
Automated co-evolution of GMF editor models

Davide Di Ruscio1, Ralf Lämmel2, Alfonso Pierantonio1

1 Computer Science Department, University of L’Aquila, Italy
2 Software Languages Team, Universität Koblenz-Landau, Germany

Abstract. The Eclipse Graphical Modeling (GMF) Framework provides the ma-
jor approach for implementing visual languages on top of the Eclipse platform.
GMF relies on a family of modeling languages to describe abstract syntax, con-
crete syntax as well as other aspects of the visual language and its implementa-
tion in an editor. GMF uses a model-driven approach to map the different GMF
models to Java code. The framework, as it stands, lacks support for evolution. In
particular, there is no support for propagating changes from the domain model
(i.e., the abstract syntax of the visual language) to other editor models. We ana-
lyze the resulting co-evolution challenge, and we provide a solution by means of
GMF model adapters, which automate the propagation of domain-model changes.
These GMF model adapters are special model-to-model transformations that are
driven by difference models for domain-model changes.

1 Introduction

In the context of Model Driven Engineering (MDE) [2], the definition of a domain-
specific modeling language (DSML) or its implementation in an editor (or another tool)
consists of a collection of coordinated models. These models specify the abstract and
concrete syntaxes of the language, and possibly further aspects related to semantics
or the requirements of a particular DSML tool. The increasing understanding of the
problem domain for DSML may necessitate continuous evolution. Hence, DSML have
to evolve, and DSL tools have to co-evolve [11].

In the present paper, we make a contribution to the general theme of evolution for
DSMLs by addressing the more specific problem of supporting co-evolution between
the coordinated models that constitute the definition of a DSML, or, in fact, its imple-
mentation in a graphical editor. We focus on the propagation of abstract-syntax changes
to other models, e.g., the model for a graphical, concrete syntax.

In MDE, the abstract syntax of DSMLs is typically expressed in terms of meta-
models which are created by means of generic modeling environments, e.g., the Eclipse
Modeling Framework (EMF) [9, 3]. Indeed, we leverage EMF in the present paper. Fur-
ther, we build upon the Eclipse Graphical Modeling Framework (GMF) for developing
graphical editors based on EMF and other Eclipse components [14]. Arguably, GMF
defines the mainstream approach to graphical editor development within the Eclipse
platform. GMF uses a generative approach to obtain a working editor implementation
(in Java) from the coordinated models of the editor for a DSML.

For illustration, consider the simple mind-map editor in Fig. 1. We have annotated
the different panes of the editor with the associated GMF models underneath. The do-

Fig. 1. Snapshot of a simple editor with indications of underlying models.

main model is concerned with the abstract syntax. The graphical and the tooling def-
inition are concerned with concrete syntax and the editor functionality. The mapping
model connects the various models. We will describe the architecture of the editor in
more detail later. In the GMF approach, model-to-model and model-to-code transfor-
mations derive the implementation of a graphical editor which provides the means for
editing models conforming to the specified domain model.

With such a multi-model and generative approach to editor implementation, changes
to the abstract syntax (i.e., the metamodel) invalidate instances (i.e., models), other edi-
tor models, generated code, and all model transformations that may depend on the afore-
mentioned models. In previous work, the problem of metamodel/model co-evolution
has been addressed [4, 29], but the problem of co-evolution among coordinated editor
models is largely unexplored. The present paper specifically contributes to this open
problem, which helps with the co-evolution of DSML editors as opposed to the co-
evolution of pre-existing DSML models. More specifically, we are concerned with the
questions what and how GMF models need to be co-changed in reply to changes of
the domain model (say, metamodel, or abstract syntax definition) of the editor. The co-
evolution challenge at hand is to adapt GMF editors when changes are operated on the
domain model.

The GMF framework does not support such co-evolution, and this somewhat dimin-
ishes the original goal of GMF to aggressively simplify the development of graphical
editors. That is, while it is reasonable simple to draft and connect all GMF models from
scratch, it is notably difficult to evolve an editor through changes of specific GMF mod-
els. A recurring focus for evolution is the domain model of the editor. When the domain
model is changed, the user may notice that the editor has to be fixed through unsuccess-
ful runs of some generator, the compiler, or the editor itself, and in all cases, subject to
error messages at a low level of abstraction. Alternatively, the user may attempt to re-
generate some models through the available wizards (model-to-model transformations
of GMF), which however means that the original, possibly customized models are lost.

The complexity of the co-evolution problem for DSML editors has been recognized
also by others (e.g., see [20, 27]). Also, in [27], the authors discuss that the GMF infras-
tructure has a number of limitations, some of them related to co-evolution, and they even
propose an alternative solution to define graphical editors for modeling languages. Even
outside the MDE context, the identified co-evolution challenge is relevant, and it has not
been generally addressed. For instance, in compiler construction and domain-specific
language implementation for languages with textual syntax, the same kind of breaking
changes to abstract or concrete syntaxes can happen, and not even the most advanced
transformation- or mapping-based approaches to the coordination of the syntaxes read-
ily address the challenge (e.g., see [18, 30]). The challenge is only exacerbated by the
multiplicity of coordinated models in an approach for DSML editors such as with GMF.

The contributions of the paper can be summarized as follows:

– We analyze GMF’s characteristics in terms of the co-evolution of the various mod-
els that contribute to a GMF editor. Starting from conceived domain-model changes,
their implications for the editor itself and other GMF models are identified.

– Even though catalogues for metamodel changes are available from multiple exist-
ing works (e.g., [4, 28, 29]—to mention a few), the application of such a change
catalogue to a different scenario (i.e., the editor models in a “dependency” relation)
is a novelty.

