Space. In Procs. of the Int. Workshop on Evolution of Large-scale Industrial Soft-
ware Applications (ELISA) at ICSM 2003, Amsterdam, September 2003.

[GKP07] B. Gruschko, D. Kolovos, and R. Paige. Towards Synchronizing Models with Evolv-
ing Metamodels. In Proceedings of the Workshop on Model-Driven Software Evolu-
tion (MODSE 2007), 2007.

[JB06] F. Jouault and J. Bézivin. KM3: a DSL for Metamodel Specification. In
FMOODS’06, volume 4037 of LNCS, pages 171–185. Springer-Verlag, 2006.

[JS08] Ian Jackson and Christian Schwarz. Debian policy manual. http://www.debian.
org/doc/debian-policy/, 2008.

[KW03] A. Kleppe and J. Warmer. MDA Explained. The Model Driven Architecture: Prac-
tice and Promise. Addison-Wesley, 2003.

[LB85] M. M. Lehman and L. A. Belady, editors. Program evolution: processes of software
change. Academic Press Professional, Inc., San Diego, CA, USA, 1985.

[LZG04] Yuehua Lin, Jing Zhang, and Jeff Gray. Model Comparison: A Key Challenge for
Transformation Testing and Version Control in Model Driven Software Develop-
ment. In OOPSLA Workshop on Best Practices for Model-Driven Software Devel-
opment, 2004.

[Mav08] Apache maven project. http://maven.apache.org/, 2008.

[MBC+06] Fabio Mancinelli, Jaap Boender, Roberto Di Cosmo, Jérôme Vouillon, Berke Durak,
Xavier Leroy, and Ralf Treinen. Managing the complexity of large free and open
source package-based software distributions. In ASE 2006, pages 199–208, Tokyo,
Japan, September 2006. IEEE CS Press.

[MCF03] S. J. Mellor, A. N. Clark, and T. Futagami. Guest Editors’ Introduction: Model-
Driven Development. IEEE Software, 20(5):14–18, 2003.

Deliverable D2.1 Version 1.0 page 102 of 104

http://www.debian.org/doc/debian-policy/
http://www.debian.org/doc/debian-policy/
http://maven.apache.org/

November 19, 2009

[McQ05] Robert McQueen. Creating, reverting & manipulating filesystem changesets on
Linux. Part II Dissertation, Computer Laboratory, University of Cambridge, May
2005.

[MSD06] Tom Mens, Ragnhild Van Der Straeten, and Maja D’Hondt. Detecting and resolving
model inconsistencies using transformation dependency analysis. In MoDELS 2006,
volume 4199 of LNCS, pages 200–214, 2006.

[MZ07] Karl Mazurak and Steve Zdancewic. Abash: finding bugs in bash scripts. In PLAS
’07, pages 105–114. ACM, 2007.

[Nie08] Gustavo Niemeyer. Smart package manager. http://labix.org/smart, 2008.

[Nor08] Gustavo Noronha Silva. APT howto. http://www.debian.org/doc/manuals/
apt-howto/, 2008.

[Obj02] Object Management Group (OMG). MOF 2.0 Query/Views/Transformations RFP,
2002. OMG document ad/02-04-10.

[Obj03a] Object Management Group (OMG). MDA Guide version 1.0.1, 2003. OMG Docu-
ment: omg/2003-06-01.

[Obj03b] Object Management Group (OMG). Meta Object Facility (MOF) 2.0 Core Spec-
ification, OMG Document ptc/03-10-04. http://www.omg.org/docs/ptc/03-10-
04.pdf, 2003.

[Obj03c] Object Management Group (OMG). UML 2.0 Infrastructure Final Adopted Spec-
ification, 2003. OMG document ptc/03-09-15.

[Obj03d] Object Management Group (OMG). XMI 2.0 XML Metadata Interchange, 2003.
OMG document formal/2003-05-02.

[Obj06] Object Management Group (OMG). OCL 2.0 Specification, 2006. OMG Document
formal/2006-05-01.

[Oli04] James Olin Oden. Transactions and rollback with rpm. Linux Journal, 2004(121):1,
2004.

[PER09] The perl directory. http://www.perl.org/, Last visited January 2009.

