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Abstract. In Model Driven Engineering bidirectional transformations are con-
sidered a core ingredient for managing both the consistency and synchronization
of two or more related models. However, while non-bijectivity in bidirectional
transformations is considered relevant, current languages still lack of a common
understanding of its semantic implications hampering their applicability in prac-
tice.

In this paper, the Janus Transformation Language (JTL) is presented, a bidi-
rectional model transformation language specifically designed to support non-
bijective transformations and change propagation. In particular, the language prop-
agates changes occurring in a model to one or more related models according to
the specified transformation regardless of the transformation direction. Addition-
ally, whenever manual modifications let a model be non reachable anymore by
a transformation, the closest model which approximate the ideal source one is
inferred. The language semantics is also presented and its expressivity and ap-
plicability are validated against a reference benchmark. JTL is embedded in a
framework available on the Eclipse platform which aims to facilitate the use of
the approach, especially in the definition of model transformations.

1 Introduction

In Model-Driven Engineering [1] (MDE) model transformations are considered as
the gluing mechanism between the different abstraction layers and viewpoints by which
a system is described [2, 3]. Their employment includes mapping models to other mod-
els to focus on particular features of the system, operate some analysis, simulate/vali-
date a given application, not excluding the operation of keeping them synchronized or
in a consistent state. Given the variety of scenarios in which they can be employed, each
transformation problem can demand for different characteristics making the expectation
of a single approach suitable for all contexts not realistic.
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Bidirectionality and change propagation are relevant aspects in model transforma-
tions: often it is assumed that during development only the source model of a transfor-
mation undergoes modifications, however in practice it is necessary for developers to
modify both the source and the target models of a transformation and propagate changes
in both directions [4, 5]. There are two main approaches for realizing bidirectional trans-
formations: by programming forward and backward transformations in any convenient
unidirectional language and manually ensuring they are consistent; or by using a bidi-
rectional transformation language where every program describes both a forward and a
backward transformation simultaneously. A major advantage of the latter approach is
that the consistency of the transformations can be guaranteed by construction.

The relevance of bidirectionality in model transformations has been acknowledged
already in 2005 by the Object Management Group (OMG) by including a bidirectional
language in their Query View Transformation (QVT) [6]. Unfortunately, as pointed out
by Perdita Stevens in [7] the language definition is affected by several weaknesses. In
particular, while MDE requirements demand enough expressiveness to write non-bijective
transformations [8], the QVT standard is somewhat uncertain in asserting whether the
language permits such transformations [7]. Moreover, a number of approaches and lan-
guages have been proposed due to the intrinsic complexity of bidirectionality. Each
one of those languages is characterized by a set of specific properties pertaining to a
particular applicative domain [9].

This paper presents the Janus Transformation Language (JTL), a declarative model
transformation language specifically tailored to support bidirectionality and change
propagation. In particular, the distinctive characteristics of JTL are

– non-bijectivity, non-bijective bidirectional transformations are capable of mapping
a model into a set of models, as for instance when a single change in a target model
might semantically correspond to a family of related changes in more than one
source model. JTL provides support to non-bijectivity and its semantics assures
that all the models are computed at once independently whether they represent the
outcome of the backward or forward execution of the bidirectional transformation;

– model approximation, generally transformations are not total which means that tar-
get models can be manually modified in such a way they are not reachable anymore
by any forward transformation, then traceability information are employed to back
propagate the changes from the modified targets by inferring the closest model that
approximates the ideal source one at best.

The language expressiveness and applicability have been validated by implement-
ing the Collapse/Expand State Diagrams benchmark which have been defined in [10] to
compare and assess different bidirectional approaches. The JTL semantics is defined in
terms of the Answer Set Programming (ASP) [11], a form of declarative programming
oriented towards difficult (primarily NP-hard) search problems and based on the sta-
ble model (answer set) semantics of logic programming. Bidirectional transformations
are translated via semantic anchoring [12] into search problems which are reduced to
computing stable models, and the DLV solver [13] is used to perform search.

The structure of the paper is as follows: Section 2 sets the context of the paper
through a motivating example that is used throughout the paper to demonstrate the
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approach and Section 3 discusses requirements a bidirectional and change propagating
language should support. Section 4 describes conceptual and implementation aspects
of the proposed approach and Section 5 applies the approach to a case study. Section 6
relates the work presented in this paper with other approaches. Finally, Section 7 draws
the conclusions and presents future work.