– We address the resulting co-evolution challenge by complementing GMF’s wizard-
and generator-biased architecture with GMF adapters, which are model-to-model
transformations that propagate changes of the domain model to other models.

– The GMF adapters leverage on a difference model which is used to represent differ-
ences between subsequent versions of a given metamodel. Such difference models
have been used in previous works on co-evolution, but the illustration of their ap-
plicability to the new kind of co-evolution challenge at hand is an important step
towards their promotion to a general MDE technique.

We make available some reusable elements of our development publicly (scenarios,
transformations, difference models, etc.) 1.

Road-map of the paper

In Sec. 2, we recall the basics of the GMF approach to graphical editor development,
and we clarify GMF’s use of a collection of coordinated editor models. In Sec. 3, we
study a detailed evolution scenario to analyse the co-evolution challenge at hand. In
Sec. 4, we develop an initial list of domain model changes and derive a methodology of
co-evolution based on propagating changes to all relevant GMF models. In Sec. 5, we
describe a principled approach for the automation of the required co-evolution transfor-
mation based on the interpretation of difference models for the domain-model changes.
In Sec. 6, we sketch a proof-of-concept implementation that is also available online.
Related work is described in Sec. 7, and the paper is concluded in Sec. 8.

1http://www.emfmigrate.org/gmfevolution

2 GMF’s coordinated editor models

GMF consists of a generative component (GMF Tooling) and runtime infrastructure
(GMF Runtime) for developing graphical editors based on the Eclipse Modeling Frame-
work (EMF) [9, 3] and the Graphical Editing Framework (GEF) [12]. The GMF Tooling
supports a model-driven process (see Fig. 2) for generating a fully functional graphical
editor based on the GMF Runtime starting from the following models:

– The domain model is the Ecore-based metamodel (say, abstract syntax) of the lan-
guage for which representation and editing have to be provided.

– The graphical definition model contains part of the concrete syntax; it identifies
graphical elements that may, in fact, be reused for different editors.

– The tooling definition model contains another part of the concrete syntax; it con-
tributes to palettes, menus, toolbars, and other periphery of the editor.

– Conceptually, the aforementioned models are reusable; they do not contain refer-
ences to each other. It is the mapping model that establishes all links.

Consider again Fig. 1 which illustrates the role of these models for a simple mind-
map editor.2 Fig. 3 shows all the models involved in the definition and implementation
of the mind-map editor. The rectangular boxes highlight contributions that are related to
the Topic domain concept. It is worth noting how information about domain concepts is
scattered over the various models. Most of these recurrences are not remote since most
of the correspondences are name-based. Remote references are only to be found in the
mapping and the generator models as clarified in the rest of the work.

Domain model This model contains all the concepts and relationships which have to
be implemented in the editor. In the example, the class Mindmap is introduced as a
container of instances of the classes Topic and Relation.

Create GMF Project

Develop Domain

Model

Develop Graphical

Model

Develop Tooling

Model

Develop Mapping

Model

Create Generator

Model

Generate Diagram

Plug-in

Fig. 2. The model-driven approach to GMF-based editor development.

2A mind map is a diagram used to represent words, ideas, tasks, or other items linked to and
arranged around a central keyword or idea. The initial mind-map editor suffices with “topics” and
“relations”, but some extensions will be applied eventually.

Domain model

Generator model

Tooling definition

model

Graphical definition model

Mapping model

EMF Generator model

Fig. 3. The GMF models and model dependencies for the editor of Fig. 1.

Graphical definition model This model specifies a figure gallery including shapes,
labels, lines, etc., and canvas elements to define nodes, connections, compartments,
and diagram labels. For instance, in the graphical model in Fig. 3, a rectangle named
TopicFigure is defined, and it is referred to by the node Topic. A diagram label named
TopicName is also defined. Such graphical elements will be used to specify the graphical
representations for Topic instances and their names.

Tooling definition model This model defines toolbars and other periphery to facilitate
the management of diagram content. In Fig. 3, the sample model consists of the Topic
and Relation tools for creating the Topic and Relation elements.

Mapping model This model links together the various models. For instance, according
to the mapping model in Fig. 3, Topic elements are created by means of the Creation
Tool Topic and the graphical representation for them is Node Topic. For each topic the
corresponding name is also visualized because of the specified Feature Label Mapping
which relates the attribute name of the class Topic with the diagram label TopicName
defined in the graphical definition model. The meaning of the false value near the Fea-
ture Label Mapping element is that the attribute name is not read-only, thus it will be
freely edited by the user.

EMF and GMF generator models Once a domain model is defined, it is possible
to automatically produce Java code to manage models (instances), say mind maps in
our example. To this end an additional model, the EMF generator model, is required to
control the execution of the EMF generator. A uniform version of the extra model can
be generated by EMF tooling.

Once the mapping model is obtained, the GMF Tooling generates (by means of
a model-to-model transformation) the GMF generator model that is used by a code
generator to produce the real code of the modeled graphical editor.

3 GMF’s co-evolution challenge

Using a compound change scenario, we will now demonstrate GMF’s co-evolution chal-
lenges. We will describe how domain-model changes break other editor models, and the
editor’s code, or make them unsound otherwise. Hence, domain-model changes must
be propagated. Such change propagation is not supported currently by GMF, and it is
labor-intensive and error-prone, when carried out manually. Conceptually, it turns out
to be difficult to precisely predict when and how co-changes must be performed.

Fig. 4. An evolved mind-map editor with different kinds of topics.

(a) New version of the sample metamodel

(b) Dangling references in the GMF mapping model

Fig. 5. The domain model for the evolved mind-map editor with the “broken” mapping model.

