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Résumé R
De quoi s’agit-il ?

— FERDINAND FOCH

Comme l’indique le titre, dans cette thèse, il sera beaucoup question des
distributions du logiciel libre (aussi connu sous l’abréviation F/OSS, free and
open source software).

Ces distributions sont extrêmement hétérogènes. Elles contiennent des lo-
giciels de différentes provenances ; écrits dans des langages différents, avec des
calendriers de publication différents et avec des procédures différentes.

Pour gérer cette hétérogénéité, et pour avoir une façon simple et unique
d’installer des logiciels, les systèmes de paquetage ont été développés. Ceux-ci
consistent en l’emballage d’un logiciel dans un paquet, qui contient des don-
nées supplémentaires utilisées par un logiciel approprié, un gestionnaire de pa-
quets. Le gestionnaire sert à installer les paquets et le logiciel qu’il contient de
façon presque automatique.

Les systèmes de paquetage diffèrent selon les distributions, mais les prin-
cipes sont communs : une distribution a plusieurs dépôts, dont chacun contient
plusieurs paquets, reliés entre eux par des relations spécifiques, notamment les
dépendances et les conflits. Une dépendance d’un paquet a un autre indique que
le premier paquet ne peut pas être installé sans que l’autre soit installé aussi ;
un conflit entre deux paquets indique que ces deux paquets ne pourront jamais
être installés en même temps.

Les dépendances peuvent être disjonctives, c’est à dire qu’un paquet peut
spécifier une dépendance sur plusieurs paquets, dont au moins un doit être
installé pour satisfaire à la dépendance.

Tout ceci fait que le problème de l’installabilité d’un paquet est d’une com-
plexité comparable au problème SAT. Quand on y ajoute le fait que les distri-
butions d’aujourd’hui ont une taille importante (la version la plus récente de
Debian contient 22 000 paquets), il devient clair qu’il est très important d’avoir
des algorithmes rapides et efficaces.

Les quatre sujets principaux abordés dans cette thèse se résument comme
suit :

• D’abord, nous présentons un modèle formel qui réunit les propriétés
principales des systèmes de paquetage les plus courantes, et nous iden-
tifions des relations sémantiques entre paquets qui peuvent être utilisées
pour trouver des erreurs et assurer la qualité des distributions de logiciel
libre ;

• Ensuite, nous présentons des algorithmes efficaces pour manipuler des
dépôts de paquets et calculer les relations mentionnées ci-dessus ; tous
ces algorithmes ont été implémentés dans la langage de programmation
OCaml, et incorporés dans une librairie de manipulation et analyse de
paquets qui s’appelle dose3 ;
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• Nous avons encodé notre modèle dans l’assistant de preuves Coq, et uti-
lisé cet encodage pour vérifier quelques-uns des théorèmes les plus im-
portants qui correspondent aux étapes les plus compliquées des algo-
rithmes déjà présentés ;

• Finalement, nous avons validé nos algorithmes sur des distributions de
logiciel libre existantes, et nous présentons une analyse extensive de la
structure générale de ces distributions, notamment les caractéristiques
dites «petit monde» de la structure du graphe sous-jacent.

La théorie des paquets

Dans cette partie de la thèse, qui correspond aux chapitres 2 et 3, nous com-
mençons par expliquer les concepts communs entre les différents systèmes de
paquetage.

Systèmes de paquetage

bravo

alpha

charlie delta foxtrot

echo

#

(a) Dépendances et conflits

alpha charliedelta echozulubravo #
(b) Paquet virtuel

FIGURE 1 – Dépôts d’exemple

Considérons la figure 1a. Ici, le paquet alpha a une dépendance simple sur
le paquet bravo, ce qui exprime la nécessité d’installer bravo dès lors qu’on
veut installer alpha. En revanche, l’autre dépendance d’alpha est disjonctive
sur charlie et delta. Alors pour installer alpha il faudrait aussi installer soit
charlie, soit delta, soit les deux.

La situation est semblable pour echo : pour installer echo, on a besoin de
delta ou foxtrot. Cependant, il n’est pas possible ici d’installer les deux en
même temps, parce que delta et foxtrot sont en conflit (indiqué par le dièse).

Dans la plupart des systèmes de paquetage, il existe la notion de paquets
virtuels. Comme leur nom l’indique, ce sont des paquets qui n’existent pas
vraiment, mais qui peuvent être fournis par des autres paquets. Considérons
la figure 1b : ici, le paquet zulu est un paquet virtuel, qui est fourni par bravo,
charlie et delta.

Dans ce cas, alpha a une dépendance sur zulu ; une dépendance sur un
paquet virtuel peut être satisfaite par n’importe quel fournisseur du paquet
virtuel, et la situation revient donc à une dépendance disjonctive d’alpha sur
bravo, charlie ou delta.
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Quant à echo, il y a un conflit entre ce paquet et zulu. Un conflit avec un
paquet virtuel se traduit par un conflit avec chaque fournisseur de ce paquet
virtuel : autrement dit, echo est en conflit avec à la fois bravo, charlie et delta.

Il y a des différences de détail entre les systèmes de paquetage (dont les
plus utilisés sont le système de Debian et RPM), mais ils sont tous conformes
au schéma expliqué ci-dessus.

Relations sémantiques entre paquets

Les relations entre paquets qu’on a détaillées dans la section précédente ne
nous donnent pas toute l’histoire. Par exemple, le simple fait qu’il y a une dé-
pendance entre deux paquets ne signifie pas forcément que l’un doit être ins-
tallé pour installer l’autre (la dépendance pourrait être disjonctive). Il pourrait
aussi y avoir des paquets qui, sans être en conflit direct, ne sont néanmoins pas
installable en même temps1.

Pour pallier à ce problème, nous installons des relations sémantiques qui
nous aident à voir plus clairement la structure d’un dépôt.

Commençons par les dépendances. Nous définissons qu’il existe une dépen-
dance forte entre un paquet p et un autre paquet q (tous les deux contenu dans
un dépôt R) si et seulement si :

• p est installable2 dans R ;

• chaque installation de p dans R contient q.

Avec cette relation de dépendance forte, on résume l’essentiel de la dépen-
dance : un paquet a des dépendances fortes sur tous les paquets qui lui sont
absolument indispensables. Notons aussi que la relation de dépendance forte,
contrairement aux dépendances normales, est transitive.

Il est également intéressant de considérer les dépendances fortes en sens
inverse : un paquet dont beaucoup d’autres paquets dépendent fortement est
nécessairement un paquet important dans la distribution : si ce paquet avait un
défaut, ceci pourrait avoir un impact sur beaucoup d’autres paquets.

Néanmoins, de par la transitivité des dépendances fortes, il est possible
qu’un paquet ait beaucoup de «prédécesseurs forts» sans pour autant être très
important lui-même. Cette situation est illustré par la figure 3.3c sur la page 40.
On y peut voir que quebec a beaucoup de prédécesseurs forts. Le fait que
quebec dépend fortement de romeo, et la transitivité des dépendances fortes,
font que tous les prédécesseurs forts de quebec sont aussi des prédécesseurs
forts de romeo. Ainsi, romeo paraît comme un paquet plus important que quebec,
même si le nombre de ses prédécesseurs est en quelque sorte expliqué par la dé-
pendance forte entre quebec et romeo.

Pour éviter cette situation, on introduit les dominateurs, un concept qui est
connu dans le domaine des graphes de contrôle de flux : un paquet p domine
un autre paquet q si et seulement si tous les chemins de dépendances fortes qui
mènent vers q passent par p3.

1Une exemple de cette situation est la figure 3.5 sur la page 46.
2Nous ajoutons ce point pour éviter les dépendances fortes triviales ; sinon, un paquet non-

installable aurait des dépendances fortes sur chaque autre paquet dans la distribution.
3La définition donnée dans la thèse est différente, mais nécessite un peu plus d’explications. On

démontre toutefois dans la thèse que la définition donné ici est équivalente à celle donné dans le
chapitre 3
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En utilisant les dominateurs, on peut nettoyer la structure des dépendances
fortes de façon que les paquets qui paraissent importants, mais ne le sont pas
vraiment, comme expliqué ci-dessus, soient enlevés.

Ce qu’on peut faire pour les dépendances, on peut faire pour les conflits :
deux paquets p et q d’un dépôt R sont en conflit fort si et seulement si on peut
installer p et q séparément dans R, mais non pas ensemble.

Ici encore, on résume l’essentiel de la relation de conflit : deux paquets qui
ne peuvent pas être installés en même temps ; pour avoir cette situation, il n’est
point nécessaire qu’il y ait un conflit direct entre les deux paquets. Par contre,
nous avons démontré que pour qu’un conflit fort existe entre deux paquets,
il doit exister un chemin de dépendances (normales) entre chacun des deux
paquets et un conflit (théorème 3.25).

Algorithmes et outils

Dans la section précédente, nous avons noté que le problème de déterminer si
un paquet est installable dans un dépôt est de complexité égale au problème
SAT, c’est à dire NP-complet.

On a également vu que les relations sémantiques dépendent aussi de l’ins-
tallabilité des paquets. Vu la taille des distributions, il n’est pas envisageable
de simplement calculer la totalité des relations en vérifiant l’existence d’une
relation pour chaque paire de paquets.

Dans le chapitre 4, nous proposons donc des algorithmes plus efficaces,
dont le fonctionnement repose sur des théorèmes présentés dans le chapitre 3.

Pour les dépendances fortes, l’algorithme proposé utilise d’abord le fait que
pour qu’une dépendance forte existe entre deux paquets p et q, q doit être
présent dans n’importe lequel installation de p ; pour trouver toutes les dé-
pendances fortes de p, on peut donc se borner à contrôler tous les membres
d’un ensemble d’installation de p quelconque. En plus, nous utilisons le fait
qu’une dépendance conjonctive est automatiquement une dépendance forte
(corollaires 3.7 et 3.2).

Le calcul efficace des conflits forts repose essentiellement sur le théorème 3.25.
Puisque, pour avoir un conflit fort entre deux paquets p et q, il est nécessaire
qu’il existe un chemin de dépendances (normales) de p et q jusqu’à deux pa-
quets qui sont en conflit, on peut rassembler tous les conflits forts en commen-
çant par les conflits directs (dont il y a relativement peu), et en remontant les
dépendances en sens inverse. Ainsi, on obtient tous les paires de paquets qui
pourraient être en conflit fort, ce qui réduit l’espace de recherche de façon im-
portante.

Pour les dominateurs, on utilise le théorème 3.19 qui démontre que notre
notion des dominateurs est équivalent à celle utilisée dans le domaine des
graphes de contrôle de flux. On peut ensuite utiliser l’algorithme de Tarjan [LT79]
pour calculer rapidement le graphe des dominateurs.

Dans le chapitre 5, nous présentons les outils qui ont été crées en faisant
usage de ces algorithmes. Notamment, il s’agit de dose, qui a été conçu comme
une librairie de manipulation et analyse de distributions, et qui inclut tous les
algorithmes présentés ci-dessus.
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Formalisation

Comme on a vu dans la section précédente, les algorithmes présentés ont été
optimisés en utilisant des théorèmes qui permettent de réduire l’espace de re-
cherche.

Pour être sûr qu’on ne réduit pas trop l’espace de recherche, il faut s’as-
surer de la validité des théorèmes utilisés. Pour ce faire, nous avons utilisé
l’assistant de preuves Coq pour formaliser une partie de la théorie des paquets,
et notamment pour vérifier les théorèmes les plus importants utilisés dans nos
algorithmes.

Une explication des méthodes utilisées dans cette formalisation est le sujet
du chapitre 6.

Validation et analyse

Dans les chapitres 7 et 8, nous présentons des résultats d’expériences faites
avec les outils présentés précédemment.

D’abord, nous parlons des temps d’exécution des algorithmes. Théorique-
ment, ce sont toujours des algorithmes de complexité NP-complet ou assimilé,
mais en utilisant les optimisations mentionnées, on peut obtenir des réductions
assez importantes qui permettent de calculer les graphes de relations séman-
tiques dans un temps raisonnable ; ainsi, il devient possible de faire un calcul
quotidien.

Ensuite, nous nos intéressons à la structure de la distribution. Dans des
publications précédentes ([LW04] et [NNR09], il a déjà été démontré que les
distributions de logiciel libre ont un graphe sous-jacent qui présente le phéno-
mène du petit monde ; nous affirmons que c’est le cas en bien précisant notre
méthodologie, ce qui n’a pas été le cas dans les publications citées.

Le phénomène du petit monde est surtout intéressant pour les conclusions
qu’on peut en tirer sur la structure de la distribution. Un graphe petit monde
est un graphe qui a des chemins relativement court entre ses noeuds ; on peut
aussi diviser les noeuds d’un graphe petit monde dans deux catégories : les
noeuds a forte connectivité (il y en a peu), et les noeuds a faible connectivité (il
y en a beaucoup).

Les graphes de distribution de logiciel libre ont la particularité d’être diri-
gée ; on peut alors distinguer trois types de noeuds distincts :

• Des noeuds avec beaucoup d’arêtes sortantes, mais peu d’arêtes rentrantes ;
ces noeuds présentent des paquets de haut niveau, appelés les meta-paquets,
qui sont utilisées pour installer facilement une famille de logiciels, comme
KDE ou GNOME ;

• Des noeuds avec beaucoup d’arêtes rentrantes, mais peu d’arêtes sor-
tantes ; ces noeuds présentent des paquets de bas niveau, des libraires
notamment, comme par exemple la librairie standard de C qui est néces-
saire pour une grande partie des autres paquets ;

• Des noeuds avec peu d’arêtes, rentrantes ou sortants.

Dans le chapitre 8, il y a plus d’informations qui confirment l’existence de
cette structure.
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Contributions et perspectives

Dans cette thèse, nous avons présenté une modélisation formelle des distribu-
tions de logiciel libre, avec des méthodes pour améliorer la gestion de qualité
qui utilise cette modélisation. Ces méthodes ont été implémentées en utilisant
le langage OCaml, et partiellement vérifiées. Finalement, nous avons utilisé
les outils implémentés pour faire des analyses sur des distributions existantes,
notamment Debian et Mandriva.

Nous avons présenté des cas réels des erreurs qui ont pu être détectées en
utilisant nos méthodes ; leur application quotidienne est rendue possible par
les optimisations que nous avons ajoutés. Ceci peut beaucoup aider les éditeurs
de distributions à éviter des erreurs, par exemple des paquets non installables.

En continuant ce travail, notamment en complétant la vérification des al-
gorithmes, et en les intégrant dans un langage spécifique, on peut aboutir sur
une suite complète d’outils pour la manipulation et l’analyse des distributions.
Ceci pourrait aider à garder la qualité des distributions de logiciel libre, même
si dans le futur ils continueront à grandir et devenir plus complexes.
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Introduction 1
Het zal waarachtig wel gaan!

— CORNELIS TROMP

It has long been a standard method in computing science to divide complex
systems into components [Szy02].

The basic reason for this is that smaller programs are easier for a human
to comprehend, and therefore to design, write, verify, test and maintain. This
makes for a quicker design phase, less time spent in implementation, and fewer
bugs.

Components can also be reused, especially the more generic ones. This
again saves time, because components do not have to be implemented twice.
It also results in fewer errors, for the same reason. It is even possible to re-use
components developed elsewhere, for example by a third party (for example
by using COTS, commercial off-the-shelf products).

Unfortunately, component-based systems have their disadvantages as well,
notably in maintenance and evolution. The foremost problem here is the fact
that components, as their name already indicates, do not stand alone: they
interact with each other.

This interaction brings forth the relations between components: these can
either be positive (i.e. a component needs another component to function; this
is commonly called a dependency relation) or negative (i.e. a component can not
function together with another component; this is commonly called a conflict
relation).

A component-based system, by its nature, is not stable: components are
added, removed and upgraded as a matter of routine. These changes, however,
can easily break relationships between components, thus corrupting the state
of the entire system or even rendering it unusable.

One specific instance of component-based systems that has become more
and more widely adopted over the last two decades are the operating systems
based on Free and Open Source Software (F/OSS).

These systems are extremely heterogeneous: every part of the system is
developed by a different group; components therefore are implemented in dif-
ferent programming languages, use different release cycles, and have different
modalities for downloading and installing. It is easy to see that this can give
rise to many compatibility problems.

1.1 F/OSS Software Distributions

In order to at least partially solve these problems, F/OSS operating systems
are assembled into distributions. This is especially true for the operating sys-
tems based on the Linux kernel: there is a great number of distributions based
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1. Introduction

on this kernel, each with its own specificities. However, other F/OSS oper-
ating systems, such as the different varieties of BSD, or OpenSolaris, are also
provided in distribution form.

The idea of a distribution is that it creates a coherent system out of the large
amount of available software: it allows for a single method of downloading
and installing software, and there is one person (the maintainer) responsible for
integrating the software into the distribution and updating the distribution if a
new release is published.

1.1.1 Components as packages

In a distribution, every piece of software becomes a package. This package
contains the software itself, plus some extra data (known as metadata) that de-
scribes the package, its dependencies and all the specifics needed to install it on
a user’s machine. In this way, the user can simply install the package, without
having to worry about how exactly to do this: all the necessary information is
contained in the package.

The tool used to install a package (using the metadata) is called a package
manager. The package manager takes care of downloading the package, verify-
ing contents, installing eventual dependencies, making sure there are no con-
flicts and all actions that are needed to correctly install the software contained
in the package (creating specific user accounts, for example).

The packaging format and package manager used vary widely between dis-
tributions; in the Linux world, RPM (the RedHat Package Manager) is used
by many systems (Fedora, Mandriva, and SUSE, to name a few); another well-
known system is Debian’s package manager APT with its package format (used
by Debian and Ubuntu, amongst others).

1.1.2 The challenge of scale

One of the most important problems that plagues F/OSS distributions today
is one of scale. The latest stable version of the Debian distribution (5.0.6, re-
leased in October 2010) contains 22 000 packages; the latest version of Man-
driva (2010.1) has over 7 500 packages.

Unfortunately, the tools used on both the user side and the distribution side
have not notably changed since the first appearance of distributions, now some
two decades ago: the SUSE distribution has recently integrated a SAT solver in
its package manager, for dependency checking, but most distributions do not
yet use even this basic technology.

On the distribution side, the situation is comparable: there are some tools
that aid distribution editors in their tasks (one example is Debian’s britney,
which takes care of integration of new version of packages), but these are slow
and not formally proven.