2 Motivating scenario

As aforesaid, bidirectionality in model transformations raises not obvious issues mainly
related to non-bijectivity [7, 14]. More precisely, let us consider the Collapse/Expand
State Diagrams benchmark defined in the GRACE International Meeting on Bidirec-
tional Transformations [10]: starting from a hierarchical state diagram (involving some
nesting) as the one reported in Figure 1.a, a flat view has to be provided as in Fig-
ure 1.b. Furthermore, any manual modifications on the (target) flat view should be back
propagated and eventually reflected in the (source) hierarchical view. For instance, let
us suppose the designer modifies the flat view by changing the name of the initial
state from Begin Installation to Start Install shield (see ∆1 change in
Figure 2). Then, in order to persist such a refinement to new executions of the transfor-
mation, the hierarchical state machine has to be consistently updated by modifying its
initial state as illustrated in Figure 3.

The flattening is a non-injective operation requiring specific support to back prop-
agate modifications operated on the flattened state machine to the nested one. For in-
stance, the flattened view reported in Figure 1 can be extended by adding the alternative
try again from the state Disk Error to Install software (see ∆2 changes in
Figure 2). This gives place to an interesting situation: the new transition can be equally
mapped to each one of the nested states within Install Software as well as to
the container state itself. Consequently, more than one source model propagating the
changes exists.

Intuitively, each time hierarchies are flattened there is a loss of information which
causes ambiguities when trying to map back corresponding target revisions. Some of
these problems can be alleviated by managing traceability information of the transfor-
mation executions which can be exploited later on to trace back the changes: like this
each generated element can be linked with the corresponding source and contribute to
the resolution of some of the ambiguities. Nonetheless, traceability is a necessary but
not sufficient condition to support bidirectionality, since for instance elements discarded
by the mapping may not appear in the traces, as well as new elements added on the
target side. For instance, the generated flattened view in Figure 1.b can be additionally
manipulated through the∆3 revisions which consist of adding some extra-functional in-
formation for the Install Software state and the transition between from Memory

low and Install Software states. Because of the limited expressive power of the
hierarchical state machine metamodel which does not support extra-functional annota-
tions, the ∆3 revisions do not have counterparts in the state machine in Figure 3.
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a) A sample Hierarchical State Machine (HSM).
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b) The corresponding Non-Hierarchical State Machine (NHSM).

Fig. 1. Sample models for the Collapse/Expand State Diagrams benchmark.

Current declarative bidirectional languages, such as QVT relations (QVT-R), are of-
ten ambivalent when discussing non-bijective transformations as already pointed out [7];
whilst other approaches, notably hybrid or graph-based transformation techniques, even
if claiming the support of bidirectionality, are able to deal only with (partially) bijec-
tive mappings [4]. As a consequence, there is not a clear understanding of what non-
bijectivity implies causing language implementors to adopt design decisions which dif-
fer from an implementation to another.

In order to better understand how the different languages deal with non-bijectivity,
we have specified the hierarchical to non-hierarchical state machines transformation
(HSM2NHSM) by means of the Medini3 and MOFLON4 systems. The former is an

3 http://projects.ikv.de/qvt/
4 http://www.moflon.org
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Fig. 2. A revision of the generated non-hierarchical state machine.
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Fig. 3. The source hierarchical state machine synchronised with the target changes.

implementation of the QVT-R transformation language, whereas the latter is a frame-
work which bases on Triple Graph Grammars (TGGs) [15]: our experience with them
is outlined in the following
Medini. When trying to map the generated target model back to the source without any
modification, a new source model is generated which differs from the original one5. In
particular, incoming (outgoing) transitions to (from) nested states are flattened to the
corresponding parent: when going back such mapping makes the involved nested states
to disappear (as Entry and Install in the Install Software composite in Fig-
ure 1). Moreover, the same mapping induces the creation of extra composite states for
existing simple states, like Begin Installation and the initial and final states of the

5 In this paper the details about the experiments done with Medini and TGGs can not be de-
scribed in detail due to space restrictions. The interested reader can access the full implemen-
tation of both the attempts at http://www.mrtc.mdh.se/∼acicchetti/HSM2NHSM.php
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hierarchical state machine. Starting from this status, we made the modifications on the
target model as prescribed by Figure 2 and re-applied the transformation in the source
direction, i.e. backward. In this case, the Start Install shield state is correctly
mapped back by renaming the existing Begin Installation in the source. In the
same way, the modified transition from Disk Error to the final state is consistently
updated. However, the newly added transition outgoing from Disk Error to Install
software is mapped by default to the composite state, which might not be the pre-
ferred option for the user. Finally, the manipulation of the attributes related to memory
requirements and cost are not mapped back to any source element but are preserved
when new executions of the transformation in the target direction are triggered.