3.1 A compound change scenario

Consider the enhanced mind-map editor of Fig. 4. Compared to the initial version of
Fig. 1, scientific vs. literature topics are distinguished, and topics have a duration prop-
erty in addition to the name property.

Now consider Fig. 5; it shows the evolved metamodel at the top, and the status of
the, as yet, unamended mapping model at the bottom. We actually show the mapping
model as it would appear to the user if it was inspected in Eclipse. Some of the links in
the mapping model are no longer valid; in fact, they are dangling (c.f., “null”). Through
extra edges, we show what the links are supposed to be like.

We get a deeper insight into the situation if we comprehend the evolved domain
model through a series of simple, potentially atomic changes:

1. The Topic class was renamed to ScientificTopic.
2. The abstract class NamedElement was added.
3. The attribute name is pulled up from the Topic class to the NamedElement class.
4. The attribute duration was added to the NamedElement class.
5. The class LiteratureTopic was added as a further specialization of NamedElement.

1 The EMF generator or the GMF generator fails (with an error).
2 The EMF generator or the GMF generator completes with a warning.
3 The generator for the GMF generator model fails.
4 The compiler fails on the generated EMF or GMF code.
5 The editor plugin fails at runtime, e.g., at launch-time.
6 A GMF model editor reports an error upon opening a GMF model.
7 The editor plugin apparently executes, but misses concepts of the domain.
8 The editor plugin apparently executes, but there are GUI events without handlers.

Table 1. Idiosyncratic symptoms of broken and and unsound GMF editors

3.2 Broken vs. unsound GMF models and editors

In practice, these changes would have been carried out in an ad-hoc manner through
editing directly the domain model. Because of these changes, the existing mapping
model is no longer valid—as shown in Fig. 5. In particular, references to Topic or the
attribute name thereof are dangling. The other GMF models are equally out-of-sync
after these domain model changes. For clarity, in Table 1, we sketch a classification
of the symptoms that may indicate a broken or unsound GMF editors. Due to space
limitation we do not provide an explanation of the reported symptoms which are listed
in Table 1 only for the sake of completeness.

Let us consider two specific examples. First, the addition of a new class to the
domain model, e.g., LiteratureTopic, should probably imply a capability of the editor to
create instances of the new class. However, such a creation tool would need to be added
in the mapping and tooling models. Second, the renaming of a class, e.g., the renaming
of Topic to ScientificTopic, may lead to an editor with certain functionality not having
any effect because elements are referenced that changed or do not exist anymore in
the domain model. Both examples are particularly interesting in so far that the editor
apparently still works. i.e., it is not broken in a straightforward sense. However, we say
that the editor is unsound; the editor does not meet some obvious expectations.

4 Changes and co-changes

We will now describe a catalogue of domain-model changes and associated co-changes
of other editor models. It turns out that there are different options for deciding on the
impact of the co-changes. We capture those options by corresponding strategies. As far
as the catalogue of changes is concerned, we can obviously depart from catalogues of
metamodel changes as they are available in the literature, e.g., [29, 15], and previous
work by the authors [4]. For brevity’s sake, we make a selection here. That is, we con-
sider only atomic changes that are needed for the compound scenario of the previous
section, completed by a few additional ones. Many of the missing changes would refer
to technical aspects of the EMF implementation, and as such, they do not contribute to
the discussion.

4.1 Strategies for co-changes

Such a distinction of broken vs. not broken but nevertheless unsound also naturally
relates to a spectrum of strategies for co-changes. A minimalistic strategy would focus

Level Description
1 Unsound in the sense of being broken; there are reported issues (errors, warnings).
2 Unsound in the sense that the editor “obviously” lacks capabilities.
3 Sound as far as it can be achieved through automated transformations.
4 Sound; established by human evaluation.

Table 2. Levels of editor soundness along evolution.

on fixing the broken editor. That is, co-changes are supposed to bring the editor models
to a state where no issues are reported at generation, compile or runtime. A best-effort
strategy would try to bring the editor to a sound state, or as close to it as possible with
a general (perhaps automated) strategy.

Consider again the example of adding a new class C:

Minimalistic strategy The execution of the EMF generator emits a warning, which
we take to mean that the editor is broken. Hence, we would add the new class C to
the EMF generator model. This small co-change would be sufficient to re-execute
all generators without further errors or warnings, and to build and run the editor
successfully. The editor would be agnostic to the new class though because the
mapping and tooling models were not co-changed.

Best-effort strategy Let us make further assumptions about the added class C. In fact,
let us assume that C is a concrete class, and it has a superclass S with at least
one existing concrete subclass D. In such a case, we may co-change the other GMF
models by providing management for C based on the replication of the management
for D.

Here we assume that a best-effort strategy may be amenable to an automated trans-
formation approach in that it does not require any domain-specific insight. The modeler
will still need to perform additional changes to complete the evolution, i.e., to obtain a
sound editor.

4.2 Editor soundness related to co-changes

In continuation of the soundness discussion from the previous section, Table 2 identifies
different levels of soundness for an evolving editor. The idea here is that we assess the
level of the editor before and after all (automated) co-changes were applied. The pro-
posed transformations can never reach Level 4 because it requires genuine evaluation by
the modeler. In other words, Level 4 refers to situations where GMF models can not be
automatically migrated and they have to be adapted by the modeler in order to support
all the modeling constructs defined in the new version of the considered metamodel.