1.2 Contributions

The main contributions of this work can be summarised in four broad areas:
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• We present a formal framework that captures the essential features of the
most common package models, and identify some new semantic relation-
ships among packages that are relevant for finding errors and maintain-
ing quality in F/OSS distributions;

• We present efficient algorithms for manipulating package repositories
and compute the relationships mentioned above; all of these algorithms
have been implemented in the OCaml programming language, and in-
corporated in a generic package manipulation and analysis library called
dose3;

• We encode our formal framework in the Coq proof assistant, and use it to
mechanically verify some of the key lemmas corresponding to the most
complicated steps in the aforementioned algorithms;

• We have validated our algorithms on real-world F/OSS distributions,
and have performed an extensive analysis of the general structure of
these distributions, notably the small world characteristics of the under-
lying graph structure.

1.2.1 Theory of packages

The details of how packages are represented and manipulated differ quite sig-
nificantly from one Free Software distribution to the other, but when choosing
the right level of abstraction, one can find a remarkably simple and elegant
common model that is able to accommodate all the metadata which is relev-
ant for maintaining the quality of a repository. This model has already been
presented in [MBDC+06] and is reproduced here with some extensions.

Subsequently, we extend this model with some new semantic relationships
between packages. These relationships, in highlighting specific properties of
packages, help distribution editors in quickly spotting potential errors and in
finding means to correct these errors.

The simplest example is the broken package, a package that cannot be in-
stalled under any circumstances. By not only providing a list of such packages,
but also an explanation of why they cannot be installed, we help distribution
engineers in correcting such packages.

In the same vein, packages that are installable but that, when installed,
render a large subset of the distribution non-installable, also are a potential
source of errors. Again, since we provide an explanation, distribution editors
can easily isolate the source of the problem, and correct it if necessary.

Another way to spot potential trouble is to identify packages that are in
some way important to the distribution—for example, because they are de-
pended on by many other packages. We offer a way to identify such packages,
so that distribution editors know which packages need extra care and testing
in case of changes to the distribution.

Some of the material presented in this part has already been published
in [MBDC+06], [ADCBZ09] and [DCB10]; this thesis presents this previous ma-
terial in its general context, and contains some new additions besides.
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1.2.2 Algorithms and tools

The problem of determining whether a package is installable is NP-complete,
as already shown in [MBDC+06].

Since the computation of all of the semantic relationships mentioned in the
previous section depends ultimately on this installability problem, a naive im-
plementation that checks the existence of a relationship for every pair of pack-
ages will take a very long time.

In this thesis, we present algorithms that use the various properties of the
packages and their relationships to avoid any superfluous computations. In
this way, it becomes feasible to compute the relationships with every major
change in the distribution, so that errors can be found as early as possible.

Furthermore, we discuss the implementation of our algorithms as a part of
a general distribution manipulation and analysis framework.

1.2.3 Formalisation

For our algorithms, we use several lemmas that allow us to skip a lot of SAT
computations. Needless to say, it is very important that these computations
can indeed be skipped; in other words, that the lemmas are actually valid.

In order to assure ourselves of this, we have formalised the theory of pack-
ages as provided in the previous parts using the Coq proof assistant, and we
have formally proven several of the lemmas presented.

1.2.4 Validation and analysis

In this part, we present some practical results obtained by applying our al-
gorithms to some common F/OSS distributions.

To start with, we show that the run time of the algorithms remains reason-
able in practical cases: a daily run of the algorithms is in all cases possible.

Then, we present the insights we have obtained on the structure of the un-
derlying graphs. First we note that the underlying graph of a F/OSS distri-
bution can be generated in different ways, and that the method of generation
changes the characteristics.

We also talk about the small world properties of the underlying graphs,
and discuss the ramifications for the structure of the graph. It turns out that
the graph of a distribution has a distinct structure: there are few packages
with many dependencies, and many packages with just a few dependencies.
The packages with many dependencies again fall into two distinct categories:
high-level packages with many outgoing dependencies (but few or no incom-
ing dependencies), and low-level packages with many incoming dependencies
(but few or no outgoing dependencies). See also figure 8.3 on page 115.

1.3 Structure

The contents of the thesis are as follows: first, in chapter 2, we shall present
an overview of the basics of Linux distribution management: its most-used
package formats (Debian and RPM), and we shall recall the formalisation of
F/OSS distributions devised in the EDOS project [MBDC+06, DCMB+06].
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In chapter 3, we shall extend this formalisation with the concepts of strong
dependencies and strong conflicts, as well as an application of dominators (a concept
already known from flow control graphs) which allow for more extensive qual-
ity control over distributions. We shall also specify and prove some theorems
that allow for more efficient computation of these concepts.

Then, in chapter 4, we present algorithms that use these theorems to effi-
ciently compute strong dependencies, strong conflicts and dominators over a
distribution. The actual implementation of these algorithms during the EDOS
and MANCOOSI projects will be discussed in chapter 5.

The formalisation in Coq of the definitions and theorems from chapters 2
and 3 is the subject of chapter 6.

In chapter 7, we present the results of several experiments that have been
executed using the tools from chapter 5. These results offer insights into the
structure of the distributions; in chapter 8, we continue on this subject by dis-
cussing distributions when seen as graphs—this view offers other insights into
the structure of distributions that can aid in managing them.

Finally, in chapter 9, I discuss the relevance of the subjects presented in this
thesis, as well as related work and possible directions for future research.
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Definitions 2
‘And why is it called the Carrock?’ asked Bilbo as he went along at the wizard’s side.

‘He called it the Carrock, because carrock is his word for it. He calls things like that carrocks,
and this one is the Carrock because it is the only one near his home and he knows it well.’

— J.R.R. TOLKIEN, The Hobbit

In this preliminary chapter, we shall first specify in detail the package formats
currently used for most Linux distributions: the Debian format and RPM. These
two formats are very different in syntax; the difference in semantics, however,
is much smaller, which is why it has been possible during the MANCOOSI
project to devise a common format, called CUDF [TZ09], to which both formats
can be translated.

After this, we shall discuss a package format from a different environment:
the metadata format used for Eclipse plugins. Even though the environment
in which this format is used is very different from RPM or the Debian format,
we shall see that the basic metadata contents and semantics remain the same.

Having thus presented the existing package formats, we shall recall the
definitions proposed in the EDOS project [DCMB+06]. These definitions are
intended to be usable as a way of reasoning about any F/OSS distribution:
they are sufficiently abstract to be used to represent packages from the Debian
format, from RPM and even from Eclipse.

The main object of the EDOS formalisation is to reason about package in-
stallability. The effect of this is that a large part of the package metadata can
be ignored, because it has no influence on installability. Examples of this are
data like the name of the package maintainer, the package description or the
package classification.

2.1 Existing package formats

2.1.1 Basic ideas

As discussed in the introduction, in F/OSS distributions, there exist interrela-
tionships between packages. There are two main types: dependencies and con-
flicts. There are other types of relationships, but these are either equivalent
to dependencies or conflicts, or can be safely ignored as far as installability is
concerned.

For example, in Debian there is a pre-dependency relationship, which is like a
normal dependency, except that it enforces an order of installation on the pack-
ages (a pre-dependency must be installed before configuration of the packages
begins). Examples of relationships that can be ignored are the recommendation
or suggestion relationships found in both Debian and RPM: these specify op-
tional dependencies and thus do not influence installability.
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2. Definitions

A dependency relationship specifies that one package needs another to
function; if package A depends on package B, the package manager takes care
that when installing package A, package B also will be installed (but not the
other way around).

Sometimes, it is possible to have alternative (or disjunctive) dependencies: in
this case, a package can specify a list of other packages, of which at least one
must be installed (it is allowed to have more than one package from the list
installed as well; the disjunction is not exclusive).

A conflict specifies that one package cannot function when another package
is installed. If package A conflicts with package B, the package manager takes
care that package A is never installed at the same time as package B. Unlike
the dependency relationship, the conflict relationship is symmetric (at least for
Debian, RPM and Eclipse).

An example is shown in figure 2.1. The usual term for such a set of pack-
ages with dependency and conflict relations is a repository. Usually, there are
multiple repositories available for one distribution: for example, the Debian
distribution provides the stable, testing and unstable repositories. The dif-
ference between these three is that stable is, as the name suggests, very stable,
but not up-to-date, whereas unstable is very up-to-date, but not always stable;
testing is between the two.

bravo

alpha

charlie delta foxtrot

echo

#

Figure 2.1: Example repository

In this case, the package alpha depends conjunctively on bravo, and dis-
junctively on charlie and delta. In order to install alpha, therefore, bravo
must be installed, as well as either charlie or delta (or both). For the package
echo, either delta or foxtrot needs to be installed. It is not possible to install
both delta and foxtrot, because there is a conflict between them.

Many systems contain virtual packages. These are packages that do not
physically exist, but can be provided by other packages. A dependency on a
virtual package can be satisfied by any of the packages that provide it; a conflict
with a virtual package means a conflict with all of the packages that provide it.

An example of this would be a web server package in an operating system;
it would be a virtual package, provided by a number of specific web servers
(Apache, lighttpd, . . . ).

A simple example might make the idea more clear. In figure 2.2, the pack-
age zulu is a virtual package, which is provided by bravo, charlie or delta.
Now, in order to install alpha, which depends on zulu, at least one of bravo,
charlie or delta will be installed. On the other hand, in order to install echo,
which conflicts with zulu, none of bravo, charlie or delta can be installed.

Most package systems use two different pieces of software for package
management: the installer and the meta-installer.

18



alpha charliedelta echozulubravo #
Figure 2.2: Example repository

The installer is usually responsible for installing and removing packages
from the system, and keeping track of the installed packages and their files. It
does not as a rule resolve dependencies or download packages; this is the task
of the meta-installer, which also communicates with the user.

The general mode of operation of such a system is that the user requests an
operation (install a package, upgrade every package in the system, . . . ) from
the meta-installer, which either decides that the request cannot be honoured
(the user wants to install two conflicting packages, for example) or determines
which packages have to be installed or removed to satisfy the request. The
actual installation and/or removal of packages are subsequently executed by
the installer.

2.1.2 The Debian format

The Debian package format (also called .deb) is defined in chapters 3–7 of the
project’s Policy Guide [DG98]. Its installer is called dpkg, and the standard
meta-installer is apt. Another meta-installer called aptitude is also frequently
used.

There is a distinction within Debian between source packages and binary pack-
ages. Binary packages are the ones installed on a user’s machine; they are gen-
erated from source packages. A source package usually is the base for multiple
binary packages; not only for the different architectures supported by Debian,
but also for different options or parts of the software being packaged. As an
example, the ocaml source package of the lenny distribution has 11 binary
packages, such as camlp4 (a preprocessor packaged with OCaml), ocaml-base
(the OCaml base compiler and libraries), and ocaml-base-nox (the same, but
without X11 libraries).

File contents

Debian binary packages follow the .deb format, defined in its manpage [DP06].
A .deb file is an ar archive that contains at least three files:

1. a text file named debian-binary that contains the version number of the
package; currently 2.0.

2. a gzipped tar file named control.tar.gz that contains a set of text files
with the package metadata. Of these, the file control is mandatory; it
contains the core metadata.
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2. Definitions

3. a gzipped tar file named data.tar.gz that contains the files that belong
to the package.

In order to easily allow access to the metadata of all packages in a distri-
bution, there is also a file format that consists of the concatenation of control
files from an entire distribution (as a text file). This type of file will from now
on be referred to as a Packages file.

Package metadata

The package control file contains one or more paragraphs of fields, separated
by blank lines. Each paragraph contains a list of fields: the field name, followed
by a colon, followed by the field value. A field value may span several lines,
in which case the second and following lines start with a space or tab. Other
whitespace is ignored. Figure 2.3 is an example of the package control file for
the ocaml package:

For a binary package, the Package, Version, Architecture, Maintainer,
and Description fields are mandatory; Section and Priority are recommen-
ded. A list of the different fields and their meanings (for binary packages)
follows:

Maintainer The name and e-mail address of the package maintainer.

Section This field is used for package classifications, as defined in the Policy
Manual, Section 2.4.

Priority Package priority, as defined in the Policy Manual, Section 2.5.

Package The name of the package.

Architecture The architecture the package is intended for. If the value all is
specified, the package is architecture-independent.

Essential If this field is set to yes, then the package is considered to be indis-
pensable for a functioning system, and it should be installed at all times.

Depends This field specifies the dependency relationship mentioned in the
previous section; its syntax will be explained in more detail below.

Pre-Depends This field specifies a special sort of dependency; it means that
the package depended on must be installed before the package specifying
the dependency.

Recommends This field specifies “a strong, but not absolute, dependency”.
The standard Debian package manager apt installs recommended pack-
ages by default.

Suggests This field specifies a weaker sort of dependency than a Recommends

dependency; suggested packages are not installed by default by apt.

Enhances This field specifies the same sort of dependency as the Suggests

field, but in the opposite direction.
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Conflicts This field specifies a conflict between two packages, as explained in
the previous section; the Debian package manager refuses to install two
packages together if there is a conflict between them.

Breaks This field specifies a special, slightly weaker, kind of conflict: packages
that break each other can be physically present on the system at the same
time, but must not both be active (“configured”).

Provides This field specifies that the package provides a virtual package, as
explained in the previous section.

Replaces This field has two distinct uses:

• Normally, two packages cannot share the same file. However, if
one package replaces the other, the Debian package manager will
replace the file from the old package by the file from the new pack-
age.

• If two packages conflict with each other, and one of the packages is
specified as replacing the other, instead of refusing to install them
both, the Debian package manager will remove the replaced pack-
age and install the replacing package.

Version The package version.

Description A description of the contents of the package.

Installed-Size The estimated size of the package when installed, in kilobytes.

Homepage The URL for the home page of the software packaged.

Package interrelationships

The syntax of the package interrelationship fields is as follows: for the Depends,
Pre-Depends, Suggests, and Recommends fields, they are a comma-separated
list of alternatives; an alternative is a list of package names separated by a
pipe symbol (|), optionally restricted to a version interval. Let us look at the
dependency line for ocaml:

ocaml-base (= 3.10.2-3), ocaml-nox (= 3.10.2-3), libx11-dev

We see that there are three alternatives of exactly one package each (which
means that all these three packages must be installed); for two packages, ocaml-base
and ocaml-nox, it is specified that they must be installed with the exact version
3.10.2-3.

Another, more complicated dependency line for the abcde package:

cd-discid, wget, cdparanoia | cdda2wav,

vorbis-tools (>= 1.0beta4-1) | lame | flac | bladeenc | speex

This package will install the packages cd-discid, wget, either cdparanoia
or cdda2wav, and one (or more) of vorbis-tools (with a version higher than
or equal to 1.0beta4-1), lame (any version), flac (any version), bladeenc (any
version) or speex (any version).
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The syntax for the other interrelationship fields (Conflicts, Breaks) is sim-
ilar, except that alternatives are not allowed here, the values are just a comma-
separated list of package names, with eventual version restrictions.

Finally, the Provides field is just a comma-separated list of names, without
any version specification.

Version comparison algorithm

A Debian package version number consists of three parts: the epoch, the ver-
sion proper and, optionally, the revision. When comparing two versions,
these three are compared in order: the epochs first, then the versions proper
if there is no difference between the epochs, and finally the releases if there is
no difference between the versions.

The epoch is an unsigned integer. If not specified, it is assumed to be 0.
The version proper (separated from the epoch by a colon) is an alphanu-

meric string that can additionally contain the characters ., +, -1, :, and �. If ne-
cessary (i.e. if the epochs are equal), these strings are compared by algorithm 1.

Algorithm 1 Compare the version strings v1 and v2, Debian style

while not empty(v1) and not empty(v2) do
(n1, v1)← non digit prefix(v1)
(n2, v2)← non digit prefix(v2)
r ← compare lex(n1, n2)
if r = 0 then

(d1, v1)← digit prefix(v1)
(d2, v2)← digit prefix(v2)
if d1 < d2 then {Numerical comparison, empty string equivalent to 0}

return −1
else if d1 > d2 then

return 1
end if

else
return r

end if
end while
return 0

Here, non digit prefix and digit prefix return a pair p, r where p is the
prefix of the argument string that contains no digits (for non digit prefix) or
only digits (for digit prefix), and r the remainder of the argument string.

The function compare lex compares two strings lexicographically, so that
all letters sort before all letters, letters between them sort by ASCII value, and
the tilde sorts before anything (even the empty string). For this and all other
comparison algorithms discussed in this chapter, the convention is that the
algorithm returns 0 if the strings are equal, −1 if the first argument is smaller,
and 1 if the second argument is smaller.

The revision number (separated from the version by a hyphen) is an alpha-
numeric string that can additionally contain the characters +, . and �. These

1The hyphen may only be present in the version proper if there is a revision number present.
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strings are only compared if both the epochs and versions proper are equal; the
algorithm is the same as that used for the version proper.

The rationale behind this version numbering scheme (which, as we shall
see, is very similar to the one used for RPM) is that the version specified by
the original author of the software should become the version of the package;
this comparison algorithm works well with most versioning schemes used in
practice.

However, it is possible that the original author decides to change the ver-
sion numbering scheme (for example, to pass from a date-based scheme to a
more classic x.y.z scheme). In such a case, to make sure that the new version is
deemed larger than the old version, the epoch can be raised.

The release part is used by the distribution to be able to make changes to
the package, while keeping the same version of the original software.

Special semantics

In Debian, virtual packages do not have versions; hence, a dependency with a
version restriction can never be satisfied by a virtual package.

Furthermore, a package can never conflict with itself. Thus, a special case oc-
curs when a package both provides a virtual package and conflicts with it. Sup-
pose a package has both Provides: mail-transport-agent and Conflicts: mail-transport-agent

in its metadata. In this case, the package conflicts with any other package
providing the same virtual package, in effect specifying that it should be the
only package installed that provides mail-transport-agent.

If the package also has Replaces: mail-transport-agent in its metadata
(in addition to the Provides and Conflicts) mentioned above, any package
also providing mail-transport-agent will be removed by the Debian package
manager.

In Debian, two versions of the same package implicitly conflict with each
other, which means that it is not possible to have two packages that have the
same name installed at the same time.

Installer and meta-installer

As said before, the tools used to install Debian packages are dpkg, the installer,
and apt, the meta-installer.

In this section, we shall note some salient facts about apt and its most inter-
esting part (for our purposes, anyway), the dependency solver. More extensive
information on apt can be found in [DCMB+06].