MOFLON. The TGGs implementation offered by MOFLON is capable of generating
Java programs starting from diagrammatic specifications of graph transformations. The
generated code realizes two separate unidirectional transformations which as in other
bidirectional languages should be consistent by construction. However, while the for-
ward transformation implementation can be considered complete with respect to the
transformation specification, the backward program restricts the change propagation to
attribute updates and element deletions. In other words, the backward propagation is
restricted to the contexts where the transformation can exploit trace information.

In the next sections, we firstly motivate a set of requirements a bidirectional trans-
formation language should meet to fully achieve its potential; then, we introduce the
JTL language, its support to non-bijective bidirectional transformations, and its ASP-
based semantics.

3 Requirements for bidirectionality and change propagation

This section refines the definition of bidirectional model transformations as proposed
in [7] by explicitly considering non-bijective cases. Even if some of the existing bidi-
rectional approaches enable the definition of non-bijective mappings [7, 5], their va-
lidity is guaranteed only on bijective sub-portions of the problem. As a consequence,
the forward transformation can be supposed to be an injective function, and the back-
ward transformation its corresponding inverse. However, a bidirectional transformation
R between two classes of models, say M and N, and M more expressive than N, is
characterized by two unidirectional transformations
−→
R :M ×N → N
←−
R :M ×N →M∗

where −→R takes a pair of models (m, n) and works out how to modify n so as to enforce
the relation −→R . In a similar way,←−R propagates changes in the opposite direction:←−R is
a non-bijective function able to map the target model in a set of corresponding source
models conforming to M 6. Furthermore, since transformations are not total in general,

6 For the sake of readability, we consider a non-bijective backward transformation assuming
that only M contains elements not represented in N . However, the reasoning is completely
analogous for the forward transformation and can be done by exchanging the roles of M and
N .
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bidirectionality is provided even in the case the generated model has been manually
modified in such a way it is not reachable anymore by the considered transformation.

More formally the backward transformation←−R is a function such that:

(i) if R(m,n) is a non-bijective consistency relation,←−R generates all the resulting mod-
els according to R;

(ii) if R(m,n) is a non-total consistency relation, ←−R is able to generate a result model
which approximates the ideal one.

This definition alone does not constrain much on the behavior of the reverse transforma-
tion and additional requirements are necessary in order to ensure that the propagation
of changes behaves as expected

Reachability. In case a generated model has been manually modified (n′), the back-
ward transformation←−R generates models (m∗) which are exact, meaning that the orig-
inal target may be reached by each of them via the transformation. Formally
←−
R (m,n′) = m∗ ∈M∗
−→
R (m′, n′) = n′ ∈ N for each m′ ∈ m∗

Choice preservation. Let n′ be the target model generated from an arbitrary model
m′ in m∗ as above: the backward transformation has to generate exactly m′ from n′

disregarding the other models t ∈ m∗ such that t 6= m′. In other words, a valid round-
trip process has to be guaranteed even when multiple sources are available [14]
←−
R (m′,

−→
R (m′, n′)) = m′ for each m′ ∈ m∗

clearly the above requirement in order to be met demands adequate traceability infor-
mation management.

In the rest of the paper, the proposed language is introduced and shown to satisfy
the above requirements. The details of the language and its supporting development
environment are presented in Section 4, whereas in Section 5 the usage of the language
is demonstrated by means of the benchmark case.

4 The Janus Transformation Language

The Janus Transformation Language (JTL) is a declarative model transformation lan-
guage specifically tailored to support bidirectionality and change propagation. The im-
plementation of the language relies on the Answer Set Programming (ASP) [11]. This
is a form of declarative programming oriented towards difficult (primarily NP-hard)
search problems and based on the stable model (answer set) semantics of logic pro-
gramming. Being more precise model transformations specified in JTL are transformed
into ASP programs (search problems), then an ASP solver is executed to find all the
possible stable models that are sets of atoms which are consistent with the rules of the
considered program and supported by a deductive process.

