
Towards better tools for the analysis and quality
assurance of FOSS distributions

Ralf Treinen

PPS, Université Paris Diderot

April 26, 2011

Mancoosi at Paris-Diderot

This is joint work with:

Pietro Abate Jaap Boender Yacine Boufkhad

Roberto Di Cosmo Jérôme Vouillon Stefano Zacchiroli

Contents

1 Context: Components and FOSS

2 EDOS and Mancoosi: formal analysis of package relationships

3 Possible evolutions of component repositories

Software Components

Proposed 1968 by Douglas McIlroy as a remedy to the “software
crisis”.
Some characteristics of components:

1 Multiple-use

2 Encapsulated i.e., non-investigable through its interfaces

3 A unit of independent deployment and versioning

4 Composable with other components

Problem: conflict between (3) and (4):

Components evolve independently of each other, . . .

. . . but they still have to work together.

The importance of components

Components can exist at different level: objects in the sense
of an object oriented programming language, plugins for a
specific platform, software packages in a GNU/Linux
distribution, . . .

Main reason for bundling software items (programs, libraries,
documentation, . . .) into packages: ease of deployment and
installation.

Without Software packages we either would have

one single large system image
or compile and install every single program by hand

Sharing of functionality between open components, instead of
autonomous and closed software packages.

Free and Open Source Software (F/OSS)

The F/OSS infrastructure is particularly challenging:

no central architect

fast, distributed development

strong interdependencies

very large code base (Debian: > 30.000 packages)

provide packages for several compute architectures at a time
(Debian: currently 11 architectures officially supported)

possibly provide packages for several operating systems
(Debian: 2 released OS, 1 experimental OS)

Number of binary packages in Debian

Version 6.0 (Feb 2011): 28.000 packages

Players in the F/OSS universe

“Upstream” authors : independent, develop software

(sometimes) intermediate software assemblers: CPAN (perl),
texlive (TEX)

Distribution editors : create a coherent software distribution
(Debian, Ubuntu, Mandriva, . . .)

Sysadmins: install distribution on machine; updates

Users

Workflow for the Package Maintainer

Get upstream program. Is it fit for release?

Create/update a source package: format mostly useful for
specific tools of the distribution (for instance: Debian)
Compilation of source packages produces (in general several)
binary packages.

Testing, use automatic tools for assessing the quality (rare!)

Publish both source package and binary packages.

Automatic compilation for other architectures/OS

Wait for bug reports . . .

Workflow for the Distribution Editor

Source and binary packages are coming from individual
maintainers

Is the quality of individual packages OK?

Is the quality of the collection of packages OK?

From time to time: freeze the packages, throw out the bad
ones, fix coherence problems, make an official release of a
complete collection. (this is always a major pain!)

The current state of Quality Assurance in F/OSS

Tests, sometimes automatic, for compilation and installation.

No automatic generation of test cases

No usage of automatic verification tools

Urgent need of automatic tools for quality assurance both of
individual packages, and of the distribution as a whole.

Workflow for the Sysadmin

Initial installation of a complete distribution

Add new packages to an existing installation

Upgrade individual packages, or all packages (new
functionalities, bug fixes, security updates)

Probably: remove packages.

Why is FOSS interesting?

Components, however components also exist elsewhere.

A problem of scale: Large number of components, rapid
evolution.

All the data is freely available to everyone.

We want to contribute to the advancement of FOSS.

The Mancoosi Project

Mancoosi: Managing the Complexity of the Open Source
Infrastructure

European Research Project in the 7th Framework

Duration: Feb 2008 −→ Mai 2011

Successor of the EDOS European project
(Jan 2004 −→ Jun 2007)

Mancoosi Project Partners

Concrete view of a package

A package consists of

An archive of files that are to be placed on the target host
(for instance a file /usr/bin/ocaml)

Optionally some actions that are performed when installing,
upgrading, or removing a package: create symbolic links,
create or remove user and groups, (un)register
documentation, update hashtables, restart or stop services, . . .

Concrete view of packages (2)

A package has prerequisites:

System resources (disk space, . . .)

A certain version of a certain operating system

File system structure (existence of, and access rights to
certain directories)

Availability of software libraries in a specific version

Executability of other stand-alone tools

Abstract view of packages

A package contains metadata:

A package provides a certain functionality that is denoted by
the name of the package, probably refined by the version
number.

A package may also provide a even more abstract functionality
(feature, virtual package), i.e. web-browser

All prerequisites are expressed through relations to other
packages (or virtual packages), or possibly other meta-data
i.e. space consumption of the package.