Let us note first that the problem that apt tries to solve is indeed quite
complicated, even beyond simple installability. In fact, apt has to deal with
an existing system, one or more available distributions, and try to execute user
requests while trying to maintain the system in a consistent state.

As we shall show later on, the installation problem itself is NP-complete.
Since this means that dependency solving can take a very long time, apt does
not try to be complete: if at some point in the calculation multiple options
present itself (which is the case when a disjunctive dependency is encountered,
none of whose packages are already installed), it just takes the first package
from the list of alternatives and tries to install that. No backtracking is attemp-
ted.
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In fact, this behaviour of apt has become something of a de facto stand-
ard, since it allows package managers to specify a preference in alternative
dependencies: the package specified first in the alternative will be installed,
unless another package from the alternative is already installed.

Furthermore, if multiple versions of the same package are available, only
the highest version is installed; the idea being that the highest version of any
package should always be the most advanced and bug-free one.

This can, of course, lead to false responses; imagine the following reposit-
ory:

Package: alpha

Version: 1.0

Depends: bravo | charlie

Package: bravo

Version: 1.0

Depends: delta

Package: charlie

Version: 1.0

The package alpha is perfectly installable when one uses charlie to satisfy
its dependency. However, since apt only tries bravo—which is not installable,
since its dependency delta is missing—it will return with an error.

The choice made by the developers of apt is to prefer a fast response over a
correct one. Since the contents of the distribution are controlled by Debian, this
does in general not result in too many errors, especially since most users use
only one repository (stable, testing or unstable), which means that in most
circumstances, only one version of every package is available, so that there are
few disjunctive dependencies.

2.1.3 The RPM format

There is no authoritative specification of the syntax and semantics that we are
aware of; most of the information in this section comes from experience, look-
ing at the source of rpm, discussion with RPM developers, and [Bai97].

The installer for RPM is the rpm program2, and the meta-installer used var-
ies with the distributions; Mandriva uses urpmi.

File format

An RPM file is a binary file, divided into four parts:

1. The lead, unused in current implementations except to identify the file as
an RPM file.

2. The signature, used to verify the integrity of the RPM file.

3. The header, which contains a list of tags that contain the metadata for
the package.

2To distinguish between the package format and the installer, we shall use a normal font (RPM)
for the package format, and teletype (rpm) for the installer.
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4. The archive, which is a compressed cpio archive containing the package
files.

Another file format is the hdlist, which is a concatenation of the headers
of several packages (similar to the Debian Packages file).

Mandriva’s urpmimeta-installer uses a textual format, called synthesis hdlist,
which fulfils the same purpose as a ‘normal’ hdlist. However, it does not con-
tain all tags from the RPM header and therefore it is far smaller (for Mandriva
2010.0, the hdlist is 149 Mb in size, whereas the synthesis hdlist is 3.8 Mb).

An example of the data in the synthesis hdlist for the ocaml package is in
Figure 2.4.

Package metadata

The RPM metadata consists of a list of tags, with associated data. These are
comparable to Debian’s fields and values. Important tags are:

RPMTAG NAME The package name.

RPMTAG VERSION

RPMTAG RELEASE

RPMTAG EPOCH The package version, release and epoch.

RPMTAG REQUIREFLAGS Flags for dependencies

RPMTAG REQUIRENAME List of dependencies

RPMTAG REQUIREVERSION Version requirements for dependencies

RPMTAG CONFLICTFLAGS Flags for conflicts

RPMTAG CONFLICTNAME List of conflicts

RPMTAG CONFLICTVERSION Version requirements for conflicts

RPMTAG DIRINDEXES

RPMTAG BASENAMES

RPMTAG DIRNAMES These three tags together contain the list of files for
the package.

Version comparison algorithm

The version comparison algorithm used by rpm (which has been used in all the
MANCOOSI tools that deal with RPM packages) works along the same lines
as Debian’s, but there are some important differences.

Like Debian, RPM version numbers consist of an epoch, a version proper
and a release. These are compared in the same order as Debian’s, and like
for Debian, the first difference is decisive. However, there is one difference:
in RPM, when comparing two versions of which one has a revision number,
but the other does not, the revision numbers are ignored. This means that for
example 1.27-1 is smaller than 1.27-2, but both are equal to 1.27.
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The epoch is an integer, compared normally.
For comparison of the version proper and the release, the rpmvercmp func-

tion is used, with the behaviour specified in algorithm 2.
The segment function mentioned in algorithm 2 is used to split a version

string into segments. A segment of a string is the longest prefix that either con-
sists completely of numbers or consists completely of letters. It returns a pair
(s, r): the segment and the remainder of the string.

The compare segment function compares two segments: numerical seg-
ments are compared by value, while alphabetic segments are compared lex-
icographically. If one segment is numerical and the other is alphabetic, the
numerical segment is considered to be smaller.

Algorithm 2 Compare the version strings v1 and v2, RPM style

if v1 = v2 then {literal string comparison}
return 1

else
while not empty(v1) and not empty(v2) do

remove initial non-alphanumeric characters from v1 and v2
(s1, v1)← segment(v1)
(s2, v2)← segment(v2)
if empty(s1) then

return −1 {s2 cannot be empty (cf. the loop condition, so it must be
greater)}

else if empty(s2) then
return 1

else
r ← compare segments(s1, s2)
if r 6= 0 then

return r
end if

end if
end while
if empty(v1) then

if empty(v2) then
return 0

else
return −1

end if
else

return 1
end if

end if

Special semantics

One very important difference in semantics between Debian and RPM is that
there are no direct dependencies between packages in RPM. Any and all re-
lationships between packages are realised using virtual packages. A package
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always provides a virtual package with the same name and version as itself.
Another difference is that in RPM it is possible to attach a version specific-

ation to a virtual package; a package can thus specify that it provides only
specific versions of a virtual package. Resolution is done by overlapping inter-
vals: a package that provides virtual package A with version specification > 3
matches a package that requires virtual package A with version specification
< 4, since they have the interval < 3, 4 > in common.

In an RPM package, it is possible to specify a dependency on a file. This is
handled differently by different pieces of software; rpm considers the depend-
ency satisfied if the file exists on the file system; urpmi on the other hand treats
file dependencies as normal dependencies (the relevant virtual packages are
added during RPM generation).

Like Debian packages, RPM packages in principle cannot share the same
file. However, there are flags in the RPM format that can modify this behaviour
(notably in the case of config files: in this case, depending on options given by
the user during installation, the file is either overwritten or backed up).

Installer and meta-installer

There are many different meta-installers for RPM, and they all have different
behaviours. In this section, we shall use Mandriva’s urpmi as an example.

Like with apt, the most interesting thing about urpmi is that it does not try
to be complete in dependency solving, for the same reasons as apt.

The openSUSE meta-installer, however, uses a SAT solver implementation,
libzypp, for dependency resolution [Sch08].

2.1.4 The Eclipse format

Eclipse is a very extensive integration platform for software development tools
that, over the years, has accumulated a large amount of very diverse plu-
gins [CR08].

As plugins became more complex and dependencies between plugins began
to appear, the standard ‘Update Manager’ was no longer sufficient and the p2
project [LBR10] was started to develop a more satisfactory plugin management
system. We shall discuss the properties of this system, which resembles Debian
and RPM, though there are many differences as well, in this section; much of
the data in this section comes from [Boz10].

Let us first note that the p2 system operates in a different environment than
apt and rpm; instead of managing a complete OS and its software, p2 operates
within the context of the Eclipse system and its plugins. Nonetheless, the fa-
miliar concepts of packages, dependencies and conflicts are all present in p2 as
well.

Package metadata

To start with, the basic unit that is normally known as a package is called an IU
(installable unit) in the p2 universe. It is uniquely identified by a string (the
identifier), and a version (consisting of three integers a string, for example
something like 2.1.0.beta).

27



2. Definitions

Dependencies between IUs are created by requirements and capabilities: as
with RPM, an IU A depends on another IU B if A has a requirement that
matches a capability of B.

Furthermore, every IU has an enablement filter, with which it can specify
conditions it needs to be installed, for example a particular OS or architecture.

IUs also have the possibility to set a singleton flag to specify that the system
should not contain another IU with the same identifier (this is somewhat like
the combination of Provides and Conflicts fields in Debian).

And finally, an IU has an update specification, in which it identifies the IUs
that are considered predecessors to this IU.

Capabilities and requirements, as mentioned before, are used to create de-
pendencies between packages. A capability consists of a namespace, a name
(both strings), and a version; a requirement consists of a namespace, a name
and a version range. A requirement matches a capability if the namespace and
name match, and the version of the capability is included in the version range
of the requirement.

In addition to this, a requirement has a filter which can result in its being
disabled under certain conditions (see the enablement filter for IUs mentioned
above).

Finally, requirements have two additional properties: they can be optional
and greedy. An optional requirement, as the name indicates, is a requirement
that does not have to be satisfied for the IU to be installed; the ‘greed’ property
indicates whether an IU satisfying the requirement must be actively sought
(greedy) or whether it must just be verified that the requirement has been met
(non-greedy).

In fact, a requirement that is optional and non-greedy need not be installed
at all; it is therefore akin to the Suggests field in the Debian format. If an IU
satisfying the requirement is found, it will be added to the dependencies of the
IU to be installed, but if no such IU is found, the requirement will simply be
considered satisfied and no further action will be taken.

Version comparison algorithm

The version comparison algorithm is like those used for Debian and RPM, but
much simpler. As mentioned above, an Eclipse version number consists of
three integers (major version, minor version and micro-version) and a string.

To compare two version numbers, first the two major versions are com-
pared numerically. If there is a difference, the version number with the highest
major version is the highest version number.

Otherwise, the minor versions are compared in the same way, followed by
the micro-versions.

Finally, the two strings are compared with the standard Java string com-
parison function; the result of this comparison becomes the result of the entire
version number comparison.

2.2 Definitions

In this section, we shall recall the formalisation of ‘package theory’ devised in
the EDOS project [MBDC+06, DCMB+06]. The intent of this formalisation is
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to reflect the features of both standards presented above, especially those used
to determine package installability. We shall also present several lemmas that
follow easily from these definitions, and that will come in useful when defining
more complicated properties later on.

The atomic entity in this thesis is the package; we shall abstract away from
names and version numbers, since there are no theorems in this thesis that
make use of these properties.

Definition 2.1 (Repository)
A repository (R,D,C) is a triple consisting of a set of packages P , a conflict
relation C (C ⊆ R×R), and a dependency function D : R −→ ℘(℘(R)).

Axiom 2.2
For any package p ∈ R, there does not exist a d ∈ D(p) such that p ∈ d.

In other words, a package never depends directly upon itself. This is ex-
plicitly stated in the Debian specification, though not in the RPM specification.
But even so, such a dependency would be trivially fulfilled (in order to install
a package, the package itself is always installed); thus, it is safe to forbid such
dependencies.

Axiom 2.3
The conflict relation is symmetrical and irreflexive.

Thus, a package can never conflict with itself. The Debian method of spe-
cifying a conflict with a virtual package will be treated later on.

As for the dependency function, it associates a set of alternatives with a pack-
age. These alternatives (which are themselves sets of packages) represent dis-
junctive dependencies.

For example, the representation of the distribution from figure 2.1 would
be:

R = {alpha, bravo, charlie, delta, echo, foxtrot}
D(alpha) = {{bravo}, {charlie, delta}}
D(bravo) = ∅

D(charlie) = ∅
D(delta) = ∅
D(echo) = {{delta, foxtrot}}

D(foxtrot) = ∅
C = {(delta, foxtrot), (foxtrot, delta)}
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2. Definitions

In this formalisation, we do not consider virtual packages. One can in fact
consider a dependency on a virtual package as a giant disjunction, and a con-
flict with a virtual package as a conflict with any package providing that pack-
age. For example, consider the following Debian repository:

Package: alpha

Version: 1.0

Provides: zulu

Package: bravo

Version: 1.0

Provides: zulu

Package: charlie

Version: 1.0

Depends: zulu

Package: delta

Version: 1.0

Conflicts: zulu

This can be represented as:

R = {alpha, bravo, charlie, delta}
D(alpha) = ∅
D(bravo) = ∅

D(charlie) = {{alpha, bravo}}
D(delta) = ∅

C = {(alpha, delta), (delta, alpha), (bravo, delta), (delta, bravo)}

In essence, the virtual package is replaced by the packages that provide it.
It is possible that a package simultaneously provides and conflicts with the
same virtual package; in Debian semantics, this means that the package wants
to be the only provider of the virtual package that is installed. This mechanism
can be simulated by replacing the provide/conflict specification with a conflict
with every other provider.

2.3 Installability

For a package p to be installable, with respect to a given repository (R,D,C),
it must be possible to find a set I of packages in the repository (the installation;
I ⊆ R) that contains the package and fulfil two conditions: all the dependen-
cies in I must be satisfied and no two packages in I are in conflict.

These conditions are called abundance and peace respectively. The combina-
tion of both is referred to as health.
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Definition 2.4 (Abundance)
A set of packages I is abundant (with respect to a repository (R,D,C)) if and
only if:
∀p∈I [∀d∈D(p)[I ∩ d 6= ∅]]

Note that abundance (and hence installability) is always defined with re-
spect to a given repository: a package may be installable in one repository, but
not in an other one.

Corollary 2.5
If two sets of packages I1 and I2 are abundant with respect to a repository
(R,D,C) , their union I1 ∪ I2 is abundant with respect to the repository
(R,D,C).

Definition 2.6 (Peace)
A set of packages I is peaceful (with respect to a repository (R,D,C)) if and only
if:
∀(c1,c2)∈C [¬(c1 ∈ I ∧ c2 ∈ I)]

Like abundance, peace is always defined with respect to a specific reposit-
ory.

Definition 2.7 (Health)
A set of packages is healthy with respect to a repository (R,D,C) if it is abundant
and peaceful with respect to (R,D,C).

In the following, to make the notation easier to read, we shall omit the re-
pository (R,D,C) when using the above properties, when it is clear from the
context which repository is intended.

With these definitions, it becomes possible to formalise the installability of a
package:

Definition 2.8 (Installability)
A package p is installable in a repository (R,D,C) if and only if there exists a
healthy set I ⊆ R such that p ∈ I .

The set I is also called an installation set of I ; note that there are in gen-
eral several possible installation sets for a given package. For example, when
we look at the repository from figure 2.1, possible install sets for alpha are
{alpha, bravo, charlie} and {alpha, bravo, delta}. These are just the min-
imal sets, in fact: {alpha, bravo, charlie, delta, echo} also is a perfectly valid
install set (it is not necessary to install both charlie and delta, nor echo, but
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neither is it forbidden to install extra packages) However, since an install set
has to be peaceful, it is not possible to include both delta and foxtrot in an
install set, because of the conflict between them.

This definition is easy to extend to multiple packages; if several packages
are installable at the same time, they are co-installable:

Definition 2.9 (Co-installability)
A set of packages P is co-installable in a repository (R,D,C) if and only if there
exists a healthy set I ⊆ R such that P ⊆ I .

2.4 Dependencies

A distribution can also be seen as a graph, where the packages are the vertices
and dependencies are the edges.

One can use special nodes to represent disjunctions, to help visualise the
structure of the dependencies, like in figure 2.1, but it is also useful to consider
the graph obtained when forgetting all differences between conjunctive and
disjunctive dependencies, and the graph obtained when using only conjunctive
dependencies. More about distributions when considered as graphs can be
found in chapter 8.

Definition 2.10 (Direct dependency)
A package p depends directly on another package q (p→ q) if and only if there is
a d in D(p) such that q ∈ d.

This can be made into a graph (V,E) where V = R andE = {(p, q) | p→ q}.
If necessary, a function f : E −→ {Conjunctive, Disjunctive} can be added
to mark edges as representing conjunctive or disjunctive dependencies.

The interest of such a graph is that it allows one to visualise which packages
can have a potential effect on one another, even though an edge between two
packages does not always indicate that installing one also means installing the
other.

Definition 2.11 (Dependency)
A package p depends on another package q (p � q) if and only if there is a list of
packages x0, x1, . . . , xn such that p→ x0 → x1 → . . .→ xn → q.

Corollary 2.12
The dependency relation is transitive.

In order to keep the difference between conjunctive and disjunctive de-
pendencies, if desired, one can add the following definitions:
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Definition 2.13 (Conjunctive direct dependency)
A package p has a conjunctive direct dependency on a package q (p c→ q) if and
only if there is a d in D(p) such that d = {q}.

Definition 2.14 (Conjunctive dependency)
A package p has a conjunctive dependency on a package q (p

c
�

q) if and only if there is a list of packages x0, x1, . . . , xn such that
p

c→ x0
c→ x1

c→ . . .
c→ xn

c→ q.

It now becomes possible to define the dependency cone of a package.

Definition 2.15 (Dependency cone)
The dependency cone ∆R(p) of a package p with respect to a repository (R,D,C)
is the set of packages {q ∈ R | p� q}.

Similarly, the dependency cone ∆R(P ) of a set of packages P is the union⋃
p∈P

∆R(p) (or, equivalently, {q ∈ R | ∃p∈P [p� q]}).

When it is clear from the context which repository is meant, we shall simply
write ∆(p) or ∆(P ).

Constructing the dependency cone is equivalent to taking the transitive
closure of the direct dependency relation.

Similar to the dependency cone, there is also the reverse dependency cone of a
package:

Definition 2.16 (Reverse dependency cone)
The reverse dependency cone ∆R(p) of a package p with respect to a repository
(R,D,C) is the set of packages {q ∈ R | q � p}.

The importance of the dependency cone comes from the following prop-
erty:

Proposition 2.17
A package p is installable with respect to a repository (R,D,C) if and only if it is
installable with respect to the repository (∆R(p), D,C).

Proof In two directions:

• Suppose that p is installable w.r.t (R,D,C). Then, there is a healthy set
I ⊆ R with p ∈ I . Now I ∩∆R(p) also is healthy; it is abundant because
D(p) = D(p)|∆R(p), and it is peaceful, because I ∩∆R(p) ⊆ I , and there
are no conflicting packages in I .
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2. Definitions

• Suppose that p is installable w.r.t. (∆R(p), D,C). Since R ⊇ ∆R(p), one
can re-use the same installation set for (R,D,C).