The overall architecture of the environment supporting the execution of JTL trans-
formations is reported in Figure 4. The JTL engine is written in the ASP language and
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Fig. 4. Architecture overview of the JTL environment

makes use of the DLV solver [13] to execute transformations in both forward and back-
ward directions. The engine executes JTL transformations which have been written in
a QVT-like syntax, and then automatically transformed into ASP programs. Such a se-
mantic anchoring has been implemented in terms of an ATL [16] transformation defined
on the JTL and ASP metamodels. Also the source and target metamodels of the con-
sidered transformation (MMsource, MMtarget) are automatically encoded in ASP and
managed by the engine during the execution of the considered transformation and to
generate the output models.

The overall architecture has been implemented as a set of plug-ins of the Eclipse
framework and mainly exploits the Eclipse Modelling Framework (EMF) [17] and the
ATLAS Model Management Architecture (AMMA) [18]. Moreover, the DLV solver
has been wrapped and integrated in the overall environment.

In the rest of the section all the components of the architecture previously outlined
are presented in detail. In particular, Section 4.1 presents the JTL engine, the syntax
of transformation language is described in Section 4.2 by using a running example,
whereas the semantic anchoring is described in Section 4.3.

4.1 The Janus transformation engine

As previously said the Janus transformation engine is based on a relational and declara-
tive approach implemented using the ASP language to specify bidirectional transforma-
tions. The approach exploits the benefits of logic programming that enables the specifi-
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1metanode(HSM, state).
2metanode(HSM, transition).
3metaprop(HSM, name, state).
4metaprop(HSM, trigger, transition).
5metaprop(HSM, effect, transition).
6metaedge(HSM, association, source, transition, state).
7metaedge(HSM, association, target, transition, state).
8[...]

Listing 1.1. Fragment of the State Machine metamodel

cation of relations between source and target types by means of predicates, and intrin-
sically supports bidirectionality [9] in terms of unification-based matching, searching,
and backtracking facilities.

Starting from the encoding of the involved metamodels and the source model (see
the serialize arrows in the Figure 4), the representation of the target one is generated
according to the JTL specification (as shown in Section 4.2). The computational pro-
cess is performed by the JTL engine (as depicted in Figure 4) which is based on an
ASP bidirectional transformation program executed by means of an ASP solver called
DLV [13].

Encoding of models and metamodels In the proposed approach, models and meta-
models are considered as graphs composed of nodes, edges and properties that qualify
them. The metamodel encoding is based on a set of terms each characterized by the
predicate symbols metanode, metaedge, and metaprop, respectively. A fragment
of the hierarchical state machine metamodel considered in Section 2 is encoded in
Listing 1.1. For instance, the metaclasses State and Transition are encoded in the
lines 1-2, their properties name, trigger and effect are encoded in the lines 2-5,
and finally the association source and target between state and transition
are encoded in the lines 6-7.

The terms induced by a certain metamodel are exploited for encoding models con-
forming to it. In particular, models are sets of entities (represented through the predicate
symbol node), each characterized by properties (specified by means of prop) and
related together by relations (represented by edge). For instance, the state machine
model in Figure 1 is encoded in the Listing 1.2. In particular, the class s1:State
named Start is encoded in the lines 1 and 4, whereas the class t1:Transition
labeled Start/Install is encoded in the lines 3 and 5-6. The association source
and target between s1, s2 and t1 are encoded in the lines 7-8.

Model transformation execution After the encoding phase, the deduction of the target
model is performed according to the rules defined in the ASP program. The transforma-
tion engine is composed of i) relations which describe correspondences among element
types of the source and target metamodels, ii) constraints which specify restrictions on
the given relations that must be satisfied in order to execute the corresponding map-
pings, and an iii) execution engine (described in the rest of the section) consisting of
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1node(HSM, "s1", state).
2node(HSM, "s2", state).
3node(HSM, "t1", transition).
4prop(HSM,"s1",name,"start").
5prop(HSM,"s2",trigger,"install software").
6prop(HSM,"t1",effect,"start install").
7edge(HSM,"tr1",association,source, "s1","t1").
8edge(HSM,"tr1",association,target, "s2","t1").
9[...]

Listing 1.2. Fragment of the State Machine model in Figure 1

bidirectional rules implementing the specified relations as executable mappings. Rela-
tions and constraints are obtained from the given JTL specification, whereas the execu-
tion engine is always the same and represents the bidirectional engine able to interpret
the correspondences among elements and execute the transformation.

The transformation process logically consists of the following steps:

(i) given the input (meta)models, the execution engine induces all the possible solution
candidates according to the specified relations;

(ii) the set of candidates is refined by means of constraints.