A concrete example of metadata

Package: hevea

Installed-Size: 2112

Maintainer: Debian OCaml Maintainers

<debian-ocaml-maint@lists.debian.org>

Architecture: all

Version: 1.10-5

Depends: gs, netpbm (>= 2:9.10-1), ocaml-base-nox-3.10.2,

tetex-bin | texlive-base, tex-common (>= 1.10)

Suggests: hevea-doc

Description: translates from LaTeX to HTML, info, or text . . .
Homepage: http://hevea.inria.fr/

Tag: implemented-in::ocaml, interface::commandline, . . .

An more complex example

Package: myspell-hu

Architecture: all

Source: magyarispell

Version: 0.99.4-1.1

Provides: myspell-dictionary, myspell-dictionary-hu,

myhungarian

Depends: dictionaries-common (>= 0.10) | openoffice.org-updatedicts

Suggests: openoffice.org

Conflicts: openoffice.org (<= 1.0.3-2), myhungarian

Model (simplified)

Names, Versions and Constraints

Set N of names

Set V of versions: total and dense order

Set Con of constraints : = v , > v , < v , . . . where v ∈ V

A package (c , v ,D,C) consists of

a package name n,

a version v ,

a set of dependencies D ∈ P(P(N×Con)),

a set of conflicts C ∈ P(N×Con),

A repository

is a set of packages, such that no two different packages carry the
same name.

An R-installation

is a set I ⊆ R with:

abundance For each element d ∈ p.D there exists (n, c) ∈ d and
a package q ∈ I such that q.n = n and p.v ∈ [[c]].

peace For each (n, c) ∈ p.C and package q ∈ I , if q.n = n
then q.v 6∈ [[c]].

flatness For all p, q ∈ I : if p 6= q then p.n 6= q.n

Installability

p ∈ R is R-installable if there exists an R-installation I with p ∈ I .

Is a installable in R?

Repository R

Package: a

Vers ion : 1

Depends: b, c, d

Package: b

Vers ion : 17

Package: c

Vers ion : 42

Con f l i c t s : b

Is a installable in R?

Repository R

Package: a

Vers ion : 1

Depends: b, c

Package: b

Vers ion : 17

Package: c

Vers ion : 42

Con f l i c t s : b > 15

Is a installable in R?

Is a installable in R?

Repository R

Package: a

Vers ion : 1

Depends: b >= 18, c

Package: b

Vers ion : 17

Package: b

Vers ion : 18

Package: c

Vers ion : 42

Depends: b <= 17

Is a installable in R?

Repository R

Package: a

Vers ion : 1

Depends: b, c|d

Package: b

Vers ion : 17

Package: c

Vers ion : 42

Con f l i c t s : b > 15

Package: d

Vers ion : 87

Depends: b < 20

Modeling packages and dependencies

(Package,version) = Propositional variable
(package installed = value true)

Complete installation = propositional model

Modeling dependencies: p → φ where φ is a positive formula

Package p is not available: ¬p.

Dependency theory D: dual Horn theory:
Models are closed under union

p is installable w.r.t. D : D ∧ p satisfiable.

Since D is dual Horn: p, q co-installable iff p installable and q
installable (so far).

Modeling conflict relations

conflicts

A package p may be in conflict with several other packages
q1, q2,

Conflict theory C: {¬(p ∧ q1),¬(p ∧ q2), . . .}
(neither Horn nor dual Horn)

p is installable: p ∧ P ∧ C is satisfiable.

A result from EDOS [ASE 2006]

Installability of packages (measured in the number of packages) is
NP-complete.

Modeling virtual packages

virtual package

If packages p1, . . . , pn provide a virtual package q:

q → p1 ∨ . . . ∨ pn

Exclusivity constraint

Package p both provides q and conflicts with q.

For every package p′ 6= p that provides q: ¬(p ∧ p′).

Use case: allow only one package that provides a functionality,
for instance mail-transport-agent.

EDOS-debcheck

Written by Jérôme Vouillon in 2005, using SAT-solver
technology

Computes, for a complete distribution, all non-installable
packages with explanation.

And it does this in a few seconds.

Integration into pkglab, an interactive system to explore
package repositories of package-based software distributions.