However, we are not just interested in the overall level of the editor, but we also
want to blame one or more editor models for the editor’s unsoundness. In Table 3, we
list atomic changes with the soundness levels for the editor before and after co-changes,
and all the indications as to what models are to blame. We use “×” to blame a model
for causing the editor to be broken, i.e., to be at Level 1. We use “◦” and “•” likewise
for Level 2 and Level 3.

before
co-change

after
co-change

E
M

FG
en

G
ra

ph

To
ol

in
g

M
ap

pi
ng

L
ev

el

E
M

FG
en

G
ra

ph

To
ol

in
g

M
ap

pi
ng

L
ev

el

Add empty, concrete class × ◦ ◦ ◦ 1 • ◦ ◦ ◦ 2
Add empty, abstract class × • • • 1 • • • • 3
Add specialization • • • • 3 • • • • 3
Delete concrete class × ◦ × × 1 • ◦ • • 2
Rename class × ◦ ◦ × 1 • • • • 3
Add property × ◦ ◦ ◦ 1 • ◦ ◦ • 2
Delete property × ◦ × × 1 • ◦ • • 2
Rename property × ◦ ◦ × 1 • • • • 3
Move property × ◦ × × 1 • ◦ ◦ ◦ 2
Pull up property × ◦ × × 1 • ◦ • • 2
Change property type • ◦ × × 1 • ◦ ◦ ◦ 2

Table 3. Considered Ecore metamodel changes

The EMFGen model is frequently to blame for a broken editor before the co-
changes; the Graph model is never to blame for a broken editor; the remaining models
are to blame occasionally for a broken editor. Obviously, there is trend towards less
blame after the co-changes: no occurrences of “×”, more occurrences of “•”. In differ-
ent terms, for all domain-model changes, all other models can be co-changed so that
the editor is no longer broken. In several cases, we reach Level 3 for the editor.

There are clearly constellations for which changes cannot be propagated in an au-
tomated manner that resolves all Level 2 blame. For instance, the metamodel change
add empty, concrete class does not require a co-changed Graph model as long as some
existing graphical element can be reused. However, avoidance of Level 2 blame would
require a manual designation of a new element or genuine selection of a specific element
as opposed to an automatically chosen element.

4.3 Specific couples of changes and co-changes

In the rest of the section, the changes reported in Table 3 and the corresponding co-
changes, which have to be operated on the GMF models, are described in more detail.

Add empty, concrete class Apart from the EMFGen model, the other ones are not af-
fected; the editor simply does not take into account the added class. Thus, modelers
cannot create or edit instances of the new class. The co-change may replicate the model
from existing classes as discussed in Sec. 3. Ultimately, the modeler may need to man-
ually complete the management of the new class.

Add empty, abstract class In comparison to the previous case, the co-change of the
EMFGen model is fully sufficient since abstract classes cannot be instantiated, and
hence, no additional functionality is needed in the editor.

Add specialization The change consists of modifying an existing class by specifying it
as specialization of another one. In particular, in the simple case of the superclass being
empty, this modification does not affect any model; thus, no co-changes are required.

Delete concrete class Deleting an existing class is more problematic since all the GMF
models except the Graph model are affected. Especially the Mapping model has to be
fixed to solve possible dangling references to the deleted class. The Tooling model is
also co-changed by removing the creation tool used to create instances of the deleted
class. Even if the model is not adapted, the generator model and thus the editor can
be generated—even though the palette will contain a useless tool without associated
functionality. The Graph model can be left unchanged. The graphical elements which
were used for representing instances of the deleted class, may be re-used in the future.

Rename class Renaming a class requires co-change of the Mapping model which can
have, as in the case of class deletion, invalid references which have to be fixed by
considering the new class name. The Graph model does not require any co-change
since the graphical elements used for the old class can be used even after the rename
operation. The Tooling model can be left untouched, or alternatively the label and the
description of the tool related to the renamed class can be modified to reflect the same
name. However, even with the same Tooling model, a working editor will be generated.

Add property The strategy for co-change is similar to the addition of new classes.

Delete property Deleting a property which has a diagrammatic representation requires a
co-change of the Mapping model in order to fix occurred dangling references. Moreover
if some tools were available to manage the deleted property, also the Tooling model has
to be co-changed. As in the case of class removals, the graphical model can be left
unchanged.

Rename property The strategy for co-change is similar to the renaming of classes.

Move property When a property is moved from one class to another, then dangling
references may need to be resolved in the Mapping model. If the moved property is
managed by means of some tools, the Tooling model require co-changes, too. We only
offer a simple, generic strategy for co-changes: the repaired editor does not consider the
moved property.

Pull up property Given a class hierarchy, a given property is moved from an extended to
a base class. This modification is similar to the previous one—even though an automatic
resolution can be provided to co-change Tooling and Mapping models in a satisfactory
manner.

Change property type The EMFGen model is not affected. However, by changing the
type of a property some dangling references can occur in the Mapping model; their
resolution cannot be fully automated. Also, if the affected property is managed by some
tool, then the Tooling model must be co-changed as well.

5 Automated adaptation of GMF models

Having a catalogue of changes like the one previously discussed is preparatory for sup-
porting the adaptation of GMF models. In particular, it can be exploited to automatically

Domain model 1

Domain model 2

Difference

Calculation
Difference model

EMFGen

adapter

GMFTool

adapter

GMFMap

adapter

EMFGen model GMFTool model GMFMap model

Adapted

EMFGen model

Adapted

GMFTool model

Adapted

GMFMap model

Fig. 6. Overview of the process of co-evolution with automated transformations.

detect the modifications that have been operated on a given domain model, and to in-
struct corresponding migration procedures as proposed in the rest of the paper.