The Listing 1.3 contains a fragment of the ASP code implementing the HSM2NHSM
transformation discussed in Section 2. In particular, the relation between State machine
elements is expressed by means of the terms in lines 1-2. The constraints in line 3-4
impose that each time a state machine occurs in the source model it has to be gener-
ated also in the target model. Then, the relation between State elements is encoded
in line 6-7. Each time a state occurs in the HSM model, the correspondent one in the
NHSM model is generated only if the source element is not a sub-state, vice versa, each
state in the NHSM model is mapped in the HSM model. Finally, the relation between
Composite state and State is encoded in line 13-14. Each time a composite
state occurs in the HSM model a correspondent state in the NHSM model is generated,
and vice versa. Missing sub-states in a NHSM model can be generated again in the
HSM model by means of trace information (see line 10-11 and 16).

Note that the specification order of the relations is not relevant as their execution
is bottom-up; i.e., the final answer set is always deduced starting from the more nested
facts.

Execution engine The specified transformations are executed by a general engine
which is (partially) reported in Listing 1.4. The main goal of the transformation execu-
tion is the generation of target elements as the node’ elements in line 11 of Listing 1.4.
As previously said transformation rules may produce more than one target models,
which are all the possible combinations of elements that the program is able to create.
In particular, by referring to Listing 1.4 target elements are created if the following
conditions are satisfied:

- at least a relation exists between a source element and the candidate target element
(see lines 3-5);
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1relation ("r1", HSM, stateMachine).
2relation ("r1", NHSM, stateMachine).
3:- node(HSM, "sm1", stateMachine), not node’(HSM, "sm1", stateMachine).
4:- node(NHSM, "sm1", stateMachine), not node’(NHSM, "sm1", stateMachine).
5
6relation ("r2", HSM, state).
7relation ("r2", NHSM, state).
8:- node(HSM, "s1", state), not edge(HSM, "ow1", owningCompositeState, "s1", "cs1")

, not node’(NHSM, "s1", state).
9:- node(HSM, "s1", state), edge(HSM, "ow1", owningCompositeState, "s1", "cs1"),

node(HSM, "cs1", compositeState), node’(NHSM, "s1", state).
10:- node(NHSM, "s1", state), not trace_node(HSM, "s1", compositeState), not node’(

HSM, "s1", state).
11:- node(NHSM, "s1", state), trace_node(HSM, "s1", compositeState), node’(HSM, "s1"

, state).
12
13relation ("r3", HSM, compositeState).
14relation ("r3", NHSM, state).
15:- node(HSM, "s1", compositeState), not node’(NHSM, "s1", state).
16:- node(NHSM, "s1", state), trace_node(HSM, "s1", compositeState), not node’(HSM,

"s1", compositeState).
17[...]

Listing 1.3. Fragment of the HSM2NHSM transformation

1is_source_metamodel_conform(MM,ID,MC) :- node(MM,ID,MC), node(MM,MC).
2bad_source :- node(MM,ID,MC), not is_source_metamodel_conform(MM,ID,MC).
3mapping(MM,ID,MC) :- relation(R,MM,MC), relation(R,MM2,MC2),
4 node(MM2,ID,MC2), MM!=MM2.
5is_related(MM,MC) :- relation(R,MM,MC), relation(R,MM2,MC2).
6is_target_metamodel_conform(MM,MC) :- metanode(MM,MC).
7{is_generable(MM,ID,MC)} :- not bad_source, mapping(MM,ID,MC),
8 is_related(MM,MC),
9 is_target_metamodel_conform(MM,MC),

10 MM=mmt.

11node′(MM,ID,MC) :- is_generable(MM,ID,MC), mapping(MM,ID,MC), MM=mmt.

Listing 1.4. Fragment of the Execution engine

- the source element involved in the relation is declared in the input source model
(see lines 1-2);

- the candidate target element conforms to the target metamodel (see line 6);

- finally, any constraint defined in the relations in Listing 1.3 is violated.

The invertibility of transformations is obtained by means of trace information that
connects source and target elements; in this way, during the transformation process,
the relationships between models that are created by the transformation executions can
be stored to preserve mapping information in a permanent way. Furthermore, all the
source elements lost during the forward transformation execution (for example, due to
the different expressive power of the metamodels) are stored in order to be generated
again in the backward transformation execution.
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4.2 Specifying model transformation with Janus

Due to the reduced usability of the ASP language, we have decided to provide support
for specifying transformations by means of a more usable syntax inspired by QVT-R.