This means that, when determining the installability of a package (or set
of packages) in a repository, one only has to consider packages that are in its
dependency cone. This is not surprising, as the installability of a package can-
not depend on packages that it has no dependency relation with, but it is of
great importance when building efficient algorithms: many tools which are
being used today to check installability are based on solvers that work on a
propositional logic representation of a repository. The property proven in pro-
position 2.17 shows that the dependency solver only needs the packages in
the dependency cone of the package it is investigating, which saves time and
space.

Another important property is stated in the following proposition: if a
package p has a conjunctive dependency on another, any installation set of p
will contain this package.

Proposition 2.18
For two packages p, q such that p

c
� q, any installation set of p includes q.

Proof Since p
c
� q, there is a list x0, x1, . . . xn such that p c→ x0

c→ x1
c→ . . .

c→ xn →c q.
Follows a proof by induction on k that given an installation set I of p, for

all xk, xk ∈ I :

• x0 ∈ I : p c→ x0, so that {x0} ∈ D(p). Since I is abundant, {x0} ∩ I 6= ∅,
hence x0 ∈ I .

• xm ∈ I −→ xm+1 ∈ I : xm
c→ xm+1, so that {xm+1} ∈ D(xm). Since I is

abundant, {xm+1} ∩ I 6= ∅, hence xm+1 ∈ I .

Thus, xn ∈ I . Given that xn
c→ q, {q} ∈ D(xn) and thus q ∈ I .

Again, this property seems trivial, but we shall see in later chapters that it
can be used to optimise several algorithms.
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Package: ocaml

Priority: optional

Section: devel

Installed-Size: 8368

Maintainer: Debian OCaml Maintainers <debian-ocaml-maint@lists.debian.org>

Architecture: i386

Version: 3.10.2-3

Replaces: ocaml-nox (� 3.10.0-12)

Provides: ocaml-3.10.2

Depends: ocaml-base (= 3.10.2-3), ocaml-nox (= 3.10.2-3), libx11-dev

Suggests: tcl8.4-dev, tk8.4-dev

Filename: pool/main/o/ocaml/ocaml 3.10.2-3 i386.deb

Size: 2066194

MD5sum: cd876d71c86a2ed80f052f2994745dd7

SHA1: 0a65ca56fa0fc56c24ad44aa0b73b06e0d000bd1

SHA256: 7dcc3186984741313c663b638c68cf9f33028e71154ace3e4f35c4c46f4148bb

Description: ML language implementation with a class-based object system

Objective Caml (OCaml) is an implementation of the ML language, based on

the Caml Light dialect extended with a complete class-based object system

and a powerful module system in the style of Standard ML.

.

OCaml comprises two compilers. One generates bytecode

which is then interpreted by a C program. This compiler runs quickly,

generates compact code with moderate memory requirements, and is

portable to essentially any 32 or 64 bit Unix platform. Performance of

generated programs is quite good for a bytecoded implementation:

almost twice as fast as Caml Light 0.7. This compiler can be used

either as a standalone, batch-oriented compiler that produces

standalone programs, or as an interactive, toplevel-based system.

.

The other compiler generates high-performance native code for a number

of processors. Compilation takes longer and generates bigger code, but

the generated programs deliver excellent performance, while retaining

the moderate memory requirements of the bytecode compiler. It is not

available on all arches though.

.

This package contains everything needed to develop OCaml applications,

including the graphics libraries.

Homepage: http://caml.inria.fr/

Tag: devel::{compiler,interpreter,lang:ocaml}, implemented-in::ocaml,

role::meta

Figure 2.3: Metadata for the Debian ocaml package
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provides@ocaml-emacs@dllbigarray.so@dllgraphics.so@dllmldbm.so@dllnums.so@

dllstr.so@dllthreads.so@dllunix.so@dllvmthreads.so@libcamlrun shared.so@

ocaml[== 3.11.0-2mdv2009.1]@ocaml(x86-32)[== 3.11.0-2mdv2009.1]

@obsoletes@ocaml-emacs

@requires@bash@libX11.so.6@libc.so.6@libc.so.6(GLIBC 2.0)@

libc.so.6(GLIBC 2.1)@libc.so.6(GLIBC 2.1.2)@libc.so.6(GLIBC 2.1.3)@

libc.so.6(GLIBC 2.2)@libc.so.6(GLIBC 2.3)@libc.so.6(GLIBC 2.3.2)@

libdb-4.7.so@libdl.so.2@libdl.so.2(GLIBC 2.0)@libdl.so.2(GLIBC 2.1)@

libm.so.6@libm.so.6(GLIBC 2.0)@libncurses.so.5@libpthread.so.0@

libpthread.so.0(GLIBC 2.0)@libpthread.so.0(GLIBC 2.2)@rtld(GNU HASH)

@summary@The Objective Caml compiler and programming environment

@filesize@5868328

@info@ocaml-3.11.0-2mdv2009.1.i586@0@27475067@Development/Other

Figure 2.4: Synthesis data for ocaml in Mandriva 2010.0
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Strong dependencies and
conflicts 3
ἁρμονίη αφανης φανερ ης κρείττων

— HERACLITUS OF EPHESUS

In F/OSS distributions, as well as many other component-based systems [Apa09,
CR08], the language used to express inter-package relationships is expressive
enough to cover propositional logic. As a consequence, considering only ‘nor-
mal’ dependencies, as expressed in the existing metadata, the existence of a de-
pendency path between two packages does not guarantee that when installing
the first package, the second will always be installed. For example, if p is to be
installed and there exists a dependency path from p to q, it is not true that q is
always needed for p, and in some cases q may even be incompatible with p.

In other terms, the syntactic connectivity notion—this being the existence
of a dependency path as specified in the package metadata—does not tell us
much about the real structure of dependencies and conflicts: it is necessary
to go further and analyse the semantic connectivity—the essence of the de-
pendency relationship: installing one package always implies installing an-
other package as well—among software components induced by the explicit
dependencies in the graph.

In this chapter, we shall explain these notions of semantic connectivity and
propose their basic properties, as well as theorems that can be used to effi-
ciently compute them. The consequences of this notion when considering the
distribution graph will be treated in more detail in chapter 8.

3.1 Strong dependencies

When considering the dependencies of a package, it is interesting to restrict
ourselves to those dependencies that are always installed when the package
itself is installed; this gives us an under-representation of the actual packages
that are going to be installed (there might still be other packages that are part of
a disjunctive dependency, for example), but it does give us the most important
dependencies: those that are absolutely essential.

In the MANCOOSI project, we have called this concept a strong dependency:
in short, a package p depends strongly q if and only if it is impossible to install
p without also installing q. The formal definition is as follows:

Definition 3.1 (Strong dependency)
Given a repository % = (R,D,C), a package p strongly depends on a package q
(denoted p ⇒% q) if and only if p is installable in %, and all installation sets of p
in % contain q (If it is clear from the context which repository is meant, we shall
simply note p⇒ q to indicate a strong dependency).
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3. Strong dependencies and conflicts

The set of strong dependencies of a package p, {q | p ⇒ q}, is denoted as
Scons(p) (the strong consequences of p).

Note that for a package to have strong dependencies, it has to be installable;
without this condition, every non-installable package would have trivial strong
dependencies on every other package.

In figure 3.1, we see that conjunctive dependencies (such as alpha→ bravo

and alpha → charlie) translate to identical strong dependencies (with the
proviso that the package must be installable), but that disjunctive dependen-
cies (such as delta→ echo or delta→ foxtrot) do not.

alpha

bravo charlie

delta

echo foxtrot

(strong dependencies bold, normal dependencies dotted)

Figure 3.1: Simple example

The more complicated example in figure 3.2, shows that disjunctive de-
pendencies can translate to strong dependencies (in this case, because of the
conflict between alpha and charlie, bravo becomes a strong dependency, as it
is the only way to satisfy the disjunctive dependency and will therefore always
be installed if alpha is installed).

#

alpha

bravo charlie

(strong dependencies bold, normal dependencies dotted)

Figure 3.2: More complicated example

This gives us our first corollary: conjunctive dependencies are strong de-
pendencies.

Corollary 3.2
If p

c
� q and p, q are packages in %, and p installable w.r.t. %, then p ⇒% q (a

conjunctive dependency implies a strong dependency).

Another corollary:
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Corollary 3.3
The strong dependency relation is reflexive and transitive.

In chapter 4, we shall discuss an efficient way to compute the strong de-
pendencies within a repository.

The notions of strong and direct dependencies can be used to create graphs:

Definition 3.4 (Dependency graphs)
The strong dependency graph SG(%) of a repository % = (R,D,C) is the
directed graph with the elements of R as its vertices, and as edges all pairs p, q
such that p ⇒% q. (Note that since the strong dependency relation is transitive,
SG(%) is closed under transitivity).

Similarly, the direct dependency graph DG(%) of a repository % =
(R,D,C) is the directed graph with the elements of R as its vertices, and as edges
all pairs p, q such that p→ q.

These graphs and their properties will be discussed further in chapter 8.

Definition 3.5 (Impact set)
Given a repository % = (R,D,C), the impact set Is(p, %) of a package p is the
set {q ∈ R | q ⇒% p}.

It now becomes easy to define the “sensitivity” of a package—a measure of
how many other packages can be affected by a change in it.

Definition 3.6 (Sensitivity)
The sensitivity of a package p in % is defined as: |Is(p, %)|−1; in other words, the
cardinality of its impact set minus 1. Because the impact set of a package always
contains itself, 1 is subtracted; in this way, a package on which no other package
strongly depends has a sensitivity of 0.

Note that any installation set of a package p must necessarily include all
strong dependencies of p. In other words:

Corollary 3.7
For any installation set I of p, it holds that Scons(p)% ⊆ I .

We shall use this observation in chapter 4 to specify an efficient algorithm
for the computation of the strong dependencies present in a distribution.

3.2 Dominators

When analysing a large component base, like Debian’s, which contains about
22 000 components, it is important to be able to identify some measure that
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3. Strong dependencies and conflicts

can be used to easily pinpoint ‘interesting’ packages. Sensitivity can be (and
actually is, in our tools) used to order packages, bringing the most sensitive
to the forefront. But sensitivity alone is not enough: one does not want to
spend time going through hundreds of packages with similar sensitivity to
find the one which is really important, so some of the structure of the strong
dependency graph should be conserved.

A first step is to group together only those packages that are related by
strong dependencies, but analysis of the Debian distribution has shown that it
is necessary to go further and distinguish the cases of related components in
the strong dependency graph from the cases of unrelated ones: in the picture
in figure 3.3 1, configuration 3.3c shows quebec that clearly dominates romeo,
as the impact set of romeo is actually the impact set of quebec, plus romeo itself.
In the same vein, in configuration 3.3d, romeo and quebec are equivalent (their
impact sets are equal, and they strongly depend on each other). Conversely, in
configuration 3.3a, romeo and quebec are not immediately related to each other
(other than that their impact sets overlap, but this only means that the same
packages depend on them, and does not indicate any relation between the two
packages), and in configuration 3.3b, quebec strongly depends on romeo, but a
part of the impact of romeo has nothing to do with quebec.

quebec romeo

(a) Coincidence

quebec

romeo

(b) General case

quebec

romeo

(c) Order

quebec

romeo

(d) Equivalence

Figure 3.3: Significant configurations in the strong dependency graph

Yet, the packages romeo and quebec all have essentially the same sensit-
ivity values. To distinguish between these different configurations in strong
dependency graphs, we shall introduce one last notion: dominance.

This notion is known from the domain of flow control graphs; there, a node
p dominates another node q if and only if every path from the start node to q
passes through p. Our definition looks different, but we shall show later on
that it is equivalent to the notion of dominance from flow control graphs.

Another way of imagining dominance, which is more pertinent to distribu-
tions, is that p dominates q if and only if the impact set of p explains the impact
set of q: the impact set of q consists of the impact set of p, plus some extra
packages explained by the fact that q is a strong dependency of q. The formal
definition follows:

Definition 3.8 (Dominance)
Given two packages p and q in a repository %, p strongly dominates q (p <Is q) if
and only if:

1. Is(p, %) ⊇ (Is(q, %) \ Scons(p));

2. p⇒ q

1Edges implied by transitivity are omitted for the sake of clarity

40



Using the transitivity of strong dependencies, it is possible to prove that the
strong domination relation is a partial pre-order:

Lemma 3.9
The dominance relation is a partial pre-order.

Proof • Reflexivity: trivial to check.

• Transitivity: suppose that there are p, q, r such that p <Is q and q <Is r.
Then, Is(p, %) ⊇ (Is(q, %) \ Scons(p)) and Is(q, %) ⊇ (Is(r, %) \ Scons(q)).
By transitivity of strong dependencies, since p ⇒ q ⇒ r, it is also the
case that Scons(p) ⊇ Scons(q) ⊇ Scons(r). Then, (Is(r, %) \ Scons(q)) \
Scons(p) = Is(r, %) \ Scons(p), and because Is(p,⊇)Is(r, %) \ Scons(q), it
is the case that p <Is r.
By transitivity of the strong dependency relation, it is also the case that
p⇒ r.

This pre-order is now able to distinguish among the cases of figure 3.3. In
configuration 3.3c, it is the case that quebec <Is romeo, but not the converse;
in configuration 3.3d both quebec <Is romeo and romeo <Is quebec (in other
words, romeo and quebec are equivalent with respect to dominance); in config-
urations 3.3a and 3.3b, no dominance relationship can be established between
romeo and quebec.

It is possible, and actually quite useful, to generalise the dominance relation
to also cover the case from configuration 3.3b, where a part of the impact set of
the package romeo is not covered by the impact set of quebec.

If the “uncovered” part is small in respect to the “covered” part, after all,
there is still a strong correlation between the impact sets of both packages. This
concept of relative dominance is defined as follows:

Definition 3.10 (Relative dominance)
Given two packages p and q in a repository %, p strongly dominates q up to z
(p <z

Is q) if and only if:

• |(Is(q,%)\Scons(p))\Is(p,%)|
|Is(p,%)| ∗ 100 = z;

• p strongly depends on q.

It is easy to see that p <Is q is equivalent to p <0
Is q, and one can compute

in a single pass on the repository the values z for each pair of packages such
that p⇒ q, leaving for later the choice of a threshold value for z.

3.3 Dominators in strong dependency graphs and
control flow graphs

Dominance in a strong dependency graph can be formally put in correspond-
ence with the traditional notion of dominators in control flow graphs [LT79].
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3. Strong dependencies and conflicts

This does require some manipulation of the graphs, though, because unlike
regular control flow graphs, strong dependency graphs are transitives and do
not have a start node.

The key idea is to build a control flow graph out of a strong dependency
graph, by first performing transitive reduction, and then adding a start node
that connects to every node that does not have any predecessors.

Before starting with the main proof, we introduce some auxiliary lemmas.
To start with, since the strong dependency graph may contain cycles, the trans-
itive reduction is not unique[LT79]. However, since the graph is closed under
transitivity, all cycles are actually cliques, and all the vertices of such a cycle
are equivalent to each other in the dominance relation:

Lemma 3.11 (Equivalence)
If p⇒ q and q ⇒ p, then p <Is q and q <Is p

Proof If p ⇒ q and q ⇒ p, then Scons(p) = Scons(q), and Is(p, %) = Is(q, %).
Hence, Is(p, %) \ Scons(q) = Is(q, %) \ Scons(p), and therefore p <Is q and
q <Is p.

Lemma 3.12
If there is a cycle v1 → v2 → . . .→ vn in SG(%), then {v1, v2, . . . , vn} is a clique
in SG(%).

Proof To be proven is that for any vi and vj (1 ≤ i, j ≤ n), there is an edge
between vi and vj . Since vi and vj are part of a cycle, there is a path from vi to
vj , and because SG(%) is closed under transitivity, there must also be an edge
from vi to vj .

Since all vertices in such cliques are equivalent, one can replace the entire
clique by one vertex that represents its equivalence class in the strong domin-
ance relation; the resulting graph does not contain any cycles. This is slightly
more simple than the traditional approach to the transitive reduction of cyclic
graphs, where one has to choose between the possible ways of expanding back
this representative node into a cycle.

Definition 3.13 (Collapse)
Given a graph G, its collapseG ↓ is defined as the graph obtained by the following
procedure:

• For all maximal cliques C = {v1, v2, . . . , vn}, do

– Add a vertex vC to G.

– Replace all edges v → vi with v → vC , and vi → v with vC → v.

– Remove all edges vC → vC .
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– Remove all vertices in C from G.

• Perform transitive reduction on the resulting graph.

The function ϕG : V (G) −→ V (G ↓) is defined to map a node in G to its
replacement in G ↓ (we shall just write ϕ if it is clear from the context with G is
intended). Note that this function is a surjection.

Lemma 3.14
If G is a transitive graph, then G ↓ is acyclic.

Proof Since G is transitive, by lemma 3.12, any cycle in G is a clique.
Now, it becomes possible to prove that all cliques are collapsed in G ↓.
By definition 3.13 all maximal cliques are replaced by a single node in G ↓.
Every clique is either a maximal clique itself, or a complete subclique of a

maximal clique, or shares at least one vertex with another maximal clique.
It is obvious that by replacing all maximal cliques, all cliques that corres-

pond to the first two cases are removed.
To conclude the proof, it remains to show that in a transitive graph cliques

that correspond to the third case do not exist.
Suppose there is a maximal clique M , and a clique C that is not maximal, is

not a complete subclique of M , but shares at least one vertex v with M . Since v
is connected to all vertices in both C and M , by transitivity of G, every vertex
in C must be connected to every vertex in M and vice versa. Hence, M ∪ C is
a clique as well, which contradicts our assumption that M is a maximal clique.

All this allows to build the flow graph of strong dependencies:

Definition 3.15 (Flow graph)
Given a graph of strong dependencies SG(%), the corresponding flow graph of
strong dependencies FG(%) is obtained from SG(%) ↓ by adding an extra start
vertex which is connected to every vertex in SG(%) ↓ that does not have any
predecessor.

Lemma 3.16
For every vertex v ∈ FG(%), there exists a path start� v.

Proof Any vertex x ∈ SG(%) ↓ (with ϕ(x) = v) must either have no prede-
cessors (and thus, by construction, there must be an edge between start and
v in FG(%)), or have at least one predecessor. Since, by lemma 3.14, SG(%) ↓
is acyclic, and % is finite, this predecessor cannot be part of an infinite path; at
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3. Strong dependencies and conflicts

some point in the transitive closure of the predecessors of x, a node w must be
encountered that has no predecessors. There is a path start→ ϕ(w), and a path
ϕ(w)� v, and thus there is a path start� v.

