Optimized Union of Non-disjoint Distributed data sets

Itay dar, Tova milo, Elad Verbin Tel Aviv University

OUTLINE

- Motivation
- o (Optimal) Union Plan
- Compact Information Gathering
- Experimental Evaluation
- Related Work & future work

MOTIVATION

P2P setting

Download of data items from several sources

- In MANCOOSI download packages (info on packages) residing on several sources (peers)
- Sources often overlap and contain common items
- We want to avoid transmission of redundant information

MOTIVATION (cont.)

- Abstractly can be viewed as a union query
- Define the notion of optimal union plan (that minimize redundant data transmission)
- Devise efficient algorithm to compute and execute such plans
- Optimally exploit the network capabilities
- A key challenge is the lack of global map of items distribution

FORMAL PROBLEM DEFINITION

A Peer To Peer Environment

- Each peer p_i is holding a set of data items items(p_i)
- All data items have the same size
- A Simple network model
 - communication is discreet Working in rounds
 - Communication is considered Reliable
 - Each peer has a static upload and download rate
 - Download(p_i)
 - Upload(p_i)
 - There are no other networks constraints

UNION PLAN

Output of the form of the form of the form, to, item, time) s.t

- No bandwidth constraints are breached
- All items in items(P) are sent to the target eventually
- Optimal plan the maximal time point is minimal

o Direct Plan

- Non redundant plan
- Theorem: there always exist a direct nonredundant plan that is optimal

UNION PLAN (2)

Proof sketch

- Each plan can be transformed into a non redundant plan
- We can remove all the item sent on path which don't reach the target
- We can look at the set of items each peer is sending out from his on local items, all the sets are disjoint and cover all the union set.
- The plan for this sets of items is optimal, we show in the next part we can build an optimal direct plan given a disjoint set of items so both plans are equivalent and we are done.

OPTIMAL UNION PLAN

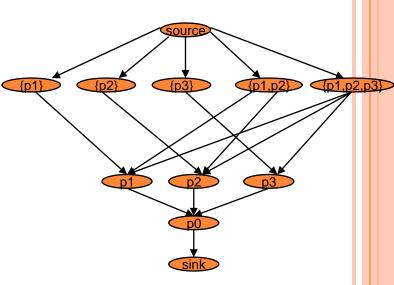
- Global Knowledge Solution
 - Oracle knows the items each peer holds
- Assign data algorithm
 - Decide which item will be sent by which peer
- Send data algorithm
 - Create the concrete plan which tells when each peer should send his data items

ASSIGN DATA ALGORITHM

- Decide which peer send which data items
- Using CheckTime(t) algorithm
 - Which Assigns data to peers given the number of rounds, notify upon failure.
 - Equivalence class is the set of items that resides only in a given set of peers.
 - Using max flow Computation the items from each equivalence class will be split among the equivalence class members

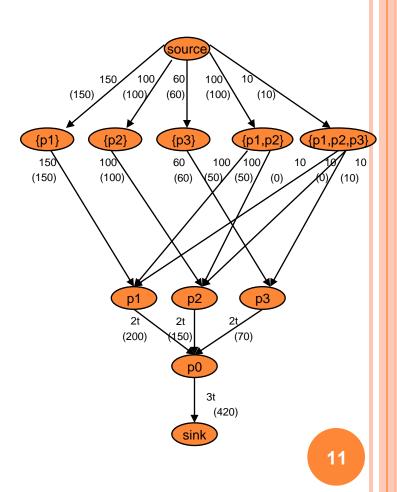
СнескТіме

- Graph vertex structure
 - Source vertex
 - equivalence class layer
 - Peers layer
 - Target vertex
 - Sink vertex
- Graph edges structure
 - From Source to each equivalence class vertex (equivalence class size as the edge weight)
 - Each equivalence class vertex to all his peer members vertex (equivalence class size as the edge weight)
 - Each peer has an edge to the target vertex (weight equals the amount of data units he can send in t rounds)
 - The target vertex is connected to the sink (weight equals the amount of data the target can possibly receive in t rounds)



EXAMPLE

- 3 peers p₁,p₂,p₃ each can upload 2 item at each round
- The target p₀ can receive
 3 items at each round
- \circ p₁ and p₂ share 100 items
- All three peers share 10 items
- o p₁ also holds 150 items
- o p₂ also holds 100 items
- o p₃ also holds 60 items



ASSIGN DATA (3)