In Listing 1.5 we report a fragment of the HSM2NHSM transformation specified in
JTL and it transforms hierarchical state machines into flat state machines and the other
way round. The forward transformation is clearly non-injective as many different hier-
archical machines can be flattened to the same model and consequently transforming
back a modified flat machine can give place to more than one hierarchical machine.
Such a transformation consists of several relations like StateMachine2StateMachine,
State2State and CompositeState2State which are specified in Listing 1.5. They define
correspondences between a) state machines in the two different metamodels b) atomic
states in the two different metamodels and b) composite states in hierarchical machines
and atomic states in flat machines. The relation in lines 11-20 is constrained by means
of the when clause such that only atomic states are considered. Similarly to QVT, the
checkonly and enforce constructs are also provided: the former is used to check if the
domain where it is applied exists in the considered model; the latter induces the modi-
fications of those models which do not contain the domain specified as enforce. A JTL
relation is considered bidirectional when both the contained domains are specified with
the construct enforce.

1transformation hsm2nhsm(source : HSM, target : NHSM) {
2
3 top relation StateMachine2StateMachine {
4
5 enforce domain source sSM : HSM::StateMachine;
6 enforce domain target tSM : NHSM::StateMachine;
7
8 }
9

10 top relation State2State {
11
12 enforce domain source sourceState : HSM::State;
13 enforce domain target targetState : NHSM::State;
14
15 when {
16 sourceState.owningCompositeState.oclIsUndefined();
17 }
18
19 }
20
21 top relation CompositeState2State {
22
23 enforce domain source sourceState : HSM::CompositeState;
24 enforce domain target targetState : NHSM::State;
25
26 }
27}

Listing 1.5. A non-injective JTL program

The JTL transformations specified in the QVT-like syntax are mapped to the corre-
spondent ASP program by means of a semantic anchoring operation as described in the
next section.
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4.3 ASP semantic anchoring

According to the proposed approach, the designer task is limited to specifying relational
model transformations in JTL syntax and to applying them on models and metamodels
defined as EMF entities within the Eclipse framework.

Designers can take advantage of ASP and of the transformation properties discussed
in the previous sections in a transparent manner since only the JTL syntax is used. In
fact, ASP programs are automatically obtained from JTL specifications by means of
ATL transformations as depicted in the upper part of Figure 4. Such a transformation is
able to generate ASP predicates for each relation specified with JTL. For instance, the
relation State2State in Listing 1.5 gives place to the relation predicates in lines 6-7 in
Listing 1.3.

The JTL when clause is also managed and it induces the generation of further ASP
constraints. For instance, the JTL clause in line 16 of Listing 1.5gives place to a couple
of ASP constraints defined on the owningCompositeState feature of the state machine
metamodels (see lines 8-9 in Listing 1.3). Such constraints are able to filter the states
and consider only those which are not nested.

To support the backward application of the specified transformation, for each JTL
relation additional ASP constraints are generated in order to support the management of
trace links. For instance, the State2State relation in Listing 1.5 induces the generation
of the constraints in lines 10-11 of Listing 1.3 to deal with the non-bijectivity of the
transformation. In particular, when the transformation is backward applied on a State
element of the target model, trace links are considered to check if such a state has
been previously generated from a source CompositeState or State element. If such trace
information is missing all the possible alternatives are generated.

5 JTL in practice

In this section we show the application of the proposed approach to the Collapse/Ex-
pand State Diagrams case study presented in Section 2. The objective is to illustrate
the use of JTL in practice by exploiting the developed environment, and in particular
to show how the approach is able to propagate changes dealing with non-bijective and
non-total scenarios. The following sections present how after the definition of models
and metamodels (see Section 5.1), the JTL transformation may be specified and applied
over them (see Section 5.2). Finally, the approach is also applied to manage changes
occurring on the target models which need to be propagated to the source ones (see
Section 5.3).

5.1 Modelling State Machines

According to the scenario described in Section 2, we assume that in the software de-
velopment lifecycle, the designer is interested to have a behavioral description of the
system by means of hierarchical state machine, whereas a test expert produces non-
hierarchical state machine models. The hierarchical and non-hierarchical state machine
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matamodels (respectively HSM and NHSM) are given by means of their Ecore repre-
sentation within the EMF framework. Then a hierarchical state machine model con-
forming to the HSM metamodel can be specified as the model reported in the left-hand
side of Figure 5. Models can be specified with graphical and/or concrete syntaxes de-
pending on the tool availability for the considered modeling language. In our case, the
adopted syntaxes for specifying models do not affect the overall transformation ap-
proach since models are manipulated by considering their abstract syntaxes.