Lemma 3.17
A vertex ϕ(v) is reachable from a vertex ϕ(w) in FG(%) if and only if v ⇒% w.

Proof

(⇐) Let us assume that v ⇒% w; then it must be proven that there is a path
from ϕ(v) to ϕ(w) in FG(%).

Given that v ⇒% w, there is an edge v → w in the graph SG(%). If neither v
nor w are part of a clique in SG(%), there is a path v � w in the transitive
reduction of SG(%) and therefore there is a path from ϕ(v) to ϕ(w) in
SG(%) ↓. This is also true if v and w are part of different cliques; by
construction, the path from v to w is maintained between ϕ(v) and ϕ(w)
FG(%).

If v and w are part of the same clique, both v and w are replaced in
SG(%) ↓ by the same node (and thus in FG(%), ϕ(v) = ϕ(w)). A node
is trivially reachable from itself, so ϕ(w) is reachable from ϕ(v).

(⇒) Let us assume that there is a path from v to w in FG(%); then it must be
proven that there exist v′ and w′ such that ϕ(v′) = v, ϕ(w′) = w and
v′ ⇒% w

′.

Since every node in FG(%) represents a clique in SG(%), this means that
there is a list of cliques C1, C2 . . . Ck, such that there is a y1 ∈ C1, x2, y2 ∈
C2, . . . , xk ∈ Ck such that y1 → x2, y2 → x3, . . . , yk−1 → xk.

Since every xn and yn are part of a clique, for every n, it is either the case
that xn = yn or xn → yn. In both cases it is easy to construct a path that
connects v′ and w′ from the edges mentioned in the previous paragraph.

The correspondence between dominators in the strong dependency graph
and dominators in the flow graphs can now be established.

Definition 3.18 (Dominators in a control flow graph [LT79])
In a directed graph G with a distinguished node start, a node p dominates a node
q if and only if every path from start to q passes through p.

Theorem 3.19
Given a repository %, v <Is w if and only if ϕ(v) dominates ϕ(w) in FG(%).
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Proof

(⇐) Let us assume that every path from start to ϕ(w) in FG(%) passes through
ϕ(v).

1. Since every node is reachable from start, there must be at least one
path from start to ϕ(w), which by the hypothesis passes through
ϕ(v). This means that there is a path from ϕ(v) to ϕ(w), and, by
lemma 3.17, v ⇒ w.

2. Let x be a package in Is(w, %) \ Scons(v). Then, by definition, there
is a path x � w, but no path v � x in SG(%), and the same holds
(mutatis mutandis) in FG(%). By lemma 3.16, there must exist a path
start� ϕ(x) in FG(%).
Given that start� ϕ(x)� ϕ(w) is a path in FG(%), and v dominates
w by hypothesis, this path must contain ϕ(v). Since there is no path
ϕ(v) � ϕ(x), ϕ(v) must be on the path ϕ(x) � ϕ(w). Hence, there
is a path from ϕ(x) to ϕ(v), and this means that x ∈ Is(v, %).

From these two points, it follows that v <Is w.

(⇒) Let us assume that v ⇒ w and Is(v, %) ⊇ (Is(w, %) \ Scons(v)).

Take any path α from start to ϕ(w) in FG(%). Observe first that, since
v ⇒ w, the set of vertices {ϕ(x) ∈ α | x ∈ Scons(v)} is not empty (it
contains at least ϕ(w)).

If the images of all vertices in α are in Scons(v), then α is necessarily of
the form start→ ϕ(v)� ϕ(w) in FG(%) (all other nodes in α necessarily
are strong dependencies of v, so start can point only to ϕ(v)), and the
proof is complete.

Otherwise, consider the vertex ϕ(x) ∈ α which is the last one (counting
from start) so that x is not in Scons(v): since it is on a path leading to w,
x ∈ Is(w, %), and since x 6∈ Scons(v), by hypothesis we have x ∈ Is(v, %),
so there is a path ϕ(x)→ ϕ(v).

Consider now the vertex ϕ(x′) which immediately follows ϕ(x) in α (see
figure 3.4): by the definition of x, x′ ∈ Scons(v), so either x′ = v or there
is a path ϕ(v)� ϕ(x′). Now, if x′ 6= v, we would have the vertices x, x′, v
with ϕ(x) → ϕ(x′), ϕ(x) � ϕ(v) and ϕ(v) � ϕ(x′) in FG(%); this is not
possible because FG(%) is detransitivised. So, by necessity, x′ = v; ϕ(v)
belongs to α and the proof is also complete.

We note here that the presence of cycles in SG(%), which are removed in
FG(%), entails a difference in the resulting order structure.

Observation 3.20
The (flow graph) dominance relation establishes a partial order on the vertices of
FG(%), which is an acyclic graph, while (dependency) dominance only gives a
partial pre-order on SG(%), which may contain cycles.
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v

w

IS(w)\

SCons(v)

IS(v)

start

x

x'

α

Figure 3.4: Path from start to w in dominator graph

3.4 Strong conflicts

The same reasoning that led to the introduction of strong dependencies to
obtain from a repository all relevant information that is not easily available
when looking only at the syntactic dependency relation can be reused, mutatis
mutandis, for conflicts.

It is very well possible for two packages that do not have a syntactic conflict
to be non co-installable; for example, if they depend on two packages that have
a syntactic conflict.

A very simple example can be seen in figure 3.5. Obviously, the packages
bravo and charlie are not co-installable, because there is a syntactic conflict
between them.

This conflict also prevents alpha and delta from being installed together:
since alpha depends on bravo and delta on charlie, installing alpha and
delta will also invoke the conflict between bravo and charlie.

alpha

bravo charlie

delta

#

Figure 3.5: Simple strong conflict example

A slightly more complex example follows in figure 3.6. Here, none of echo,
alpha and bravo are co-installable with neither delta nor charlie. However,
since golf does not necessarily install delta (it can use foxtrot instead), there
is no strong conflict involving golf.

This leads us to the following definition:

Definition 3.21 (Strong conflict)
Given a repository %, two packages p and q strongly conflict if p and q are both
separately installable in %, but not co-installable.
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alphabravo charliedelta#echo foxtrotgolf
Figure 3.6: More complex strong conflict example

Similar to strong dependencies, for two packages to strongly conflict, they
must be installable separately—otherwise, any non-installable package would
trivially have a strong conflict with any other package.

One application of the strong conflict relationship is to find packages that
have many strong conflicts: obviously, a good software distribution should try
to avoid packages whose installation prevents the installation of a large set of
other packages.

The set of packages whose installation is prevented by a package p is called
exclusion set of p:

Definition 3.22 (Exclusion set)
The exclusion set of a package p (from a repository (R,D,C)) is the set of pack-
ages {q ∈ R | q strongly conflicts with p}.

We now present some lemmas on strong conflicts that will help us define an
efficient algorithm for the computation of the strong conflicts of a distribution
(see chapter 4).

Lemma 3.23
Given a repository (R,D,C) and two peaceful sets I, I ′ ⊆ R, if the union I ∪ I ′
is not peaceful, there exists a conflict (c1, c2) such that c1 ∈ I and c2 ∈ I ′.

Proof I ∪ I ′ is not peaceful, so there is a conflict (c1, c2) with c1, c2 ∈ I ∪ I ′.
Since I is peaceful, it cannot be the case that both c1 and c2 are in I ; similarly,
because I ′ is peaceful, it cannot be the case that both c1 and c2 are in I . The
only possibilities are that c1 ∈ I and c2 ∈ I ′, or that c1 ∈ I ′ and c2 ∈ I . In fact,
because the conflict relation is symmetrical, both these cases are equivalent.

Lemma 3.24
Given a repository %, if p′ ∈ ∆(p), then there is a path from p to p′ in the depend-
ency graph of %.
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3. Strong dependencies and conflicts

Proof ∆(p) is closed under the repeated application of the direct dependency
function, so there must be a list p1, p2, . . . , pn, such that p → p1, p1 → p2, . . .,
pn → p′. Therefore, p→ p1 → p2 → . . .→ pn → p′ is a path in the dependency
graph of %.

These two lemmas can be used to prove a theorem about the origin of strong
conflicts:

Theorem 3.25
If two packages p and q strongly conflict, there must be an explicit conflict (c1, c2)
such that p� c1 and q � c2.

Proof Since p and q are separately installable in (R,D,C), by proposition 2.17,
they also are installable in ∆R(p) and ∆R(q) respectively. Thus, there must be
healthy sets Ip ⊆ ∆R(p) and Iq ⊆ ∆R(q), such that p ∈ Ip and q ∈ Iq .

However, p and q are not co-installable, so Ip ∪ Iq cannot be healthy. Hence,
Ip ∪ Iq must either be not abundant or not peaceful. Since per corollary 2.5, the
union of two abundant sets is abundant, Ip ∪ Iq is necessarily not peaceful.

Then, per lemma 3.23, there exists a conflict (c1, c2) such that c1 ∈ Ip and
c2 ∈ Iq . Since Ip ⊆ ∆R(p), by lemma 3.24, there is a dependency path from p to
c1; similarly, since Iq ⊆ ∆R(q), there is a dependency path from q to c2.

We shall use this theorem in chapter 4 to propose an efficient algorithm to
compute all strong conflicts in a distribution.

Aside from making an efficient algorithm possible, there is another advant-
age to be drawn from this theorem: the conflict (c1, c2) can be seen as an ex-
planation for the strong conflict between p and q—in at least one instance, the
conflict (c1, c2) causes p and q not to be installable together.

This can be exploited by grouping the strong conflicts in a distribution by
‘root cause’. An example should make things clearer:

2362 ppmtofb-0.32-0.1:

2362 (python-2.5.2-3 <-> ppmtofb-0.32-0.1)

* atomix-2.14.0-1 (conjunctive)

- conflict: python-2.5.2-3 - ppmtofb-0.32-0.1

- dependency: gconf2-2.22.0-1 -> python-2.5.2-3

- dependency: libgnome2-common-2.20.1.1-1 -> gconf2-2.22.0-1

- dependency: libgnome2-0-2.20.1.1-1 -> libgnome2-common-2.20.1.1-1

- dependency: atomix-2.14.0-1 -> libgnome2-0-2.20.1.1-1

(...)

This is the actual output of the tool we have written that generates the
list of strong conflicts of a distribution. The first line tells us that the pack-
age ppmtofb-0.32-0.1 has an exclusion set of 2362 packages; in other words,
that it is not co-installable with about 10 percent of the distribution.

The second line tells us that all these 2362 strong conflicts have the syntactic
conflict between python-2.5.2-3 and ppmtofb-0.32.0.1 as their root cause.
After this second line we can see the first of the 2362 packages that have a
strong conflict with ppmtofb, to wit atomix-2.14.0-1.
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The dependency path between atomix and ppmtofb is shown after that;
the addition (conjunctive) tells us that this dependency path contains only
conjunctive dependencies.

This information can help us locate the problem fairly quickly. Apparently,
there is a conflict between python and ppmtofb which causes this large exclu-
sion set. This conflict must be in the metadata of either python or ppmtofb.

When we look at the actual metadata, we find that ppmtofb conflicts with
every version of python that is superior to 2.4. Since the versions of python
currently included in Debian are all superior or equal to 2.5, this means that
ppmtofb cannot be co-installed with python (or any package that needs python).
This explains the large exclusion set.

3.4.1 Triangle conflicts

Considering figure 3.7, we notice that the conflict between bravo and charlie

is a particular one.

alpha

bravo charlie
#

Figure 3.7: Example of a triangle conflict

If bravo and charlie have no other predecessors than alpha, this conflict
that cannot engender any strong conflicts. Informally, the idea behind this the-
orem is as follows: suppose that there are two packages, delta and echo, of
which one depends on bravo and the other on charlie. However, since both
bravo and charlie have no other predecessors than alpha, both delta and
echo must depend on alpha, and hence on both bravo and charlie. This
means that delta and echo are co-installable, because it is not necessary to
install both bravo and charlie to satisfy all dependencies.

This notion, which will be proven in detail in the remainder of this section,
allows us to optimise the algorithm to compute the strong dependencies in a
distribution, because all triangle conflicts can be discounted. Practical experi-
mentation shows that there are not very many triangle conflicts, but they show
up often. As an example, in Debian, the debconf package, which is depended
on by a large proportion of the distribution, is the ‘apex’ of a triangle conflict
with debconf-english and debconf-i18n. Discounting this conflict consider-
ably reduces the search space (for more information, see chapter 4).

Definition 3.26 (Triangle conflict)
A conflict (c1, c2) is a triangle conflict if and only if there exists a package p such
that:

• there is a d ∈ D(p) such that {c1, c2} ⊆ d;
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3. Strong dependencies and conflicts

alpha

bravo charlie
#

Figure 3.8: Example of a degenerate triangle conflict

• there is no other p′ such that p′ → c1 or p′ → c2.

This definition allows for a “degenerate” triangle conflict, as shown in fig-
ure 3.8. In this figure, the conjunctive dependency from alpha to charlie ob-
soletes the disjunctive dependency from alpha to bravo and charlie; since
charlie is always going to be installed, the disjunctive dependency is always
satisfied and hence superfluous (at least with respect to installability).

Such degenerate triangle conflicts can hinder in the proof, since the assump-
tion is that in a triangle conflict, one can choose either side of the conflict to
satisfy the dependency—something that is obviously not true in case of a de-
generate triangle conflict.

Definition 3.27 (Removal of superfluous dependencies)
Given a repository (R,D,C), for all p ∈ R, remove all dependencies d ∈ D(p)
that satisfy the following condition:

∃d′∈D(p)[d ⊂ d′]

Observe that doing this does not hinder installability: no new conflicts are
introduced, so a peaceful distribution remains peaceful; furthermore, any al-
ternative d that is removed has a strict subset d′ that is not removed— and any
package that satisfies d′ also satisfies d.

Now the proof of our main theorem can begin, which notes that packages
that contain only triangle conflicts in their dependency cones are always co-
installable:

Theorem 3.28
Given:

• A repository % = (R,D,C), from which superfluous dependencies have
been removed as per definition 3.27;

• A set of packages a1, a2, . . . , an ∈ R, such that there does there does not
exist any c and i (1 ≤ i ≤ n) such that (c, ai) ∈ C;
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• For every i such that 1 ≤ i ≤ n, a set Ai ⊆ R such that Ai is healthy and
ai ∈ Ai (in other words, ai is installable in R, using Ai as the installation
set);

• For all packages c1, c2 ∈
⋃n

i=1 ∆(ai) with (c1, c2) ∈ C, (c1, c2) is a tri-
angle conflict.

Then a1, a2, . . . , an are co-installable with respect to %.

Proof Let us define a function K(A,B), where A and B are sets of packages,
as a list of packages from A that are involved in a conflict spanning A and B;

K(A,B) = {p ∈ A | ∃q∈B [(p, q) ∈ C]}
Furthermore, let us define a function αk such that:

• α1 = A1

• αk(1 < k ≤ n) = (αk−1 ∪Ak) \K(αk−1, Ak)

It is easy to see that since ai ∈ Ai, {a1, a2, . . . , an} ⊆ αn.
Now, αn is abundant. Proof by induction:

• A1 is abundant, so α1 is abundant.

• Supposing that αk−1 is abundant, then by corollary 2.5, αk − 1 ∪ Ak is
abundant. Therefore, for any package p ∈ αk−1 ∪ Ak and any d ∈ D(p),
there must be an x ∈ d∩(αk−1∪Ak). Now, either x ∈ K(αk−1, Ak), or not.
In the first case, there is a conflict (x, y), with both x and y in αk−1 ∪ Ak.
Now, since x ∈ K(αk−1, Ak), it is not in αk, but d can still be satisfied by
using y (since p, x and y form a triangle conflict). Hence, αk is abundant.
In the second case, trivially, x ∈ αk.

αn is also peaceful. Proof by induction:

• A1 is peaceful, so α1 is peaceful.

• Supposing that αk−1 is peaceful, then by lemma 3.23, αk−1 ∪Ak is peace-
ful if there are no conflicts (c1, c2) with c1 ∈ αk−1 and c2 ∈ Ak. When we
look at the construction of αk, we see that for any such conflict, one of its
packages from αk−1 ∪Ak is removed, so that αk is indeed peaceful.
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Algorithms 4
Much better to sit quietly in a room and read the sheets, with nothing between yourself and the
mind of the composer but a scribble of ink. Having it played by sweaty fat men and people with

hair in their ears and spit dribbling out of the end of their oboe. . . well, the idea made him
shudder.

— TERRY PRATCHETT, Soul Music

In the previous chapters, we have presented a model of F/OSS distributions
and their properties. Such a model is useful as a basis for reasoning about the
properties of distributions (as we have already done in chapter 3), but it can
also be used as a starting point for distribution analysis.

Given the scale of distributions, such analyses must necessarily be highly
automated. Furthermore, their implementation must be efficient, since the ana-
lyses will be run on large distributions, preferably on a daily basis in order to
follow the evolution of distributions over time.

Therefore, in this chapter, we shall explain the algorithms used to imple-
ment the notions presented in chapters 2 and 3. Frequent reference will be
made to these chapters, as the theorems proposed there are used for optimisa-
tion of the algorithms.

We shall also discuss the theoretical complexity of the algorithms.
In chapter 7, we shall discuss the practical applicability of these algorithms

(for example in terms of running time), and talk in more detail about some
more interesting results found in their output.

4.1 Installability

As seen in definition 2.8, for a package to be installable, all its dependencies
(and their dependencies, and the dependencies of those dependencies, etc.)
must be satisfied (i.e. the install set must be abundant, cf. definition 2.4), and
there must not be any conflicts between the packages used to satisfy the de-
pendencies (i.e. the install set must be peaceful, cf. definition 2.6).

An efficient way to check these conditions is by making use of a SAT solver;
the installability problem translates easily into a SAT specification, as we shall
show now.

In order to translate a dependency D(p) = {{x11, x21, . . . , x
n1
1 }, {x12, . . .}, . . .}

into SAT, the following clauses can be used:

¬p ∨ x11 ∨ x21 ∨ . . . ∨ x
n1
1

¬p ∨ x12 ∨ x22 ∨ . . . ∨ x
n2
2

...

A conflict (p, q) is specified as follows:
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¬p ∨ ¬q

Note that it is perfectly possible to satisfy all these clauses by simply assum-
ing ¬p. This is quite natural: installing no packages at all means that there are
no conflicts. Only when one actually specifies a package that must necessarily
be installed can a problem occur.