- Searching for minimum time using check time (search boundaries using send data)
- Complexity
 - Polynomial in the size of the graph which is exponential in the number of peers
- Correctness proof sketch
 - Plan -> flow (trivial)
 - Flow -> plan (needs send data part)

SEND DATA ALGORITHM

- Decide the peers data sending order
- Naïve solution
- Why naïve is not good enough ?
 - 3 peers each can send 2 items each round and get 3 items each round
 - P0 have 300 items
 - P1 and p2 have 50 items
 - Naïve ends after 175 rounds
 - Non naïve ends after 150 rounds
- Time to finish Bottleneck metric

```
SendData(input: P, p_0; output: U)
1
     t := 0; U := \emptyset;
     for each p \in P
2
3
        \sharp items(p) := |items(p)|;
4
        time\_to\_finish(p) := \sharp items(p)/upload(p);
5
     end for
     while there exists some peer p with \sharp items(p) > 0
6
7
        t := t + 1;
        \sharp send(p) := 0 for every p \in P;
8
        free := download(p_0);
9
10
        while free > 0
11
          choose a peer p, among those with \sharp send(p) < upload(p),
12
             where time\_to\_finish(p) is maximal.
13
           \sharp send(p) := \sharp send(p) + 1;
          \sharp items(p) := \sharp items(p) - 1;
14
15
          time\_to\_finish(p) := \#items(p)/upload(p);
16
          \sharp free := free - 1;
17
        end while
18
        for each p \in P, with \sharp send(p) > 0, add to U instructions
19
        to send, at time t, \sharp send(p) new items from p to p_0;
     end while
20
21
     return U:
```

Figure 3.2: The SendData Algorithm

SEND DATA ALGORITHM (2)

correctness proof sketch

- Time to finish invariant
 - If(time_to_finish(pi) > time_to_finish(pj) at any round then time_to_finish(pi) > time_to_finish(pj) - 1

Assign data correctness

- Allocating bandwidth according to send data
 - Flow Constraints are not breached due to algorithm nature
 - we shall look at the first non saturated round
 - one of the peer sending data there has been sending data from the start, and will do so till the end (bottleneck)
 - the edge from the peer to the target vertex enforce the plan time.

Send Data Complexity

O(m*n+nlogn)

SEND DATA ALGORITHM

Optimized version

- Bandwidth allocation is fixed during consecutive rounds
- We also need to change the plan format
- Groups of peer with different time to finish gets the same amount of bandwidth to the group until 2 groups get merged.
- The bandwidth allocation inside a group during a time interval doesn't matter – so we make it regular (compress plan size)

Complexity

O(P²)

COMPACT INFORMATION GATHERING

- Deriving the Plan
- Executing the Plan
- The c-Cluster Algorithm

DERIVING THE PLAN

- Assign data needs
 - The peers upload and download speeds
 - All equivalence class sizes
- Send data needs
 - The peers upload and download speeds
 - Each peer data items AD allocation size

EQUIVALENCE CLASS SIZES ESTIMATION

Bottom k sketches

• Computing jaccard distance

$$\frac{|s_1 \cap \ldots \cap s_j|}{|s_1 \cup \ldots \cup s_j|}$$

Estimating set size using interpolation

$$v_i = \frac{|s_i|}{|s_1 \cup \dots \cup s_j|}$$

• s_i is known, v_i is computed, so we can compute

• By using the Inclusion exclusion formula we can compute $\left|\bigcap_{p\in\hat{P}} items(p) - \bigcup_{p\in P-\hat{P}} items(p)\right|$ as it equals $|\bigcap_{p\in\hat{P}}| - \sum_{p\in P-\hat{P}} |items(p)|$ $+ \sum_{p,p'\in P-\hat{P}} |items(p) \cap items(p')|$ $- \sum_{p,p',p^*\in P-\hat{P}} |items(p) \cap items(p') \cap items(p^*)|$ $+ \dots$

 $-(+) \mid \bigcap_{p \in P - \hat{P}} items(p) \mid$

EQUIVALENCE CLASS SIZES ESTIMATION

- Si is choose such it's the biggest group.
- Drawbacks
 - Exponential number of computation in the Inclusion exclusion formula
 - Error builds up during computation.
 - Computing the distance for a high number of groups is inaccurate.