We have developed a general process for GMF co-evolution which involves model
differencing techniques and automated transformations to adapt existing GMF models
with respect to the changes operated on domain models. The approach is described in
Fig. 6 and consists of the following elements:

– Difference calculation, given two versions of the same domain model, their differ-
ences are calculated to identify the changes which have been operated on the first
version of the model to obtain the last one. The calculation can be operated by
any of the existing approaches able to detect the differences between any kind of
models, like EMFCompare [7];

– Difference representation, the detected differences have to be represented in a way
which is amenable to automatic manipulations and analysis. To take advantage
of standard model driven technologies, the calculated differences should be rep-
resented by means of another model;

– Generation of the adapted GMF models, the differences represented in the differ-
ence model are taken as input by specific adapters each devoted to the adaptation of
a given GMF model with respect to the metamodel modifications and correspond-
ing co-changes reported in Table 3. In particular, the GMFMap and the GMFTool
adapters are devoted to the adaptation of the GMFMap model and the GMFTool
model, respectively. Such adapters take both models because of dependencies be-
tween them which have to be updated simultaneously. The EMFGen model is up-
dated by means of a specific adapters, whereas no adapter is provided for the Graph
model. In fact, the discussion of the previous sections suggested that we can always
reasonable continue with the old Graph model. The adapters can be implemented
as model transformations which take as input the old version of the GMF models
and produce the adapted ones.

Model

Difference

Metamodel

(MMD)

MM2MMD

transformation

Ecore

Metamodel

Metamodel

(MM)

conformsTo

M3

M2
Difference Model

(MD)

conformsTo

detected in

conformsTo

induces

MC

AddedMC

DeletedMC

ChangedMC updatedElement

1..*

Fig. 7. Difference metamodel generation

Interestingly, the process in Fig. 6 is independent from the technologies which have
been adopted both for calculating and managing domain model differences, and to au-
tomatically manipulate them for generating the adapted GMF models.

6 Proof-of-concept implementation of the GMF adapters

In this section we propose the support for the GMF model adaptation approach we
described in the previous section. That is, in Sec. 6.1, we outline a technique for rep-
resenting the differences between two versions of a same metamodel. Such a represen-
tation approach has been already used by the authors for managing other co-evolution
problems [4]. Further, in Sec. 6.2, the ATL transformation language [17] is adopted for
implementing the different model adapters which have been identified to evolve existing
GMF models. The implementation of the approach is available publicly as described in
the introduction of the paper.

6.1 Model-based representation of domain model differences

The differences between different versions of a same domain model can be represented
by exploiting the difference metamodel concept, presented by the authors in [5]. The ap-
proach is summarized in Fig. 7: given two Ecore metamodels, their difference conforms
to a difference metamodel MMD derived from Ecore by means of the MM2MMD trans-
formation. For each class MC of the Ecore metamodel, the additional classes AddedMC,
DeletedMC, and ChangedMC are generated in the extended Ecore metamodel by en-
abling the representation of the possible modifications that can occur on domain models
and that can be grouped as follows:

– additions, new elements are added in the initial metamodel;
– deletions, some of the existing elements are deleted;
– changes, some of the existing elements are updated.

In Fig. 8, a fragment of the difference model representing the changes between
the domain models in Fig. 3 and Fig. 5 is shown. Such a difference model conforms
to a difference metamodel automatically obtained from the ECore metamodel. For in-
stance, from the metaclass EClass of the ECore metamodel, the metaclasses AddedE-
Class, DeletedEClass, and ChangedEClass are generated in the corresponding differ-
ence metamodel.

Fig. 8. Fragment of the difference model for the evolution scenario of Sec. 3.

For some of the reported differences in Fig. 8, the corresponding properties are
shown. For instance, the renaming of the Topic class is represented by means of a
ChangedEClass instance which has as updated element an instance of EClass named
LiteratureTopic (see the updatedElement property of the changed class Topic shown on
the right-hand side of Fig. 8). The addition of the class NamedElement is represented by
means of an AddedEClass instance. The move operation of the attribute name from the
class Topic to the added class NamedElement is represented by means of a ChangedEAt-
tribute instance which has one EAttribute instance as updated element with a different
value for the eContainingClass property. In fact, in the initial version it was Topic (see
the second property window) whereas in the last one, it is NamedElement (as specified
in the third property window).

6.2 ATL-based implementation of GMF model adapters

Our prototypical implementation of the GMF model adapters leverages ATL [17], a
QVT [24] compliant language which contains a mixture of declarative and imperative
constructs. In particular, each model adapter is implemented in terms of model trans-
formations which use a common query library described in rest of the section.

An ATL transformation consists of a module specification containing a header sec-
tion (e.g. lines 1-3 in Listing 1.1), transformation rules (lines 5-42 in Listing 1.1) and
a number of helpers which are used to navigate models and to define complex calcula-
tions on them (some helpers which have been implemented are described in Table 4). In
particular, the header specifies the source models, the corresponding metamodels, and
the target ones; the helpers and the rules are the constructs used to specify the transfor-
mation behaviour.

Small excerpts of the GMFMap and GMFTool adapters are shown in Listing 1.1
and Listing 1.2, respectively. For instance, the AddedSpecializationClassTo... transfor-
mation rules manage new classes which have been added in the domain model as spe-
cializations of an existing one. The code excerpts involve the replication strategy that
we have described in previous sections.

ATL transformation rules consist of source and target patterns: the former consist of
source types and an OCL [25] guard stating the elements to be matched; the latter are

Helper name Context Return type Description
getEClassInNewMetamodel EClass EClass Given a class of the old metamodel, it re-

turns the corresponding one in the new
metamodel.

getNewContainer EAttribute EClass Given an EAttribute in the old metamodel,
the corresponding container in the new
one is retrieved. To this end, the helper
checks if the EAttribute has been moved
to a new added class, if not an existing
class is returned.

isMoved EAttribute Boolean It checks if the considered EAttribute has
been moved to another container

isMovedToAddedEClass EAttribute Boolean It checks if the considered EAttribute has
been moved to a new added EClass.

isRenamed EAttribute Boolean It checks if the given EAttribute has been
renamed.