Let us look at an example: the repository from figure 2.1. Its SAT encoding
would look like this:

¬alpha ∨ bravo
¬alpha ∨ charlie ∨ delta
¬echo ∨ delta ∨ foxtrot
¬delta ∨ ¬foxtrot

In order to solve the installability problem for the package alpha, for ex-
ample, it suffices to add the single clause alpha to the SAT encoding (to force
the variable alpha to be set to true), and then run a SAT solver.

Conversely, any SAT problem can also be translated into into a package
installation problem. Given a SAT problem of n clauses C1, C2, . . . , Cn, such
that Ci = ci1 ∨ ci2 ∨ . . . ∨ cimi

, where any cij is either a variable v or the negation
of a variable v, where {v1, v2, . . . , vk} is the set of possible variables.

Then, let us define the following repository (R,D,C):

R = {P, PC1
, PC2

, . . . , PCn
, Pv1 , Pv2 , . . . , Pvk , Pv1 , Pv2 , . . . , Pvk}

D(P ) = {{PC1}, {PC2}, . . . , {PCn}, {Pv1 , Pv1}, {Pv2 , Pv2}, . . . , {Pvk , Pvk}}
D(PC1) = {{Pc11

, Pc12
, . . . , Pc1m1

}}
...
C = {(Pv1 , Pv1), (Pv1 , Pv1), . . .}

Now, our SAT problem is solvable if and only if the package P is installable.
This brings us to the following proposition:

Proposition 4.1
The package installability problem is NP-hard.

Proof As seen above, a package installability problem can be translated (in
polynomial time) into a SAT problem and vice versa. Thus, the package in-
stallability problem is equivalent in complexity to the SAT problem, which is
NP-hard.

In practice, luckily, the installability problems remain tractable, since the
number of conflicts and alternatives are limited with respect to the main distri-
bution (see chapter 7 for more information).

In the MANCOOSI project, much work has been done to optimise SAT solv-
ers for package installation problems.

4.2 Strong dependencies

The algorithm to check whether there is a strong dependency between two
packages p and q (that is, P ⇒ Q) is a slight variation on the SAT encoding
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described in the previous section. It consists in checking the satisfiability of the
following formula:

p ∧ ¬q ∧ SAT (R)
In this formula, SAT (R) denotes the formula obtained by the translation

into SAT clauses of the dependencies and conflicts of the repository R.
The SAT problem shown above is solvable if and only if it is possible to

install p in R without also installing q. If this is not the case, by necessity p
strongly depends on q.

Note that this problem is the complement of an NP-complete problem (the
crux is to find out whether a SAT formula is not solvable). This means that the
problem, theoretically, is exponential in complexity (it is part of the co-NP-hard
class).

In practice, like the installability problem, the problems remain tractable;
at least if one just wants to check whether a package strongly depends on an-
other. However, if one wants to draw the strong dependency graph of an entire
distribution, using this algorithm for every pair of packages in a distributionR
would entail doing O(|R|2) SAT checks. With distributions numbering in the
tens of thousands of packages, this is not feasible in any practical time.

However, using corollary 3.7, it becomes possible to dramatically reduce
the number of SAT checks: because any installation set is a superset of the set
of strong dependencies of a package, it suffices to find an install set of that
package, and then we only need to check the members of this install set. This
idea is implemented in algorithm 3.

Algorithm 3 Computation of strong dependencies, version 1

for p ∈ R do
S(p)← ∅
I ← install(p)
for i ∈ I do

if strongdep(p, i) then
S(p)← S(p) ∪ i

end if
end for

end for
return S

This is especially efficient if we use an algorithm that finds minimal install
sets, because then the number of invocations of the SAT solver remains as small
as possible.

The algorithm can be optimised further by using corollary 3.2. One can
compute the conjunctive dependencies of p very quickly (by traversing the syn-
tactic dependency graph); since by corollary 3.2, these are strong dependencies
as well, they do not need to be checked by the SAT solver. The only depend-
encies that remain to be checked are the members of the install set that are not
conjunctive dependencies.

The complete algorithm that uses this corollary is algorithm 4.
Let us present some examples of how this works. Consider the example

distribution from figure 4.1:
Dotting the arrows that are not strong dependencies produces the graph as
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Algorithm 4 Computation of strong dependencies, version 2

for p ∈ R do
S(p)← ∅
I ← install(p)
for i ∈ I do

if conjunctive dep(p, i) then
S(p)← S(p) ∪ i

else if strongdep(p, i) then
S(p)← S(p) ∪ i

end if
end for

end for
return S alphacharlie echoindia hotelgolffoxtrot#bravo delta

Figure 4.1: Example distribution
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alphacharlie echoindia hotelgolffoxtrot#bravo delta
Figure 4.2: Example distribution with strong dependencies

alpha

charlie

echo

india

hotelgolf

foxtrot

#

bravo

delta

Figure 4.3: Example distribution with transitive strong dependencies

shown in figure 4.2. Note that delta is not a strong dependency of echo, even
though they are conjunctive dependencies: because echo depends on hotel,
but also conflicts with it, echo is not installable, and therefore it does not have
any strong dependencies.

And then finally, after adding the transitive strong dependencies (as dashed
lines), we get figure 4.3.

In order to generate the transitive graph, the transitive edges can be added
on the fly during the computation, using the algorithm suggested in [PvL88]
(this algorithm actually computes both the transitive reduction and the trans-
itive closure, but we have removed the transitive reduction part). This is al-
gorithm 5.

The add edge algorithm adds an edge (v, v′) to the graph, plus any transit-
ive edges that might be needed. This works as shown in algorithm 6.

Using these optimisations, the algorithm runs quite quickly, even on large
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Algorithm 5 Computation of transitive strong dependency graph

Require:

• S = (VS , ES) is the syntactic dependency graph

• fS : Es → {Conjunctive, Disjunctive} is its annotation function.

V ← VS
E ← ∅
for v ∈ VS do

for v′ ∈ succS(v) do
if fS(v, v′) = Conjunctive then
add edge(v, v′)

else if strongdep(v, v′) then
add edge(v, v′)

end if
end for

end for
return (V,E)

Algorithm 6 Adding an edge to a transitive graph

Require:

• V,E is a transitive graph that does not contain any edges (p, p)

• (i, j) is an edge to be added to this graph

E → E ∪ (i, j)
mark j red
for k ∈ i ∪ pred(i) do

if (k, j) 6∈ E then
mark j red
while there are red nodes do

let l be a red node
unmark l
if k 6= l then
E → E ∪ (k, l)
for m ∈ succ(l) do

if (k,m) 6∈ E then
mark m red

end if
end for

end if
end while

end if
end for
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distribution. More information about this can be found in chapter 7.

4.3 Dominators

The classic dominator algorithm exactly follows the definition of strong dom-
inators (definition 3.8); it looks at the successors of all vertexes and checks if
there is a dominance relationship. If this is the case, it adds the appropriate
edge to the graph. This classic algorithm is presented as algorithm 7.

Algorithm 7 Classic algorithm for dominance

Require: R is a repository
Require: (V,E) is the (transitive) strong dependency graph for R
VD ← V
ED ← ∅
for p ∈ V do

for q ∈ succ(p) do
if Is(p,R) ⊇ Is(q,R) \ Scons(p) then
ED ← ED ∪ (p, q)

end if
end for

end for

This algorithm can be adjusted for relative dominators; it suffices to slightly
adjust the central test, as shown in algorithm 8:

Algorithm 8 Classic algorithm for relative dominance

Require: R is a repository
Require: (V,E) is the (transitive) strong dependency graph for R
Require: f is the fraction of relative dominance allowed
VD ← V
ED ← ∅
for p ∈ V do

for q ∈ succ(p) do
fv ← |(Is(q,R)\Scons(p))\Is(p,R)|

|Is(p,R)|
if fv ≤ f then
ED ← ED ∪ (p, q)

end if
end for

end for

We have shown in theorem 3.19 that the notion of dominance in flow graphs
is equivalent to the notion of dominance proposed in this thesis. There is an al-
gorithm of complexityO(|V |+ |E|+ |E| log |V |) ([LT79]) for finding dominators
in flow graphs.

This algorithm only works on a non-transitive graph, however, and the the-
oretical complexity of computing the transitive reduction of a graph isO(|V |3).
We will see in chapter 7 that due to the specific characteristics of the strong
dependency graph, the transitive reduction in actual cases can be done very

59



4. Algorithms

quickly. In consequence, the Tarjan algorithm is much faster than the ‘stand-
ard’ algorithm presented above.

Another disadvantage of the Tarjan algorithm is that it cannot be used to
compute relative dominance graphs.

The Tarjan algorithm is algorithm 9.

Algorithm 9 Fast Tarjan algorithm for dominance

Require: R is a repository
Require: (V,E) is the strong dependency graph for R

(V,E)← transitive reduction((V,E))
(V,E)← cycle reduction((V,E))
V ← V ∪ {start}
for v ∈ V do

if pred(v) = ∅ then
E ← E ∪ {(start, v)}

end if
end for
lengauer tarjan(V,E)

4.4 Strong conflicts

Similarly to strong dependencies, checking whether two packages p and q
strongly conflict can easily be done with a SAT check:

p ∧ q ∧ SAT (R)

If there is no solution for this formula, p and q strongly conflict (and other-
wise they do not).

Like for the strong dependency problem, this problem is the complement
of a SAT problem; therefore it is in the co-NP-complete class and potentially
exponential in complexity. Again, however, if one were to use this to compute
every strong conflict for an entire distribution, this would result in our doing
O(|R|2) SAT checks.

To avoid this, we propose an algorithm that uses theorem 3.25. This the-
orem indicates that if packages p and q strongly conflict, there must be a con-
flict (c1, c2) such that there is a dependency path from p to c1 and from q to
c2.

This means that the search space can be reduced drastically, because all
pairs of packages for which the aforementioned condition does not hold can
be safely ignored.

The proposed implementation turns this around by starting from the ex-
plicit conflicts (c1, c2) in a distribution and then looking at all the elements of
∆(c1) ×∆(c2)1. By theorem 3.25, every such element could be a pair of pack-
ages that strongly conflict with each other.

Even though the number of explicit conflicts is normally limited (in the
latest Debian stable distribution, for example, which contains some 22 000

1See definition 2.16.
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packages, there are only about 1 000 explicit conflicts), their reverse depend-
ency cones can be quite large; therefore, even though the search space is re-
duced by about two thirds, the number of candidates remains significant.

Consider a candidate (p, q). Here, p and q are packages, and there exists a
conflict (c1, c2) such that p � c1 and q � c2. This in itself does not guarantee
that p and q strongly conflict; but if p

c
� c1 and q

c
� c2, then any installation of

p and q would necessarily include both c1 and c2 and hence not be peaceful.
This means that every candidate that is connected to its root conflict solely

by conjunctive dependencies is automatically a strong conflict and thus does
not require a SAT check. When we look at the results for Debian stable, as an
example, 80 percent of the strong conflicts found satisfy this condition.

The search space can be reduced even further by using theorem 3.28. This
theorem shows that packages that have only triangle conflicts in their depend-
ency cones are co-installable. It follows that triangle conflicts can be discoun-
ted for the generation of strong conflict candidates: for two packages to be in
strong conflict, there must be at least one non-triangle conflict in one of their
dependency cones. Discounting triangle conflicts will therefore not change our
result.

We will see in chapter 7 that these measures speed up the algorithm consid-
erably: even though there are very few triangle conflicts, some of the triangle
conflicts that are there have very large reverse dependency cones.

The complete algorithm is shown as algorithm 10.
The algorithm to find conjunctive dependencies is in fact slightly more op-

timised than shown in the figure above: instead of computing the reverse de-
pendency cone and then checking if there is a conjunctive path, these two op-
erations are combined: while constructing the reverse dependency cone, the
algorithm keeps track of which elements of the cone have a conjunctive de-
pendency path and which do not; elements which have a conjunctive depend-
ency path are immediately added to the list of strong dependencies, whereas
other elements are added to the list of pairs that require a SAT check.

Here is the algorithm that constructs the reverse dependency cone in this
way. There are two arguments: P the set of packages of which the cone has to
be computed, and V the set of packages that have already been visited (initially
empty). The algorithm, algorithm 11, returns a pair of sets: first the conjunctive
predecessors, then the disjunctive predecessors.

The idea here is that the algorithm continually takes any conjunctive pre-
decessor of a package that it has not yet visited. This will result in a set C of all
predecessors that have conjunctive dependency paths; after this, the algorithm
takes the reverse dependency cone of C to get all disjunctive predecessors as
well. Since the dependency graph may contain cycles, we must subtract C
from the set of disjunctive predecessors to avoid duplicates.

Let us note in passing that this algorithm terminates; packages are never
visited twice, so since the repository is finite, at some point there are either no
more predecessors to be found, or every package in the repository has been
visited.
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Algorithm 10 Computation of strong conflicts

Require: (R,D,C) is a distribution
remove superfluous dependencies {see definition 3.27 in chapter 3}
S ← ∅ {set of strong conflicts}
P ← ∅ {set of possible strong conflicts}
for (c1, c2) ∈ C do

if not triangle(c1, c2) then
for p1 ∈ ∆R(c1) do

for p2 ∈ ∆R(c2) do
if p1

c
� c1 and p2

c
� c2 then

S ← S ∪ (p1, p2)
else

if not (p2, p1) ∈ C then {strong dependencies are symmetric}
P ← P ∪ (p1, p2)

end if
end if

end for
end for

end if
end for
for (p1, p2) ∈ P do

if co-installable(p1, p2) then
S ← S ∪ (p1, p2)

end if
end for
return S

Algorithm 11 Computation of the dependency cone

C ← ∅ {conjunctive predecessors}
while P 6= ∅ do

take a p from P
if p 6∈ V then
C ← C ∪ {x ∈ pred(p) | x c→ p}
V ← V ∪ {p}
P ← P ∪ C

end if
end while
return (C,∆R(C) \ C)
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Tools 5
For a list of all the ways technology has failed to improve the quality of life, please press three.

— ALICE KAHN

In this chapter, we shall give an overview of the different tools that have
been developed over the course of the EDOS and MANCOOSI projects.

5.1 distcheck

This tool, developed by Jerôme Vouillon at the very start of the EDOS project,
is used to check for non-installable packages in a distribution. The SAT solver
at its heart (a re-implementation of Mini-SAT) is used for determining package
(co-)installability in every tool mentioned hereafter.

Simply checking for non-installable packages is worthwhile in itself, but
distcheck does more: it also provides an explanation as to why a package is not
installable. As we have seen in definition 2.8 from chapter 2, for a package to
be installable there has to be an abundant and peaceful subset of the repository
that contains it. The possible reasons for a package not being installable are
thus exactly two: there not being an abundant set (i.e. there is a dependency
that cannot be satisfied), or there not being a peaceful set (i.e. a package de-
pends on two conflicting packages, and this conflict cannot be avoided). For
example:

python-gnuradio (= 3.0.4-2): FAILED

The following constraints cannot be satisfied:

python-gnuradio (= 3.0.4-2) depends on python (� 2.5) {NOT AVAILABLE}

python-wxgtk2.4 (= 2.4.5.1.1+b1): FAILED

The following constraints cannot be satisfied:

python-wxgtk2.4 (= 2.4.5.1.1+b1) depends on python-wxversion

{python-wxversion (= 2.6.3.2.2-2)}

python-wxgtk2.4 (= 2.4.5.1.1+b1) conflicts with python-wxversion (=

2.6.3.2.2-2)

The first package, python-gnuradio, is an example of a package that cannot
be installed because of a non-satisfiable dependency; the second, python-wxgtk2.4
cannot be installed because it simultaneously depends on and conflicts with the
same package.

5.2 dose

The dose library (Distribution Object Storage Engine) is the library used by all
EDOS tools. It provides an API for storage, manipulation and reporting of all
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types of package distribution algorithms.
There have been two main versions of dose: version 2, written originally by

Berke Durak and extended fairly heavily by myself, and version 3, written by
Pietro Abate, in cooperation with myself.

The basic make-up of both versions is the same: a package store, with an
API to manipulate packages and distributions, and to execute some of the al-
gorithms. The implementation, however, is quite different.

5.2.1 dose2

The main goal in designing dose, version 2, was to have a library for storing
multiple snapshots of a distribution, from different dates, in such a way that
they would take a minimum of space, and be quickly accessible. The reason
for these requirements was that dose was intended as a back-end for the anla
web interface (described below).

The obvious way of doing this is using an SQL database. This solution
was not used, however, mainly because of performance issues (the state of
the OCaml libraries for SQL databases was, at that time, not up to the task of
handling databases with years’ worth of distributions).

Instead, a ‘dosebase’ consists of an index in dbm format; this index contains
a record of every package, the distribution it is part of, and its lifetime, i.e. the
dates on which it was present in the distribution. Furthermore, it contains
pointers to separate files that contain the actual package metadata.

In order to be able to quickly respond to queries, this ‘dosebase’ is only used
as a persistent storage; all package metadata is loaded into memory upon start-
ing a dose2 application. This provides for great speed (once the initial loading
is done, responses to even the most complicated queries are instantaneous),
but obviously takes up a large amount of memory.

In practice, though, it is possible to work with dose archives containing
several years’ worth of distributions; memory usage in this case will be in the
order of 1 Gb.

In memory, the package metadata is stored in a simple table (the same struc-
ture is used for all distribution formats; all packages in one instance of dose2
must be of the same format), without translation, except for the version num-
bers. In order to avoid having to call the complicated version comparison al-
gorithm, every version number is translated into a pair of integers (one integer
for the epoch and version proper, and one integer for the release). In this way,
instead of having to parse the entire version number, two integer comparisons
suffice.

It is not possible to use a single integer, since, as seen in chapter 2, the RPM
version order is not a complete order (for example, a version 1.27 is equal to
1.27-1 and 1.27-2, but 1.27-1 is inferior to 1.27-2).

Dose2 supports the Debian, RPM and NetBSD pkgsrc package formats.
On top of this index is a layer that deals with retrieving packages by name,

date or distribution.
Furthermore, there are functions to deal with dependencies, dependency

cones, installability (the SAT solver from distcheck is integrated into dose2),
strong dependencies and conflicts.