EXECUTING THE PLAN

- Each peer needs to know which items he needs to send according to the plan
- To Do So we need to identify each item set membership.
- Using Compressed Wrapped bloom filters
 - Bloom filter
 - Compressed Bloom filters
 - Compressed Wrapped bloom filters

THE C-CLUSTER ALGORITHM

- Scalability problem
 - Exponential number of sets
 - Estimation breaks down with too many sets involved
- c-Cluster Algorithm
 - Estimating Replication level

	(1, 1) $(1, 1)$ $(1, 2)$		
	c-Cluster(input: P , p_0 , $c > 1$, r ; output: U)		
1	while the number of redundant items in P is above		
	the threshold r		
2	divide P into pairwise disjoint clusters (subsets of peers)		
	of size c		
3	call AssignData for each cluster;		
4	for each $p \in P$,		
	remove from $items(p)$ all the elements that where		
	not assigned to p by the AssignData;		
5	end while		
6	call SendData to obtain a union plan U for the peers;		
7	return U ;		

Figure 4.1: The c-Cluster Algorithm

EXPERIMENTAL EVALUATION

Syntactic results

- Model settings
 - o 3 * 1024 *1024 data items
 - o 750k down 75k up adsl cable line
 - Number of peers varied from 2 till 65

Parameters to tune

- Cluster size
- Bloom filter size
- Replication threshold

EXPERIMENTAL EVALUATION

Comparison Metrics

- PR
 - Naïve algorithm
 - o Send data from the peers in a round robin manner
 - PR = (Plan time + plan creation time)/ naïve time
 - PR-data = (Plan time) / naïve time
- Error rate
- Performance vs. optimal where possible

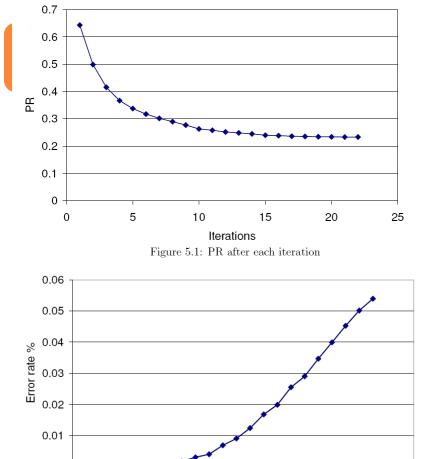
SYNTACTIC RESULTS

- C cluster size
 - 2 was chosen due to high bloom filter overhead with larger c sizes
- Bloom filter type and size
 - 25 peers experiment

bloom filter	error rate $\%$	\mathbf{PR}
4	3.155	0.15
4 w&c	2.639	0.15
8	0.190	0.20
8 w&c	0.145	0.20
16	0.005	0.28
16 w&c	0.003	0.28