Table 4. Some helpers of the gmfAdaptationLib

composed of a set of elements, each of them specifies a target type from the target meta-
model and a set of bindings. A binding refers to a feature of the type, i.e. an attribute, a
reference or an association end, and specifies an expression whose value initializes the
feature. For instance, the AddedSpecializationClassToNodeMapping rule in Listing 1.1
is executed for each match of the source pattern in lines 8-17 which describes situations
like the one we had in the sample scenario where the LiteratureTopic class (see s1) is
added as specialization of an abstract class (see s2) which is specialized by another class
(see s3). In this case, the Mapping model is updated by adding a new TopNodeReference
and its contained elements (see lines 24-41) which are copies of those already existing
for s3.

A similar source pattern is used in the rule of Listing 1.2 (lines 7-12) in order to add
a creation tool for the new added class s1 to the Tooling model (see lines 19-23).

1module GMFMapAdapter;
2create OUT : GMFMAPMM from IN : GMFMAPMM, GMFTOOL: GMFTOOLMM, DELTA: DELTAMM,
3 NEWECORE : ECORE, OLDECORE : ECORE ;
4...
5rule AddedSpecializationClassToNodeMapping {
6
7 from
8 s1: DELTAMM!AddedEClass, s2: DELTAMM!AddedEClass,
9 s3: DELTAMM!ChangedEClass, s4: DELTAMM!ChangedEAttribute,

10 s5: DELTAMM!EAttribute
11 ((not s1.abstract)
12 and s1.eSuperTypes->first() = s2
13 and s2.abstract
14 and s3.updatedElement->first().eSuperTypes->first() = s2
15 and s4.updatedElement->first() = s5
16 and s4.eContainingClass = s3
17 and s5.eContainingClass = s2))
18
19 using {
20 siblingFeatureLabelMapping : GMFMAPMM!FeatureLabelMapping =

21 s3.getNodeMappingFromChangedClass().labelMappings
22 ->select(e | e.oclIsTypeOf(GMFMAPMM!FeatureLabelMapping))->first(); }
23
24 to
25 t1 : GMFMAPMM!TopNodeReference (
26 containmentFeature <- s3.getTopNodeReferenceFromChangedClass().
27 containmentFeature.getFeatureInNewMetamodel(),
28 ownedChild <- t2
29),
30 t2 : GMFMAPMM!NodeMapping (
31 domainMetaElement <- s1.getAddedClassInNewMetamodel(),
32 relatedDiagrams <- s3.getNodeMappingFromChangedClass().relatedDiagrams,
33 tool <- s1.name.getNewToolFromTitle(),
34 diagramNode <- s3.getNodeMappingFromChangedClass().diagramNode
35),
36 t3 : GMFMAPMM!FeatureLabelMapping (
37 diagramLabel <- siblingFeatureLabelMapping.diagramLabel,
38 features <- siblingFeatureLabelMapping.features->collect(e |
39 e.getFeatureInNewMetamodel())
40),
41 ...
42}

Listing 1.1. Fragment of the GMFMap Adapter

To summarize, the implementation of the GMF adapters consists of transformation
rules which copy the given source model to a target one; during this operation they
evaluate if changes are needed. A number of helpers have been defined; they navigate
models and perform complex queries on them. Many of the helpers are common to all
the adapters, and hence, they are available through a library gmfAdaptationLib. Table 4
describes some of these helpers.

1module GMFToolAdapter;
2create OUT : GMFTOOLMM from IN : GMFTOOLMM, GMFMAP : GMFMAPMM, DELTA: DELTAMM,
3 NEWECORE : ECORE, OLDECORE : ECORE ;
4...
5rule AddedSpecializationClassToCreationTool {
6
7 from
8 s1: DELTAMM!AddedEClass, s2: DELTAMM!AddedEClass, s3: DELTAMM!ChangedEClass
9 ((not s1.abstract)

10 and s1.eSuperTypes->first() = s2
11 and s2.abstract
12 and s3.updatedElement->first().eSuperTypes->first() = s2)
13
14 using {
15 toolGroup : GMFTOOLMM!ToolGroup = OclUndefined;
16 }
17
18 to
19 t : GMFTOOLMM!CreationTool (
20 title <- s3.getToolFromChangedClass().title.regexReplaceAll(s3.
21 getToolFromChangedClass().title, s1.name),
22 description <- ’Create new ’ + s1.name
23),
24 ...
25}

Listing 1.2. Sample transformation rule of the GMFTool Adapter

7 Related work

7.1 Graphical model editors

In [1], a number of technologies for the development of domain-specific modeling lan-
guages (DSMLs) are evaluated; Eclipse (EMF with GEF) is covered, but not GMF. The
evaluation criteria include language evolution to mean the ability to co-evolve models
when the domain model changes. There is no criterion though that relates to GMF’s
particular characteristics of using multiple editor models.

Other GMF- or GEF-based frameworks have been proposed. For instance, the Mu-
vitorKit framework [23] is based on EMF and GEF and specifically meant as an alterna-
tive to GMF for the benefit of additional editor capabilities (e.g., multiple panes) as well
as additional modeling capabilities, thereby requiring less customization of generated
code. There is also the EuGENia framework [20, 19] which raises the level of abstrac-
tion in GMF-based development by using annotations on the domain model, thereby
feeding into code generation. We are not aware of any prior effort to propagate changes
across GMF models.