Usage in Debian

Web service edos.debian.net

Uninstallable packages in testing/main 17–23 June 2008:

Date alpha amd64 arm armel hppa i386 ia64 mips mipsel powerpc s390 sparc some every
23/06 367(7) 14(2) 217(4) 348(21) 369(9) 12(4) 48(3) 267(3) 269(3) 21(3) 56(3) 24(3) 628(32) 8(2)
∆ +0/−0 +0/−0 +0/−1 +0/−0 +0/−0 +0/−0 +0/−0 +0/−0 +0/−0 +0/−3 +0/−0 +0/−0 +0/−0 +0/−0
22/06 367(7) 14(2) 218(4) 348(21) 369(9) 12(4) 48(3) 267(3) 269(3) 24(4) 56(3) 24(3) 628(32) 8(2)
∆ +0/−0 +0/−0 +0/−0 +0/−0 +0/−0 +0/−0 +0/−0 +0/−3 +0/−3 +0/−0 +0/−3 +0/−3 +0/−0 +0/−0
21/06 367(7) 14(2) 218(4) 348(21) 369(9) 12(4) 48(3) 270(4) 272(4) 24(4) 59(4) 27(4) 628(32) 8(2)
∆ +0/−0 +0/−3 +0/−3 +0/−9 +0/−0 +0/−0 +0/−0 +0/−0 +0/−0 +0/−0 +0/−0 +0/−0 +0/−7 +0/−3
20/06 367(7) 17(3) 221(5) 357(24) 369(9) 12(4) 48(3) 270(4) 272(4) 24(4) 59(4) 27(4) 635(35) 11(3)
∆ +7/−0 +3/−0 +4/−3 +3/−27 +4/−0 +3/−0 +3/−0 +5/−11 +5/−0 +5/−0 +5/−0 +5/−0 +5/−16 +3/−0
19/06 360(5) 14(2) 220(6) 381(31) 365(8) 9(3) 45(2) 276(2) 267(2) 19(2) 54(2) 22(2) 646(42) 8(2)
∆ +0/−0 +0/−0 +0/−0 +0/−0 +0/−0 +0/−0 +0/−0 +0/−0 +0/−0 +0/−0 +0/−0 +0/−0 +0/−0 +0/−0
18/06 360(5) 14(2) 220(6) 381(31) 365(8) 9(3) 45(2) 276(2) 267(2) 19(2) 54(2) 22(2) 646(42) 8(2)
∆ +0/−0 +0/−0 +0/−0 +0/−0 +0/−0 +0/−0 +0/−0 +0/−0 +0/−0 +0/−0 +0/−0 +0/−0 +0/−0 +0/−0
17/06 360(5) 14(2) 220(6) 381(31) 365(8) 9(3) 45(2) 276(2) 267(2) 19(2) 54(2) 22(2) 646(42) 8(2)

Use in Debian (done by us)

Release Team is using this information when finalising an
official release.

Detect file conflicts between packages: find pairs of packages
that contain the same file and that can be installed together.

Use in Debian (not done by us)

Verify installability of packages before uploading them to the
archive, currently done by the embedian sub-project (debian
for embedded systems).

Used by debian autobuilders to avoid useless attempts to
create build environments.

Putting results into practice

The FOSS world is to a large extend influenced by a culture of
volunteer communities (despite the fact that there are also
players with important commercial interests).

Do-ocracy : if you want to change the way things are done you
have to implement it yourself and demonstrate that it works.

Putting results into practice:

Identify a real problem in your community
Solve the problem with your technology
Integrate your solution into your community’s infrastructure
and workflow
Convince people that it is useful.

The problem

distcheck

Given a repository R and a package (p, n) ∈ R, is (p, n)
uninstallable w.r.t R?

Our question

Given a repository R and a package (p, n) ∈ R, is (p, n)
uninstallable w.r.t all possible futures of R?

To be made more precise

Define “possible futures of R”

Example 1: Is (foo,1) installable?

Package: foo

Vers ion : 1

Depends: baz (= 2.5) | bar (= 2.3),

bar (> 2.6) | baz (< 2.3)

Package: bar

Vers ion : 2

Package: baz

Vers ion : 2

Con f l i c t s : bar (< 3)

Example 2: Will (foo,1) ever be installable?

Package: foo

Vers ion : 1

Depends: baz (= 2.5) | bar (= 2.3),

bar (> 2.6) | baz (< 2.3)

Package: bar

Vers ion : 2.6

Package: baz

Vers ion : 2.5

Con f l i c t s : bar (> 2.6)

Is this useful?

One asks for installability of the current version of package p
in all futures of R.

If a future F of R contains (p,m) with m > n then (p, n) is
(vacuously) not installable in F .

The question is in reality about all futures of R that contain
the original version of p.

Interesting for QA: such a package definitely needs action,
since noone else can fix it!

Is the problem difficult?

Not-installability of a package w.r.t. a current repository:
co-NP complete.

For installability one guesses an installation (coherence is
trivial to verify)
Allows to encode 3-SAT

Not-installability of a package w.r.t. all possible futures:

co-NP hard, since it allows to encode the original
non-installability problem.
however, there are infinitely many possible futures of a
repository!