Figure 5.3: Bloom filters of varying sizes

REPLICATION LEVEL THRESHOLD



Iterations

0 +

o 25 peers experiment

SYNTACTIC RESULTS

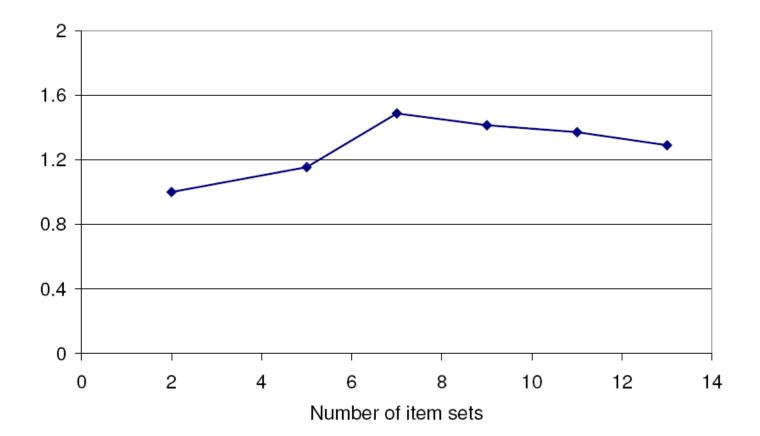


Figure 5.7: Time / optimal plan time

SYNTACTIC RESULTS

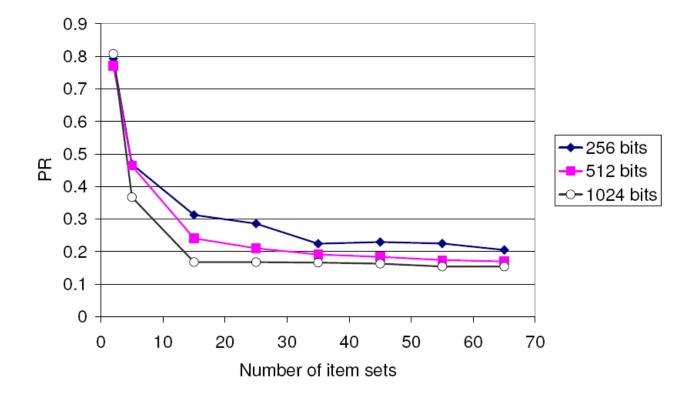
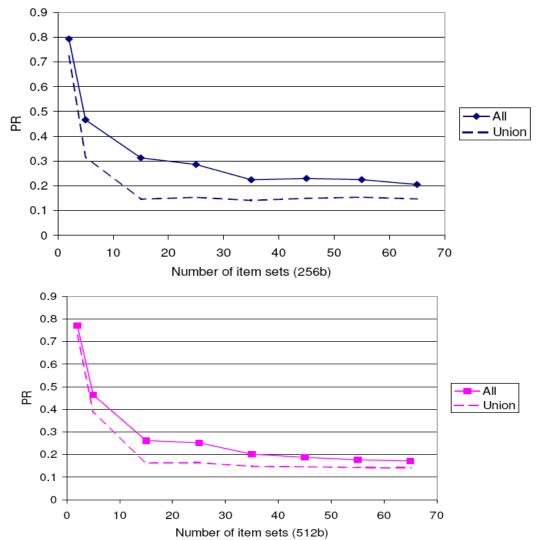


Figure 5.4: Performance Ratio for growing number of sets



CV/NITA ATIA DEALII TA

28

SYNTACTIC RESULTS



WIKIPEDIA RESULTS

Using Wikipedia

- OR queries over synonyms
- Same parameters as in the syntactic version

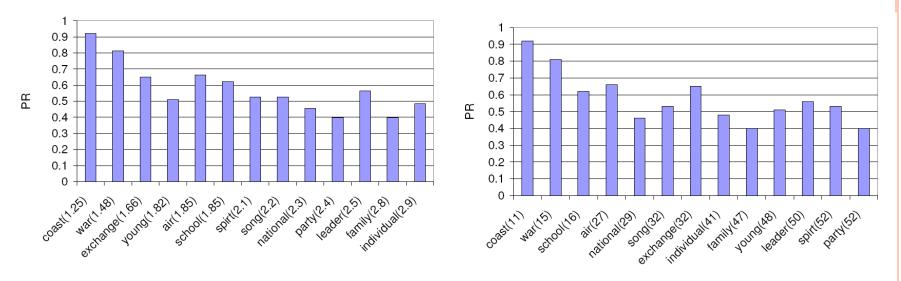
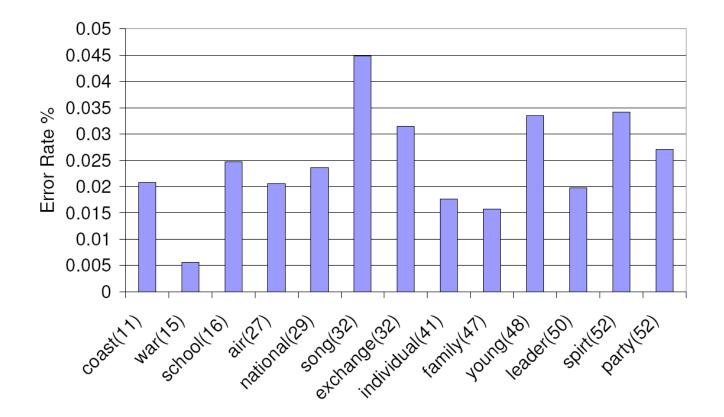


Figure 5.8: PR for varying replication level

Figure 5.9: PR for varying number of synonyms (unioned sets)

WIKIPEDIA RESULTS



31

Related Work

- Problem Hardness (Yao)
 - Computing set difference requires passing the entire data set
- Practical set reconciliation (Minsky et al)
 - pairwise sets-reconciliation computing a characteristic polynomial
 - Estimating / guessing the set difference size
 - Passing n points, and factorizing and interpolating to find the missing points.
 - Not so practicable in our context (four seconds to compute a 200 object difference)

Informed content delivery across

adaptive overlay networks (byras et al)

- Creating a tree of bloom filters
- Solving again the pairwise case mostly
- Employ erasure codes methods to solve data loss issue.
- But they have a high error rate.

FUTURE WORK

- Pretty vast
 - Real application usage (emule dht?)
 - Dynamic setting
 - Fault tolerance
 - Scalability issues