The ViatraDSM framework [27] replaces GMF in that it allows for versatile map-
pings between abstract and concrete syntax. Live transformations are leveraged to main-
tain the coherence of the two models. Our uni-directional, difference-driven transforma-
tions propagate domain-model changes elsewhere. Our work is specifically targeted at
the mainstream GMF-based approach with its various models.

7.2 Model consistency

The status of GMF models being out-of-sync can be compared to the notion of model
inconsistency in (UML-based) modeling where different models providing different
views may require synchronization. For instance, in [8], inconsistencies between the
different diagrammatic forms in UML models are considered, and possible fixes are
proposed in the form of value changes. In [13], the dependencies between models are
modeled through triple graph grammars in a manner that enables incremental model
synchronization. Our specific contribution is one of reverse engineering: discovering
the GMF model dependencies, and making them operational through automated trans-
formations.

7.3 Co-evolution of metamodels and models

The techniques and the methodology of our work are inspired by research on co-
evolution in model-driven engineering [10, 28]. Much of this work is concerned with
co-transforming models in reply to metamodel changes [29, 15]. In that case metamodel
changes can invalid existing models that have to be adapted to recover the conformance
with the new version of the metamodel.

In this work, we analyze another kind of co-evolution, even though related to the
previous one, which aims at propagating metamodel changes to the other GMF models
according to a given soundness level of the editor. The overall proposal leverages the
difference representation approach proposed by the authors in [5] and already used to
manage co-evolution problems in [6].

7.4 Syntax relationships for textual languages

In [18, 30, 26], approaches for the operationalization of the link between concrete and
abstract syntax definition are described. That is, concrete syntax definitions are cus-
tomized into abstract syntax definitions. In fact, the approach of [18] is based on the
idea that concrete and abstract syntax definitions can be incomplete but they automat-
ically complete each other based on name mapping and other heuristics. In contrast,
the approach of [30] is based on grammar transformations where the concrete syntax
is mapped operationally to the abstract syntax. In [26], yet another approach is exer-
cised, where the abstract syntax definition is associated with the concrete syntax defini-
tion through annotations. (A similar MDE approach is the one of TCS for KM3 [16].)
None of these approaches provides any automated capabilities for change propagation.
The classical approach to concrete-to-abstract syntax mappings is to use an attribute
grammar. There are a number of approaches to align grammar transformations with at-
tribution transformations, see, e.g., [21, 22], but none of these approaches are directly
applicable to the synchronization of abstract and concrete syntax. We contend that the
problem of collections of coordinated GMF editor models seems to be even more com-
plicated than concrete/abstract syntax synchronization.

8 Concluding remarks

We have described the challenge of sound evolution for graphical editors based on
model-driven development with GMF in particular, and we have addressed this chal-
lenge by a system of co-transformations that propagate changes from domain models
to the other editor models.

We have identified a range of options for evolved editors to be unsound, and we have
described corresponding resolution strategies. In the more established area of meta-
model/model co-evolution, models either are not broken, or they are broken and can
be reasonably resolved in an automated manner, or a well-understood problem-specific
contribution to the resolution must be provided manually or through a heuristic. In the
case of co-evolution for editor models, there is a scale of models being broken or un-
sound. Also, each of the various models calls for a designated analysis. Finally, there
are intricate inter-model dependencies.

The existing GMF infrastructure is obviously rather complicated: it consists of a
number of metamodels, libraries, generators, model transformations of industrial scale.
We cannot claim to provide a full-fledged solution to the co-evolution challenge of
GMF—this would require full coverage of Ecore, the metamodeling language of EMF,
and full understanding of the implicit semantics of GMF model dependencies and tools.

The focus of this paper is on the conceptual co-evolution challenge at hand. The de-
velopment of industrial-strength tools for co-evolution or the revision of the GMF suite
is a clearly a major undertaking that is beyond the scope of this paper. The prototypical
implementation of the proposed approach supports all the metamodel changes reported
in Table 3. Nevertheless, we are confident that our transformational approach can be
scaled incrementally over time to cover an increasing number of concrete evolution
scenarios. In the future we plan to support them by providing additional effort in the

implementation of the overall approach. The most critical omission in our methodology
is that we do not currently cover co-evolution of custom code. This is a very intricate
problem by itself, to which we hope to contribute through future work.

In our ongoing research, we try to better understand the co-evolution issues and
associated strategies for the code level of GMF where generated code has been possibly
customized. Based on preliminary research, we can already report that customization
is used by some GMF projects extensively, and hence designated co-evolution support
may provide significant help with real-world editor development.

References

1. D. Amyot, H. Farah, and J.-F. Roy. Evaluation of Development Tools for Domain-Specific
Modeling Languages. In System Analysis and Modeling: Language Profiles, 5th Interna-
tional Workshop, SAM 2006, Revised Selected Papers, volume 4320 of LNCS, pages 183–
197. Springer, 2006.

2. J. Bézivin. On the Unification Power of Models. Jour. on Software and Systems Modeling
(SoSyM), 4(2):171–188, 2005.

3. F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and T. Grose. Eclipse Modeling Frame-
work. Addison Wesley, 2003.

4. A. Cicchetti, D. Di Ruscio, R. Eramo, and A. Pierantonio. Automating Co-evolution in
Model-Driven Engineering. In 12th International IEEE Enterprise Distributed Object Com-
puting Conference, ECOC 2008, Proceedings, pages 222–231. IEEE Computer Society,
2008.

5. A. Cicchetti, D. Di Ruscio, and A. Pierantonio. A Metamodel Independent Approach to
Difference Representation. Journal of Object Technology, 6(9):165–185, October 2007.

6. A. Cicchetti, D. D. Ruscio, and A. Pierantonio. Model Patches in Model-Driven Engineering.
In Models in Software Engineering, Workshops and Symposia at MODELS 2009, Reports
and Revised Selected Papers, volume 6002 of LNCS, pages 190–204. Springer, 2010.