What are possible futures of R?

First approximation:

Packages can move to newer versions (there is a total and
dense ordering on version numbers)

Newer versions of packages my change their relations in any
way (quite pessimistic approximation)

Packages may be removed.

New packages may pop up.

There are infinitely many possible futures.

What are possible futures of R?

A further complication (ignored for most of the rest of this talk):

In a distribution, packages are upgraded by clusters of source
packages. ⇒ all packages with the same source are
synchronized in their version.

This ignores abnormal situations due to autobuilder failure.

It also ignores the fact that packages may change their source
(this happens!)

Problem: a source package may generate binary packages
with different versions ⇒ it is not clear how future versions of
binary packages relate.

Formalization of futures

Futures

A repository F is a future of a repository R, written R F , if

monotonicity For all p ∈ R and q ∈ F : if p.n = q.n then
p.v ≤ q.v .

Upgrades

If R F , we say that a package p ∈ R is upgraded when there is
a q ∈ F with p.n = q.n and p.v < q.v .

Admissible properties (1)

names(R): names of packages defined in R.

Focus of package sets

Let R,P be two sets of packages The R-focus of P is

πR(P) := {(p.n, p.v)) | p ∈ P, p.n ∈ names(R)}

Focused properties

A property φ of installations is called R-focused if for all
installations I1 and I2 (not necessarily subsets of R)

πR(I1) = πR(I2) implies φ(I1) = φ(I2)

Admissible properties (2)

Admissible properties of futures

Let R be a repository. A property ψ of futures of R is called
admissible if there is an R-focused property φ of installations such
that for all futures F of R:

ψ(F)⇔ for all F -installations I : φ(I)

Outdated packages

Let R be a repository. A package p ∈ R is outdated in R if p is
not installable in any future F of R.

Outdated is admissible

p is outdated in R iff ∀F .∀I ∈ Inst(F), φout(I) where

φout(I) = (p.n, p.v) 6∈ πR(I)

Optimistic Futures

Definition

A repository F is an optimistic future of a repository R if any
package in F − R has empty dependency and conflicts.

Lemma

Let R be a repository, and ψ an admissible property of repositories.
The following two assertions are equivalent:

All futures F of R satisfy ψ.

All optimistic futures F of R satisfy ψ.

Conservative Futures

depnames(R): names of packages used in dependencies in R.

Definition

Let R F . F is a conservative future of R if

names(F) = names(R) ∪ depnames(R)

Lemma

Let R be a repository, and ψ an admissible property of repositories.
The following two assertions are equivalent:

All futures F of R satisfy ψ.

All optimistic and conservative futures F of R satisfy ψ.

What remains to solve

We have only a finite set of new package names.

We may ignore package removals.

New versions of packages have no relations (but conflict
implicitly with different versions of packages with the same
name, due to Debian semantics).

Remaining problem : infinitely many future versions of
packages, hence infinitely many future repositories.

Finitely many versions

It is sufficient to consider, for package name p, version
numbers that are explicitly mentioned, plus one intermediate,
plus one that is beyond.

Example : (p, 5) ∈ R
Dependencies and conflicts in R on (p, �9), (p, �12), where �
is any comparison.

Representatives of future versions of p :

5, 6(∈]5, 9[), 9, 10(∈ [9, 12[), 12, 13(> 12)

Further reduction: observational equivalence

Consider all unary predicates on versions of p occurring in R

Build quotient under observational equivalence: identifying
versions that behave the same on all these unary predicates.

Still, that’s a huge number of repositories

So far we have a finite set (but huge) set F of repositories.

Packages (p, n) in any repository in F are unique (same
metadata).

We can build a new repository :
⋃

F , containing
representatives of the complete future of all relevant packages.

,Any R ∈ F -installation is a
⋃

F -installation.

/There are
⋃

F installations that aren’t in any future
repository because . . .

The problem when lumping together all futures

Binary packages coming from the same source are
synchronized !

When considering
⋃

F : we have to exclude installations that
mix binary packages coming from the same source but
different version.

Solution: add (versioned!) provides and conflicts:

If (p, n) has source s: Add
Provides: src:s (= n)
Conflicts: src:s (6= n)

Finally : One single distcheck run on a large repository .

Conclusion

Class of admissible properties of futures.

Finite set of futures to consider.

Another instance of this class: “In any future in which p is
upgraded (now matter how) and without touching any other
packages, it is no longer possible to install q”.

To do: define a logic for package repositories!

	Context: Components and FOSS
	EDOS and Mancoosi: formal analysis of package relationships
	Possible evolutions of component repositories