Figure 5.1 gives an overview of the structure of the dose2 library.
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Taking the modules from top to bottom, the rapids module is the module
that takes care of storage in memory, with indexes for rapid referral. The stor-
age is filled using the waterway module, which uses napkin as a generic pack-
age data structure, and ocamlrpm and ocamldeb as package-specific parsers.
The algorithms are mostly in the packetology module; lifetime deals with
dates and times. And finally, the satsolver module is used by packetology

to solve installability problems.

5.2.2 dose3

Dose3 is a complete rewrite of dose2. It has the same functionality, but there are
several differences in implementation. When using dose2, it turned out that
the functions for archiving distributions over time were used less frequently
than the functions for considering just one universe of packages and running
algorithms on those.

Furthermore, the CUDF format [TZ09] had been developed as a distribution-
agnostic way of storing package metadata.

With this experience in mind, it was decided to reimplement dose2, using
CUDF as a universal data structure. This means that when merging a distribu-
tion, it is first translated into CUDF, after which the different algorithms can be
executed.

The dose2 data structures also have this property of universality with re-
gard to the distribution format, but they are much more complicated.

For some algorithms, mostly the time-intensive ones such as the generation
of the strong dependency or strong conflict graph, there is an extra transla-
tion involved: every package is given an ID and dependencies and conflicts
are translated into lists of (or lists of lists of) these IDs. This allows to reduce
memory usage and increase speed for these algorithms.

5.3 Ceve

Ceve (the name is supposed to have meant something, but exactly what has
been lost in the mists of time) was written by me, as a generalised package
format parser and translator.

Its first function was to translate package repositories into SAT specifica-
tions, in order to be able to compare different, external solvers, and to create a
dependency graph out of a repository using the EGraph format, a derivative
of the GraphML XML format.

Later on, the possibility to create databases out of repositories has been ad-
ded: both SQL databases and the Dose2 format have been supported. Graphs
can now also be output in the Dot format.

It is also possible to manipulate the data between parsing and output, for
example to output only the dependency cone of a certain package, or to elimin-
ate virtual packages (by replacing them in dependencies with the list of pack-
ages that provide them).

Ceve has now been rewritten using Dose3.
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5.4 Pkglab

Pkglab is a front-end to the DQL (Distribution Query Language). This lan-
guage is a domain-specific query language for distributions; the pkglab tool,
therefore, can execute and report all sorts of queries on distributions and pack-
ages.

In order to explain the workings of the pkglab tool, we shall start with an
example session. First, at the start of the program, one ‘merges’ a package
repository, which means that the contents of that repository are loaded into
our dose2 backend in memory.

pkglab $Revision: 5129 $ by the MANCOOSI Project
> #merge "deb:/home/users/boender/data/debian/history/20100129-debian-5.0.4-Packages"
Merging "deb:/home/users/boender/data/debian/history/20100129-debian-5.0.4-Packages"...
Completing conflicts... * 100.0%
>

The pkglab tool knows a number of directives, preceded by a hash sign.
These directives are not part of the DQL, and have to do with its general oper-
ations, such as input (merging), output, and exiting.

Now that a repository has been merged, one can use a DQL function to
show the list of packages known to pkglab:

> packages
{ zzuf'0.12-1, libzorp2-dev'3.0.8-0.5, zoph'0.7.1-1lenny1@all, zope3'3.3.1-7,
zope3-sandbox'3.3.1-7@all, ... }

A package name consists of a unit (zzuf, for example), an apostrophe, a
version number (0.12-1), and optionally, an at sign and an architecture all.
It is possible to have a default architecture; if the architecture of a package is
equal to the default architecture, it will not be mentioned (as is the case for the
zzuf'0.12-1 package above).

Obviously, the number of packages is fairly large. We can use a DQL func-
tion to compute how large exactly:

> count(packages)
22299

A simple operation is to find out whether there are any broken packages in
the repository. For this, there is DQL’s check function:

> check(packages, packages)
Conflicts and dependencies... * 100.0%
Solving * 100.0%
<diagnosis:closure size 22299, 4 failures>

The check function takes two arguments: the first is the set of packages
to check, the second is the set of available packages. We see from the result
that there are 4 packages for which the installation has failed. If one wants to
obtain more information, the result of the check function must be assigned to
a variable and the show directive used:
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> $d <- check(packages, packages)
Conflicts and dependencies... * 100.0%
Solving * 100.0%
> #show $d
Diagnosis:
Conflicts: 2014
Disjunctions: 96357
Dependencies: 101920
Failures (total 4):
Package libpils-dev'2.1.3-6lenny4@all cannot be installed:
libpils-dev'2.1.3-6lenny4@all depends on one of:
- heartbeat-dev'2.1.3-6lenny4@i386
libpils-dev'2.1.3-6lenny4@all and heartbeat-dev'2.1.3-6lenny4@i386 conflict

The tool outputs a diagnosis for every one of the failed packages, but only
one has been displayed here. The diagnosis is the same as that of distcheck,
but displayed slightly differently.

Other functions in the same vein are check together, which checks for
the co-installability of packages (the check function checks all elements of its
first argument separately, whereas the check together function checks them
together); and install, which returns an installation set instead of a diagnosis.

Note also the use of variables: the name of a variable is always prefixed
with a dollar sign; and the <- operator is used for assignment.

There are also functions to show information about specific packages:

> depends(a7xpg'0.11.dfsg1-4)
[ [[. a7xpg-data (= '0.11.dfsg1-4) .]]; [[. libc6 (>= '2.7-1) .]]; [[. libgcc1 (>=
'1:4.1.1-21) .]]; [[. libgl1-mesa-glx .];[. libgl1 .]]; [[. libsdl-mixer1.2 (>= '1.2.6) .]];
[[. libsdl1.2debian (>= '1.2.10-1) .]]; [[. zlib1g .]] ]
> conflict list(liba52-0.7.4-dev'0.7.4-11)
[[. a52dec .];[. a52dec-dev .];[. liba52-dev .]]

The first command shows us the dependency specification of the a7xpg

package. There is a dependency on a7xpg-data, with a specific version, a de-
pendency on libc6, a dependency on libgcc1; then, an alternative depend-
ency on either libgl1-mesa-glx or libgl1, and so forth. The same goes for
the conflict list.

The objects enclosed by [. and .] are version specifications. We can find
out which packages conform to these specifications by using the select func-
tion:

> select([. a52dec .])
{ liba52-0.7.4-dev'0.7.4-11 }
> select([. mail-transport-agent .])
xmail'1.25-4, ssmtp'2.62-3, sendmail-bin'8.14.3-5, postfix'2.5.5-1.1,
nullmailer'1:1.4-1.1, msmtp-mta'1.4.15-1@all, masqmail'0.2.21-4, exim4-daemon-light'4.69-9,
exim4-daemon-heavy'4.69-9, esmtp-run'0.6.0-1@all, courier-mta'0.60.0-2, citadel-mta'7.37-8

The select command returns all known packages that satisfy the given
version specification; if multiple repositories are loaded, and one only wants
packages from a specific repository, the intersection operator can be used.

If a dose2 dosebase has been loaded, it is possible that there are multiple
archives available. This can be checked using the archives function:
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> archives
{ %debian/testing/main/i386, %debian/testing/contrib/i386, %debian/unstable/main/i386,
%debian/unstable/non-free/i386, %debian/stable/main/i386, %debian/stable/contrib/i386,
%debian/unstable/contrib/i386, %debian/testing/non-free/i386, %debian/stable/non-free/i386 }
> count(contents(%debian/testing/main/i386,2008-01-01))
20747
> count(contents(%debian/testing/main/i386,2008-09-15))
22638

Here, we can see the difference between a plain select and a select with
an intersection:

> count(select([. mail-transport-agent .]))
91
> count(select([. mail-transport-agent .]) & contents(%debian/testing/main/i386,2008-01-01))
12

It is possible to use higher-order functions such as map and filter; cf. this
example, which shows us the number of packages that have no direct depend-
encies:

> count(filter(packages,$a -> depends($a) = []))
9679

It is also possible to use regular expressions to select packages textually,
such as all packages that contain the text ocaml:

> packages /ocaml/
{ libcore-ocaml-dev'0.5.0-5, libnumerix-ocaml'0.22-4+b2, libsqlite-ocaml-dev'0.3.5.arch.4-8,
libocamlnet-ocaml'2.2.9-2+b1, libequeue-gtk2-ocaml-dev'2.2.9-3@all, ... }

This is but a short overview of the possibilities of the pkglab tool: using
these and other functions, it is possible to express complicated queries. As an
example, pkglab has been used to determine the correctness of an automatic
dependency generation algorithm, where it was used to check if there was no
difference in installable packages between a repository generated with the new
algorithm and a normal repository [BDCV+08].
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Formalisation 6

When one day an expedition was sent. . . they discovered only. . . a solitary old man who claimed
repeatedly that nothing was true, though he was later discovered to be lying.

— DOUGLAS ADAMS, The Hitchhiker’s Guide to the Galaxy

In this chapter, we shall introduce a formalisation of the theorems presented
in the previous chapters, together with their proofs. For this, we have used the
Coq proof assistant.

Obviously, such a formalisation allows us to control the correctness of our
proofs, and even results in additions to the theory; as an example, the notion
of a degenerate triangle conflict as shown in figure 3.6 in chapter 3 was coined
when formalising the proof of theorem 3.28.

The ultimate goal of this formalisation is to be able to verify the correctness
of the algorithms proposed in chapter 4. This is discussed in more detail in the
‘Future work’ paragraph in the conclusion.

6.1 Repository

As seen in chapter 2, a repository is a tuple that contains a set of packages, a set
of conflicts and a dependency function. For the purposes of the formalisation,
we have separated these three parts, as not every definition needs all three
parts of the tuple.

Since repositories are always finite, we have used Coq’s FSet library, which
is a library for the representation of finite sets. There are other possibilities for
sets, such as a representation of linked lists (ListSet), and a representation
using characteristic functions (Ensemble).

The advantages of the FSet library over these other implementations is that
it has a larger library of basic theorems, which saves quite a lot of time. Fur-
thermore, the Ensemble library can also deal with infinite sets; this only com-
plicates matters for our purposes, since repositories are always finite.

Let us start with defining a package type:
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Module Type PACKAGE.
Parameter t: Set.

Parameter eq: t → t → Prop.
Parameter lt: t → t → Prop.

Axiom eq re� : ∀ x: t, eq x x.
Axiom eq sym: ∀ x y: t, eq x y→ eq y x.
Axiom eq trans : ∀ x y z: t, eq x y→ eq y z→ eq x z.

Axiom lt trans : ∀ x y z: t, lt x y→ lt y z→ lt x z.
Axiom lt not eq: ∀ x y: t, lt x y→¬ eq x y.

Parameter compare: ∀ x y: t, Compare lt eq x y.
Parameter eq dec : ∀ x y, { eq x y } + { ¬ eq x y }.

End PACKAGE.

Declare Module Package: PACKAGE.
Declare Module PackageSet : FSetInterface.S with Module E := Package.
Export PackageSet.

Note that in the definition of the PACKAGE type, equivalence and compar-
ison relations with their attendant axioms must be specified. What exactly is a
package is not of interest here; just the fact that there exists an equality relation
on it, as well as a comparison.

After the definition of PACKAGE, the definition of a conflict follows:

Module Conflict := PairOrderedType Package Package.

Declare Module ConflictSet : FSetInterface.S with Module E := Conflict.

Axiom con�icts sym: ∀ (C: Con�ictSet.t) (p q: Package.t), Con�ictSet.In (p, q) C→ Con-

�ictSet.In (q, p) C.

Axiom con�icts irre� : ∀ (C: Con�ictSet.t) (p: Package.t), ¬ Con�ictSet.In (p, p) C.

In other words, a conflict is a pair of packages (implemented in FSet by the
PairOrderedType module), with the two axioms that correspond to axiom 2.3
from chapter 2.

6.2 Dependencies

With packages and conflicts defined, the next step is a module which deals
with the basic definitions. This module will contain all necessary definitions
and lemmas needed for the definition of the package cone (definition 2.15).
The reason we have put this in a separate module is to parametrise the method
of obtaining the cone, so that theorems about different types of cones can be
specified: the ‘usual’ cone, a cone of conjunctive dependencies only, and even
the reverse cone (the set of packages on which a given package depends). How
this is done in practice will be shown in section 6.5.

First we shall define a variableR, the repository, andD (here called Dependencies)
for the dependency function:
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Section dep cone stu�.

Variable Dependencies: Package.t → list PackageSet.t.
Axiom Dep compat eq: ∀ p q: Package.t, Package.eq p q→ Dependencies p = Dependencies
q.
Axiom no self dep: ∀ p: Package.t, ¬ ∃ d, In p d ∧ List.In d (Dependencies p).

Variable dep filter: PackageSet.t → bool.
Axiom dep �lter eq: ∀ p q: PackageSet.t, PackageSet.eq p q→ dep filter p = dep filter q.

Add Morphism dep filter: dep filter m.

Apart from the dependency function, we are adding a second function:
dep filter. This will be used later on in order to prove propositions about
conjunctive dependencies; the filter is used to exclude specific dependencies,
such as dependencies that have more than one alternative. How exactly this
works will become clear later on.

The axioms specify that equal packages have equal dependencies, that the
dependency filter function has the same result for equal packages, and that a
package cannot depend directly on itself (which conforms to axiom 2.2).

The dep filter function is specified as a a morphism: this does not add
any new information, but enables it to be used more easily. More specific-
ally, Coq now can automatically rewrite something like dep filter(a) into
dep filter(b), if it has already been established that a = b.

Here follows the definition of dependency function. This function maps a
package to all of its direct dependencies within the repository R (note that the
alternatives in the co-domain of the Dependencies function are not specified as
being within the repository; this is intentional, as it is very well possible for a
package to have dependencies on packages outside the repository).

Definition dependency function (p: Package.t): PackageSet.t :=
(List.fold left (fun alt acc⇒

union alt acc
) (List.�lter dep filter (Dependencies p)) empty ).

And then the definition of a direct dependency (see also definition 2.10).

Definition direct dependency (p: Package.t) (q: Package.t) :=
∃ d: PackageSet.t, In q d ∧
List.In d (List.filter dep filter (List.map (inter R) (Dependencies p))).

Add Morphism direct dependency with signature Package.eq⇒ Package.eq ==> i�

as direct dependency m.

Here we can see the usage of the dependency filter: q is a dependency of
p if and only if there is a d in the dependencies of p that contains q, and if the
filter function returns true for d ∪R.

Additionally, we have added another morphism, for direct dependency.
Since Coq’s standard equality is not used here, it is necessary to specify a signa-
ture: stated here is that for any p, p′, q and q′, if p = p′ and q = q′ (according to
the equality defined in the Package module above), then if p� q, then p′ → q′.

Now, let us introduce lemmas for the important properties of these func-
tions. This way, it is easier to use them in proofs without having to unroll their
definitions every time.
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6. Formalisation

Lemma direct dependency depfunc: ∀ (p: Package.t) (q: Package.t),
direct dependency p q→ In q (dependency function p).

Lemma depfunc direct dependency: ∀ (p: Package.t) (q: Package.t),
In q (dependency function p)→ direct dependency p q.

With this, it is possible to formalise the notion of a “dependency path”; a
list of packages connected by dependencies.

Function dependency path (p q: Package.t) (l: list Package.t)
{ struct l }: Prop :=
match l with
| nil⇒ direct dependency p q
| h::t⇒ direct dependency p h ∧ dependency path h q t
end.

In fact, the definition above is not the only way to formalise the notion of a
dependency path: it can also be defined ‘in reverse’:

Function rev dependency path (p q: Package.t)
(l: list (Package.t)) { struct l }: Prop :=
match l with
| nil⇒ direct dependency p q
| h::t⇒ rev dependency path p h t ∧ direct dependency h q
end.

Having the two notions can be useful; sometimes a proof is easier to com-
plete using the ‘normal’ notion, and sometimes the reverse notion is simpler in
use. It remains, obviously, necessary to prove that they are equivalent.

For this, we shall first introduce the definition of ‘dependency’: if there is a
dependency path between two packages p and q, according to definition 2.11,
p depends on q. Formalised, this becomes:

Definition dependency (p q: Package.t): Prop :=
∃ l: list (Package.t), dependency path p q l.

Definition rev dependency (p q: Package.t): Prop :=
∃ l: list (Package.t), rev dependency path p q l.

The notion of equivalence then becomes:

Lemma dep rev dep: ∀ p q,
rev dependency p q↔ dependency p q.

In order to prove this equivalence, two lemmas about combining two de-
pendency paths into one are needed:

Lemma dp split: ∀ p q r l l’,
dependency path p q l→ dependency path q r l’→ dependency path p r (l++(q::l’)).

Lemma rev dp split: ∀ p q r l l’,
rev dependency path p q l → rev dependency path q r l’ → rev dependency path p r

(l’++(q::l)).

Using this, it becomes easy to prove that the dependency relation intro-
duced above is transitive:
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Lemma dependency trans:
∀ (p q r: Package.t), dependency p q→ dependency q r→ dependency p r.

For the dependency cone, later on, a definition of a dependency path that
consists only of packages from a specific repository will be needed:

Function dependency path in (R: PackageSet.t) (p q: Package.t)
(l: list (Package.t)) { struct l }: Prop :=
match l with
| nil⇒ In p R ∧ In q R ∧ direct dependency p q
| h::t⇒ In p R ∧ direct dependency p h ∧ dependency path in R h q t
end.

Definition dependency in (R: PackageSet.t) (p q: Package.t): Prop :=
∃ l: list (Package.t), dependency path in R p q l.

with some attendant lemmas:

Lemma dp R: ∀ R p q l,
dependency path in R p q l→ In q R.

Lemma dp in dp: ∀ R p q l, dependency path in R p q l→ dependency path p q l.

Another function that is useful is the equivalent of dependency function

for a set, i.e. given a set P , the union of P and all dependency function(p)
for p ∈ P . (this is the function that, if iterated repeatedly until obtention of a
fixpoint, results in the dependency cone of a set of packages). The function is
easy to define using FSet’s fold function:

Definition dependencies (P: PackageSet.t): PackageSet.t :=
fold (fun p acc⇒
union (dependency function p) acc

) P P.

Like the earlier dependency function, its properties follow immediately
after its definition; in this case, the fact that for any element q ∈ dependencies(P ),
there is a package p ∈ P such that p� q and vice versa.

Lemma dependencies dependency:
∀ (q: Package.t) (P: PackageSet.t),
In q (dependencies P)→ In q P ∨ Exists (fun p⇒ direct dependency p q) P.