Fig. 5. HSM source model and the correspondent NHSM target model

5.2 Specifying and applying the HSM2NHSM model transformation

Starting from the definition of the involved metamodels, the JTL transformation is spec-
ified according to the QVT-like syntax described in Section 4.2 (see Listing 1.5). By
referring to the Figure 4, the JTL program, the source and target metamodels and the
source model have been created and need to be translated in their ASP encoding in or-
der to be executed from the transformation engine. The corresponding ASP encodings
are automatically produced by the mechanism illustrated in Section 4. In particular,
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the ASP encoding of both source model and source and target metamodels is gener-
ated according to the Listing 1.2 and 1.1, while the JTL program is translated to the
corresponding ASP program (see Listing 1.3).

After this phase, the application of the HSM2NHSM transformation on sampleHSM
generates the corresponding sampleNHSM model as depicted in the right part of Fig-
ure 4. Note that, by re-applying the transformation in the backward direction it is pos-
sible to obtain again the sampleHSM source model. The missing sub-states and the
transitions involving them are restored by means of trace information.

5.3 Propagating changes

Fig. 6. The modified NHSM target model and the correspondent HSM source models



16

Suppose that in a refinement step the designer needs to manually modify the gener-
ated target by the changes described in Section 2 (see ∆ changes depicted in Figure 2),
that is:

1. renaming the initial state from Begin Installation to Start Install shield;
2. adding the alternative try again to the state Disk Error to come back to Install

software;
3. changing the attributes related to memory requirements (m=500) in the state Install

software and cost (c=200) of the transition from Memory low to Install software.

The target model including such changes (sampleNHSM’) is shown in the left part
of the Figure 6. If the transformation HSM2NHSM is applied on it, we expect changes
to be propagated on the source model. However, due to the different expressive power
of the involved metamodels, target changes may be propagated in a number of different
ways, thus making the application of the reverse transformation to propose more so-
lutions. The generated sources, namely sampleHSM’ 1/2/3/4 can be inspected through
Figure 6: the change (1) has been propagated renaming the state to Start Install

shield; the change (2) gives place to a non-bijective mapping and for this reason more
than one model is generated. As previously said, the new transition can be equally tar-
geted to each one of the nested states within Install Software as well as to the
super state itself (see the properties sampleHSM’ 1/2/3/4 in Figure 6). For example, as
visible in the property of the transition, sampleHSM’ 1 represents the case in which the
transition is targeted to the composite state Install Software; finally, the change
(3) is out of the domain of the transformation. In this case, the new values for memory
and cost are not propagated on the generated source models.

Even in this case, if the transformation is applied on one of the derived sampleHSM’
models, the appropriate sampleNHSM’ models including all the changes are generated.
However, this time the target will preserve information about the chosen sampleHSM’
source model, thus causing future applications of the backward transformation to gen-
erate only sampleHSM’.

With regard to the performances of our approach, the time required to execute each
transformation in the illustrated case study is more than acceptable since always took
less than one second. In the general case, when there are a lot of target alternative
models the overall performance of the approach may degrade.

6 Related works

Model transformation is intrinsically difficult, and its nature poses a number of obsta-
cles in providing adequate support for bidirectionality and change propagation [14]. As
a consequence, despite there exists a number of proposals, in general they impose rel-
evant restrictions of the characteristics of the involved transformations. For instance,
approaches like [19–22] require the mappings to be total, while [19, 20, 5] impose the
existence of some kind of bijection between the involved source and target. Such com-
parison is discussed in [14].
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[7] discusses bidirectional transformations focusing on basic properties which such
transformations should satisfy. In particular, (i) correctness ensures a bidirectional trans-
formation does something useful according to its consistency relation, (ii) hippocratic-
ness prevents a transformation from does something harmful if nether model is modified
by users, (iii) finally, undoability is about the ability whether a performed transforma-
tion can be canceled. The paper considers QVT-R as applied to the specification of
bidirectional transformation and analyze requirements and open issues. Furthermore, it
points out some ambiguity about whether the language is supposed to be able to specify
and support non-bijective transformations.