[RV08] J.E. Rivera and A. Vallecillo. Representing and Operating with Model Differences.
In TOOLS EUROPE 2008, 46th Intl. Conf. Objects, Models, Components, Patterns,
Zurich, Switzerland, 2008. To appear.

[Sch06a] D. C. Schmidt. Guest Editor’s Introduction: Model-Driven Engineering. IEEE
Computer, 39(2):25–31, 2006.

[Sch06b] Douglas C. Schmidt. Guest Editor’s Introduction: Model-Driven Engineering. Com-
puter, 39(2):25–31, 2006.

[Sei03] Ed Seidewitz. What Models Mean. IEEE Software, 20(5):26–32, September/
October 2003.

[Sel03] B. Selic. The Pragmatics of Model-driven Development. IEEE Software, 20(5):19–
25, 2003.

Deliverable D2.1 Version 1.0 page 103 of 104

http://labix.org/smart
http://www.debian.org/doc/manuals/apt-howto/
http://www.debian.org/doc/manuals/apt-howto/
http://www.perl.org/

November 19, 2009

[SS04] Diomidis Spinellis and Clemens Szyperski. How is open source affecting software
development. IEEE Computer, 21(1):28–33, 2004.

[Szy98] Clemens Szyperski. Component Software. Beyond Object-Oriented Programming.
Addison-Wesley, 1998.

[Szy03] Clemens Szyperski. Component technology: what, where, and how? In Proceedings
of ICSE03. ACM, 2003.

[TBWK07] Christoph Treude, Stefan Berlik, Sven Wenzel, and Udo Kelter. Difference compu-
tation of large models. In ESEC-FSE ’07: Proceedings of the the 6th joint meeting
of the European software engineering conference and the ACM SIGSOFT sympo-
sium on The foundations of software engineering, pages 295–304, New York, NY,
USA, 2007. ACM.

[TDL+07] Paulo Trezentos, Roberto Di Cosmo, Stephane Lauriere, Mario Morgado, Joao
Abecasis, Fabio Mancinelli, and Arlindo Oliveira. New Generation of Linux Meta-
installers. Research Track of FOSDEM 2007, 2007.

[Tou] A. Toulmé. The EMF Compare Utility. http://www.eclipse.org/modeling/
emft/.

[TSJL07] Chris Tucker, David Shuffelton, Ranjit Jhala, and Sorin Lerner. Opium: Optimal
package install/uninstall manager. In ICSE ’07, pages 178–188. IEEE Computer
Society, 2007.

[Wac07] Guido Wachsmuth. Metamodel Adaptation and Model Co-adaptation. In Erik
Ernst, editor, Proceedings of the 21st European Conference on Object-Oriented
Programming (ECOOP’07), volume 4069 of Lecture Notes in Computer Science.
Springer-Verlag, July 2007.

[XA06] Yichen Xie and Alex Aiken. Static detection of security vulnerabilities in scripting
languages. In USENIX-SS’06, pages 179–192, 2006.

Deliverable D2.1 Version 1.0 page 104 of 104

http://www.eclipse.org/modeling/emft/
http://www.eclipse.org/modeling/emft/

	Introduction
	Structure of the deliverable
	Glossary

	Standard life-cycle of FOSS distributions
	Packages
	Upgrades
	Failures

	Models for supporting the upgrades in FOSS distributions
	Model Driven Engineering
	Models and Meta-models
	Model Transformations

	MDE and FOSS distributions upgrades

	Analysis of FOSS distributions
	Maintainer script analysis: Debian GNU/Linux
	Scripts generated from helpers
	Analysis of scripts ``by hand''

	Maintainer script analysis: RPM-based distributions
	Stemming out the elements to be modeled
	Uncovered elements

	MANCOOSI metamodels
	System Configuration metamodel
	Package metamodel
	Script metaclass
	Statement metaclass
	If metaclass
	Case metaclass
	Iterator metaclass
	Return metaclass

	Template metaclasses

	Log metamodel

	Supporting the evolution of the MANCOOSI metamodels
	Metamodel evolution and model co-evolution
	Metamodel difference representation
	Transformational adaptation of models
	Parallel independent changes
	Parallel dependent changes

	Conclusion
	Autoscript templates
	Debian debhelper autoscript templates
	Fedora ``autoscript'' snippets
	Mandriva macros