7. Eclipse Foundation. EMF Compare, 2010. http://www.eclipse.org/modeling/
emft/?project=compare.

8. A. Egyed, E. Letier, and A. Finkelstein. Generating and Evaluating Choices for Fixing
Inconsistencies in UML Design Models. In 23rd IEEE/ACM International Conference on
Automated Software Engineering (ASE 2008), pages 99–108. IEEE, 2008.

9. Eclipse project: Eclipse Modeling Framework Project (EMF). http://www.eclipse.
org/modeling/emf/.

10. J.-M. Favre. Meta-Model and Model Co-evolution within the 3D Software Space. In Pro-
ceedings of International Workshop on Evolution of Large-scale Industrial Software Ap-
plications (ELISA 2003), Co-located with the IEEE International Conference on Software
Maintenance (ICSM 2003), 2003.

11. J.-M. Favre. Languages Evolve Too! Changing the Software Time Scale. In IEEE, editor,
8th Interntational Workshop on Principles of Software Evolution, IWPSE, 2005.

12. Eclipse project: GEF - Graphical Editing Framework. http://www.eclipse.org/
gef/.

13. H. Giese and R. Wagner. Incremental Model Synchronization with Triple Graph Grammars.
In Model Driven Engineering Languages and Systems, 9th International Conference, MoD-
ELS 2006, Proceedings, volume 4199 of LNCS, pages 543–557. Springer, 2006.

14. Eclipse project: GMF - Graphical Modeling Framework. http://www.eclipse.org/
gmf/.

15. M. Herrmannsdoerfer, S. Benz, and E. Jürgens. COPE - Automating Coupled Evolution of
Metamodels and Models. In ECOOP 2009 - Object-Oriented Programming, 23rd European
Conference, Proceedings, volume 5653 of LNCS, pages 52–76. Springer, 2009.

16. F. Jouault, J. Bézivin, and I. Kurtev. TCS: a DSL for the specification of textual concrete
syntaxes in model engineering. In Proceedings of Generative programming and component
engineering (GPCE 2006), pages 249–254. ACM, 2006.

17. F. Jouault and I. Kurtev. Transforming Models with ATL. In J.-M. Bruel, editor, MoDELS
Satellite Events, volume 3844 of LNCS, pages 128–138. Springer-Verlag, 2005.

18. B. Kadhim and W. Waite. Maptool—supporting modular syntax development. In T. Gyi-
mothy, editor, Proceedings, Compiler Construction (CC’96), volume 1060 of LNCS, pages
268–280. Springer, Apr. 1996.

19. D. S. Kolovos, L. M. Rose, S. B. Abid, R. F. Paige, and G. Botterweck. Taming EMF and
GMF Using Model Transformation. In 13th ACM/IEEE International Conference on Model
Driven Engineering, Languages and Systems (MoDELS), 2010. to appear.

20. D. S. Kolovos, L. M. Rose, R. F. Paige, and F. A. C. Polack. Raising the level of abstraction
in the development of GMF-based graphical model editors. In MISE ’09: Proceedings of the
2009 ICSE Workshop on Modeling in Software Engineering, pages 13–19. IEEE, 2009.

21. R. Lämmel and G. Riedewald. Reconstruction of paradigm shifts. In Proceedings of the
Second Workshop on Attribute Grammars and their Applications (WAGA 1999), pages 37–
56, Mar. 1999. INRIA Technical Report ISBN 2-7261-1138-6.

22. W. Lohmann, G. Riedewald, and M. Stoy. Semantics-preserving migration of semantic rules
after left recursion removal in attribute grammars. In Proceedings of 4th Workshop on Lan-
guage Descriptions, Tools and Applications (LDTA 2004), volume 110 of ENTCS, pages
133–148. Elsevier Science, 2004.

23. T. Modica, E. Biermann, and C. Ermel. An Eclipse Framework for Rapid Development of
Rich-featured GEF Editors based on EMF Models. In Informatik 2009: Im Focus das Leben,
Beiträge der 39. Jahrestagung der Gesellschaft füur Informatik e.V. (GI), Proceedings, vol-
ume 154 of LNI, pages 2972–2985. GI, 2009.

24. Object Management Group (OMG). MOF QVT Final Adopted Specification, 2005. OMG
Adopted Specification ptc/05-11-01.

25. Object Management Group (OMG). OCL 2.0 Specification, 2006. OMG Document
formal/2006-05-01.

26. J. L. Overbey and R. E. Johnson. Generating Rewritable Abstract Syntax Trees. In Software
Language Engineering, First International Conference, SLE 2008, Revised Selected Papers,
volume 5452 of LNCS, pages 114–133. Springer, 2009.

27. I. Ráth, A. Ökrös, and D. Varró. Synchronization of abstract and concrete syntax in domain-
specific modeling languages—By mapping models and live transformations. Journal of Soft-
ware and Systems Modeling, 2009.

28. S. Vermolen and E. Visser. Heterogeneous Coupled Evolution of Software Languages. In
Model Driven Engineering Languages and Systems, 11th International Conference, MoD-
ELS 2008, Proceedings, volume 5301 of LNCS, pages 630–644. Springer, 2008.

29. G. Wachsmuth. Metamodel Adaptation and Model Co-adaptation. In ECOOP 2007 - Object-
Oriented Programming, 21st European Conference, Proceedings, volume 4609 of LNCS,
pages 600–624. Springer, 2007.

30. D. Wile. Abstract syntax from concrete syntax. In Proceedings, International Conference
on Software Engineering (ICSE’97), pages 472–480. ACM Press, 1997.