Formal works on bidirectional transformations are based on graph grammars, es-
pecially triple graph grammars (TGGs) [15]. These approach interpret the models as
graphs and the transformation is executed by using graph rewriting techniques. It is
possible to specify non-bijective transformations; however, attributes are not modeled
as part of the graphs.

In [5] an attempt is proposed to automate model synchronization from model trans-
formations. It is based on QVT Relations and supports concurrent modifications on
both source and target models; moreover, it propagates both sides changes in a non de-
structive manner. However, some issues come to light: in fact, conflicts may arise when
merging models obtained by the propagation with the ones updated by the user. More-
over, it is not possible to manage manipulations that makes the models to go outside the
domain of the transformation.

The formal definition of a round-trip engineering process taking into account the
non-totality and non-injectivity of model transformations is presented in [14]. The valid
modifications on target models are limited to the ones which do not induce backward
mappings out the source metamodel and are not operated outside the transformation
domain. The proposal discussed in this paper is capable also to manage target changes
inducing extensions of the source metamodel by approximating the exact source as a
set of models; i.e., the set of possible models which are the closest to the ideal one from
which to generate the previously modified model.

In [23] where the author illustrates a technique to implement a change propagat-
ing transformation language called PMT. This work supports the preservation of target
changes by back propagating them toward the source. On the one hand, conflicts may
arise each time the generated target should be merged with the existing one; on the
other hand, the back propagation poses some problems related to the invertibility of
transformations, respectively.

Declarative approaches to model transformations offer several benefits like for ex-
ample implicit source model traversal, automatic traceability management, implicit tar-
get object creation, and implicit rule ordering [9, 24]. A number of interesting applica-
tions is available, varying from incremental techniques [25] to the automation of trans-
formation specifications by means of the inductive construction of first-order clausal
theories from examples and background knowledge [26]. One of the closest works with
respect to the model transformation mechanism presented here is xMOF [27], which is
based on a constraint solving system which enables the specification of model transfor-
mations by means of OCL constraints on involved model elements, aiming to provide
bidirectionality and incremental transformations.
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We already introduced in [28] an ASP based transformation engine enabling the
support for partial and non injective mappings. However, the inverse transformation has
to be given by the developer and a valid round-trip process is not guaranteed, as already
discussed throughout the paper. For this purpose, we introduced JTL, a transformation
language specifically designed for supporting change propagation with model approxi-
mation capabilities.

7 Conclusion and future work

Bidirectional model transformations represent at the same time an intrinsically difficult
problem and a crucial mechanism for keeping consistent and synchronized a number of
related models. In this paper, we have refined an existing definition of bidirectional
model transformations (see [7]) in order to better accommodate non-bijectivity and
model approximation. In fact, existing languages fail in many respect when dealing
with non-bijectivity as in many cases its semantic implications are only partially ex-
plored, as for instance in bidirectional QVT transformations whose standard does not
even clarify whether valid transformations are only bijective transformations. Naturally,
non-bijective transformations can possibly map a number of source models to the same
target model, therefore whenever a target model is manually modified, the changes must
be back propagated to the related source models.

This paper presented the Janus Transformation Language (JTL), a declarative model
transformation approach tailored to support bidirectionality and change propagation
which conforms to the requirements presented in Section 3. JTL is able to map a model
into a set of semantically related models in both forward and backward directions,
moreover whenever modifications to a target model are making it unreachable from
the transformation an approximation of the ideal source model is inferred. To the best
of our knowledge these characteristics are unique and we are not aware of any other
language which deals with non-bijectivity and model approximation in a similar way.
The expressivity and applicability of the approach has been validated against a relevant
benchmark, i.e., the transformation among hierachical and non-hierarchical state ma-
chines as prescribed by [10]. The language has been given abstract and concrete syntax
and its semantics is defined in terms of Answer Set Programming; a tool is available
which renders the language interoperable with EMF 7.

As future work we plan to extend the framework with a wizard helping the archi-
tect to make decisions among proposed design alternatives. The alternatives are initially
partitioned, constrained, abstracted, and graphically visualized to the user. Then, when
decisions are made, they are stored and used to drive subsequent decisions. Another
interesting future work is to investigate about incremental bidirectional model trans-
formations. If a developer changes one model, the effects of these changes should be
propagated to other models without re-executing the entire model transformation from
scratch. In the context of bidirectional transformation it should coexist with the ability
to propagate changes in both the directions but preserves information in the models and,
in our case, also allows the approximation of models.

7 http://www.di.univaq.it/romina.eramo/JTL
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