Lemma dependency dependencies:
∀ (q: Package.t) (P: PackageSet.t),
Exists (fun p⇒ direct dependency p q) P→ In q (dependencies P).

This function is monotone with respect to the subset relation:

Lemma dependencies monotone: ∀ (P: PackageSet.t) ,
P [≤] dependencies P.

And furthermore, it preserves the subset relation.

Lemma dependencies subset: ∀ (P Q: PackageSet.t), P [≤] Q→ dependencies P [≤] depend-
encies Q.
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6. Formalisation

6.3 The dependency cone

The definition of the dependency cone merits its own section, mostly because
it is the part that presented the most difficulties.

As seen in chapter 2, the definition in itself is easy enough (see defini-
tion 2.15); the transitive closure of the dependency relationship.

In terms of the Coq definitions seen so far, the cone can be defined as a re-
petitive application of the dependencies function until obtention of a fixpoint.
This is guaranteed to terminate, since the dependencies function always is a
subset of the repository, which is finite.

In a Coq recursive function specification, the measure keyword can be used
to indicate a natural number that strictly decreases with every iteration of the
function. In this case, that is the difference between the number of packages in
the repository and the number of packages in the cone.

It is for this reason that it is not possible to just take the cone of any set, but
only of a subset of a repository: in order to guarantee termination, an upper
limit for the size of the cone is needed, which is the size of the repository.

Function cone (P: {x : PackageSet.t | x [≤] R})
{ measure (fun x⇒ cardinal R - cardinal (proj1 sig P)) P }: PackageSet.t :=
if equal (inter R (dependencies (proj1 sig P))) (proj1 sig P)
then (proj1 sig P)
else

cone (exist (fun v⇒ v [≤] R) (inter R (dependencies (proj1 sig P)))
(fun a⇒ inter subset 1 (s:=R) (s’:=dependencies (proj1 sig P)) (a:=a))).

This definition looks rather complicated, but upon closer inspection, it’s
actually fairly straightforward, once one gets past the syntax.

First the argument specification. The function cone takes an argument P ,
which has as its type something that is a PackageSet, with an extra specifica-
tion that this package set is a subset of R. Any element of this type thus has to
contain both a package set, and a proof that this package set is a subset of R, as
we will see later on.

The function itself is a fixpoint declaration; one specifies a function and
proves that after a finite number of applications, it provides a result. The
measure keyword discussed before can be used for this.

The measure used here is |R| − |dependencies(P )|. This, by the way, is the
reason why the type of P is not simply Set; if there is no upper limit to the
size of P , there is no way to give a descending measure. Coq automatically
generates the resulting proof obligations.

Now the function itself can be defined (the function that is going to be ap-
plied repeatedly until a fixpoint is reached; Coq automatically renames this to
cone F). Two cases are distinguished: if R ∪ dependencies(P ) = P , P is re-
turned (the fixpoint is reached); otherwise, the cone of R∪dependencies(P ) is
returned.

The reason for specifying this using exist is again the specification type:
the parameter of cone is not a simple package set, but a package set that is a
subset ofR. The exist function creates this specification type: first a pattern (in
this case “v is a subset ofR”), then the package set, and then a proof term for the
fact that the package set complies with the pattern (using the inter subset 1
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lemma, which specifies that ∀ss′a[a ∈ s ∩ s′ → a ∈ s]). Owing to the syn-
tactic specificities of Coq, it is necessary to specify the parameters s, s′ and a
explicitly.

The resulting function cone F is rather complicated, so in order to simplify
consequent proofs, let us immediately define its properties: if a package q is an
element of the dependency cone of p, there must be a dependency path from p
to q and vice versa.

Lemma dep cone: ∀ (P: PackageSet.t | P [≤] R) q,
Exists (fun p⇒ dependency in R p q) (proj1 sig P)→ In q (cone P).

Lemma cone dep: ∀ (P: PackageSet.t | P [≤] R) q,
In q (cone P)→
In q (proj1 sig P) ∨ Exists (fun p⇒ dependency in R p q) (proj1 sig P).

For these two proofs, a few lemmas are needed. These lemmas use the iter
and cone F functions; the cone F function is the body of the cone function
(the if statement from its definition), and the iter function is used to apply
this function a certain number of times.

The definitions are fairly straightforward, even though there are some ex-
tra arguments that should not hinder comprehension (they are necessary for
dealing with the specification type of P ):

Lemma iter cone monotone: ∀ P n,
iter ({x : t | x [≤] R}→ t) n cone F (fun v⇒ proj1 sig v) P [≤]
iter ({x : t | x [≤] R}→ t) (S n) cone F (fun v⇒ proj1 sig v) P.

Lemma iter cone expanding:
∀ P k n, k ≤ n→
iter ({x | x [≤] R}→ t) k cone F (fun v⇒ proj1 sig v) P [≤]
iter ({x | x [≤] R}→ t) n cone F (fun v⇒ proj1 sig v) P.

Lemma dep path iter: ∀ P p q n,
In p (proj1 sig P)→ dependency path in R p q n→
In q (iter ({x | x [≤] R}→ t) (S (length n)) cone F (fun v⇒ proj1 sig v) P).

Now, after the definitions of the characteristic functions of cone, some some
simple properties can be established; the cone is always a subset of the repos-
itory, the cone of a set P of packages always is a superset of P , and if P ⊆ Q,
then cone(P ) ⊆ cone(Q).

Lemma cone subset: ∀ (P: PackageSet.t | P [≤] R),
(proj1 sig P) [≤] cone P.

Lemma cone subset R: ∀ (P: PackageSet.t | P [≤] R),
cone P [≤] R.

Lemma cone of subset is subset: ∀ (P1: PackageSet.t | P1 [≤] R)
(P2: PackageSet.t | P2 [≤] R),
(proj1 sig P1) [≤] (proj1 sig P2)→ cone P1 [≤] cone P2.

This concludes the module PkgCone.
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6.4 Repository properties

Now that the preliminaries are out of the way, we can start formalising some
proofs from chapters 2 and 3.

To start with, let us introduce the notion of a conjunctive dependency:

Definition is conjunctive (a: PackageSet.t) :=
∃ p: Package.t, a [=] (singleton p).

Lemma conjunctive dec: ∀ a: PackageSet.t,
{ is conjunctive a } + { ¬ is conjunctive a }.

Definition is conjunctive bool (a: PackageSet.t): bool :=
if conjunctive dec a then true else false.

Then, the notions of abundance and peace are specified, as per definitions 2.4
and 2.6 from chapter 2. First, a package p is satisfied (with respect to a set S) if
all its dependencies are satisfied in S:

Definition satis�ed pkg (S: PackageSet.t) (p: Package.t): Prop :=
∀ d: PackageSet.t, List.In d (Dependencies p)→
∃ p’: Package.t, In p’ (inter S d).

Definition satis�ed pkg bool (S: PackageSet.t) (p: Package.t): bool :=
forallb (fun d⇒ exists (fun p’⇒ true) (inter S d))

(Dependencies p).

Lemma spb ok: ∀ (S: PackageSet.t) (p: Package.t),
satis�ed pkg S p↔ Is true (satis�ed pkg bool S p).

Note that there is also boolean version of the definition; this can come in
useful in order to use this formalisation when proving properties of actual pro-
grams; this is discussed in more detail in the ‘Future work’ section of the con-
clusion. There is also a proof that shows that both versions are equivalent.

The fact that the satisfied pkg predicate is decidable follows easily from
the fact that its boolean version must necessarily be true or false:

Lemma satis�ed dec: ∀ (S: PackageSet.t) (p: Package.t),
decidable (satis�ed pkg S p).

A few useful lemmas about satisfaction:

Lemma satis�ed union1:
∀ (S S’: PackageSet.t) (p: Package.t),
satis�ed pkg S p→ satis�ed pkg (union S S’) p.

Lemma satis�ed union2:
∀ (S S’: PackageSet.t) (p: Package.t),
satis�ed pkg S’ p→ satis�ed pkg (union S S’) p.

Lemma satis�ed subset:
∀ (S S’: PackageSet.t) (p: Package.t),

S [≤] S’→ satis�ed pkg S p→ satis�ed pkg S’ p.

Now, a set is abundant if all of its elements are satisfied. Additionally, there
is a proof of the fact that abundance is a morphism (abundance is preserved
under set equality), and that it is decidable.
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Definition abundant (S: PackageSet.t): Prop :=
PackageSet.For all (satis�ed pkg S) S.

Add Morphism abundant with signature eq⇒ i� as abundant m.

Lemma abundant dec: ∀ S: PackageSet.t,
decidable (abundant S).

The formalisation of corollary 2.5:

Lemma abundant union:
∀ (S S’: PackageSet.t),
abundant S→ abundant S’→ abundant (PackageSet.union S S’).

For the formalisation of peace, the concept of being concerned is introduced;
a conflict (c1, c2) is concerned with a set S if and only if both c1 and c2 are
in S. Concernedness, too, is preserved under equality (both package and set
equality), and it has a boolean version as well.

Definition concerned (S: PackageSet.t) (c: Package.t × Package.t): Prop :=
match c with
| (p, q)⇒ (In p S) ∧ (In q S)
end.

Add Morphism concerned with signature PackageSet.eq ⇒ Con�ict.eq ==> i� as con-
cerned m.

Definition concerned bool (S: PackageSet.t) (c: Package.t × Package.t): bool :=
match c with
| (p, q)⇒ PackageSet.mem p S && PackageSet.mem q S
end.

Lemma concerned dec:
∀ (S: PackageSet.t) (c: Package.t × Package.t),
decidable (concerned S c).

Lemma concerned ok: ∀ (S: PackageSet.t) (c: Package.t × Package.t),
concerned S c↔ Is true (concerned bool S c).

Now it becomes easy to define peace as the absence of concerned conflicts:

Definition peaceful (S: PackageSet.t) (C: Con�ictSet.t): Prop :=
ConflictSet.For all (fun c⇒¬ (concerned S c)) C.

Add Morphism peaceful with signature eq⇒ Con�ictSet.eq ==> i� as peaceful m.

Lemma peaceful dec:
∀ (S: PackageSet.t) (C: Con�ictSet.t),
decidable (peaceful S C).

Any subset of a peaceful set is also peaceful:

Lemma peaceful subset: ∀ (S1 S2: PackageSet.t) (C: Con�ictSet.t),
S1 [≤] S2→ peaceful S2 C→ peaceful S1 C.

As we can see, things start to converge towards the formalisation and proof
of theorem 3.25. One more lemma: if a set is not peaceful, there is a specific
conflict to be ‘blamed’ for that:
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6. Formalisation

Lemma blame con�ict: ∀ (I: PackageSet.t) (C: Con�ictSet.t),
¬ peaceful I C→
Con�ictSet.Exists (fun c⇒ concerned I c) C.

With this, lemma 3.23 can be proved, which is one of the substantive in-
gredients for the proof of theorem 3.25.

Lemma not peaceful con�ict:
∀ (S S’: PackageSet.t) (C: Con�ictSet.t),
(peaceful S C)→ (peaceful S’ C)→¬ (peaceful (union S S’) C)→
Exists (fun p⇒ Exists (fun q⇒ Con�ictSet.In (p, q) C) S’) S.

After this, healthiness can be defined as a combination of abundance and
peace. Obviously, healthiness is preserved under equality and decidable.

Definition healthy (S: PackageSet.t) (C: Con�ictSet.t): Prop :=
abundant S ∧ peaceful S C.

Add Morphism healthy with signature eq⇒ Con�ictSet.eq ==> i� as healthy m.

Lemma healthy dec: ∀ (S: PackageSet.t) (C: Con�ictSet.t),
decidable (healthy S C).

An empty set is healthy.

Lemma empty healthy: ∀ (S: PackageSet.t) (C: Con�ictSet.t),
Empty S→ healthy S C.

6.5 Installability

This section is about the definition of installability and co-installability; see also
definitions 2.8 and 2.9 from chapter 2.

Definition installable (R: PackageSet.t) (C: Con�ictSet.t) (p: Package.t) :=
∃ I: PackageSet.t, I [≤] R ∧ In p I ∧ healthy I C.

Definition is install set (p: Package.t) (R: PackageSet.t) (C: Con�ictSet.t) (I: Package-
Set.t) :=

In p I ∧ I [≤] R ∧ healthy I C.

Definition co installable (R: PackageSet.t) (C: Con�ictSet.t) (S: PackageSet.t) :=
∃ I: PackageSet.t, I [≤] R ∧ S [≤] I ∧ healthy I C.

Fairly trivial: if the package p is installable, then the set {p} is co-installable.

Lemma inst coinst: ∀ (R: PackageSet.t) (C: Con�ictSet.t) (p: Package.t),
installable R C p↔ co installable R C (singleton p).

Let us start by defining the difference between normal dependencies (i.e. all
specified dependencies) and conjunctive dependencies (single dependencies).
This is done by using the dependency filter mentioned previously: for normal
dependencies, the filter that always returns true (thus selecting all depend-
encies) is used, and for conjunctive dependencies, the is conjunctive bool

function defined before is used.
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Definition direct normal dependency (p: Package.t) (q: Package.t) :=
direct dependency Dependencies (fun x⇒ true) p q.

Definition direct conjunctive dependency (p: Package.t) (q: Package.t) :=
direct dependency Dependencies is conjunctive bool p q.

If there is a conjunctive direct dependency, there is a normal direct depend-
ency as well:

Lemma conj dep is dep:
∀ p q, direct conjunctive dependency p q→ direct normal dependency p q.

The same applies for dependency paths:

Definition normal dependency path (p q: Package.t)
(l: list (Package.t)): Prop :=
dependency path Dependencies (fun a⇒ true) p q l.

Definition conjunctive dependency path (p q: Package.t)
(l: list (Package.t)): Prop :=
dependency path Dependencies is conjunctive bool p q l.

Lemma conj dp is dp: ∀ p q l,
conjunctive dependency path p q l→ normal dependency path p q l.

And finally, the definitions of the normal and conjunctive dependency rela-
tionship, as well as the ‘normal’ dependency cone.

Definition normal dependency (p q: Package.t): Prop :=
dependency Dependencies (fun a⇒ true) p q.

Definition conjunctive dependency (R: PackageSet.t) (p q: Package.t): Prop :=
dependency Dependencies is conjunctive bool p q.

Definition normal cone (R: PackageSet.t) (S: PackageSet.t | S [≤] R):=
cone Dependencies (fun a⇒ true) R S.

All this can be combined into the following theorem: if a package p is in-
stallable with respect to a repository R, it is also installable with respect to
∆R(p): this is proposition 2.17.

Lemma installable in cone:
∀ (R: PackageSet.t) (C: Con�ictSet.t) (P: PackageSet.t | P [≤] R),
co installable R C (proj1 sig P)→
co installable (normal cone R (exist (fun v ⇒ v [≤] R) (proj1 sig P) (proj2 sig P))) C

(proj1 sig P).

Next in line is proposition 2.18; any conjunctive dependency of p is always
part of the install set of p:

Lemma conjunctive always installed:
∀ R C p q I,
conjunctive dependency R p q→
is install set p R C I→
In q I.

In the same vein, a package that conjunctively depends on a non-installable
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package is not-installable itself:

Lemma not installable conjunctive: ∀ (R: PackageSet.t) (C: Con�ictSet.t)
(p q: Package.t),
¬ installable R C q→ conjunctive dependency R p q→¬ installable R C p.

6.6 Strong dependencies and conflicts

Now, strong dependencies are formalised as per definition 3.1.

Definition strong dep (R: PackageSet.t) (C: Con�ictSet.t) (p: Package.t) (q: Package.t)
:=

(∃ N: PackageSet.t, is install set p R C N) ∧
∀ I: PackageSet.t, I [≤] R→ healthy I C ∧ In p I→ In q I.

The strong dependency relationship is transitive:

Lemma strong dep trans:
∀ (R: PackageSet.t) (C: Con�ictSet.t) (p q r: Package.t),
strong dep R C p q ∧ strong dep R C q r→ strong dep R C p r.

Historically, strong dependencies were defined differently: p depends strongly
on q if and only if p is installable, and there is no install set of p that does not
include q. This negative definition is equivalent to the positive one from defin-
ition 3.1:

We have opted to use the positive version of the definition as the standard
definition, because it is constructive and therefore allows for more straight-
forward proofs. The negative version would need many proofs by absurdity
(indeed, the proof that the negative version implies the positive version is an
example of this), which are not as informative.

Definition strong dep neg (R: PackageSet.t) (C: Con�ictSet.t) (p: Package.t) (q: Pack-
age.t) :=

(∃ N: PackageSet.t, is install set p R C N) ∧
¬ ∃ I: (PackageSet.t), I [≤] R ∧ healthy I C ∧ In p I ∧ ¬ In q I.

Lemma strong dep pos neg:
∀ (R: PackageSet.t) (C: Con�ictSet.t) (p q: Package.t),
strong dep R C p q→ strong dep neg R C p q.

Lemma strong dep neg pos:
∀ (R: PackageSet.t) (C: Con�ictSet.t) (p q: Package.t),

strong dep neg R C p q→ strong dep R C p q.

Follows the definition of strong conflicts, as per definition 3.21.

Definition strong con�ict (R: PackageSet.t) (C: Con�ictSet.t) (p: Package.t) (q: Pack-

age.t) :=
installable R C p ∧ installable R C q ∧
¬ ∃ I: PackageSet.t, healthy I C ∧ In p I ∧ In q I.

With these lemmas, theorem 3.25 can be proved. This proof is somewhat
larger, so we shall show it in full:
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Theorem scp: ∀ (R: PackageSet.t) (C: Con�ictSet.t) (p: Package.t | In p R) (q: Package.t |
In q R),
strong con�ict R C (proj1 sig p) (proj1 sig q)→
Con�ictSet.Exists (fun c⇒

match c with
(c1,c2)⇒ (E.eq (proj1 sig p) c1 ∨ normal dependency (proj1 sig p) c1) ∧

(E.eq (proj1 sig q) c2 ∨ normal dependency (proj1 sig q) c2)
end) C.

intros R C pp qq H. destruct pp as [p Hp]. destruct qq as [q Hq]. unfold strong conflict
in H.
destruct H as [Hpi [Hqi HI]].

Here, proposition 2.17 is used twice; there are P and Q as installation sets
of p and q, so ∆(p) ∩ P and ∆(q) ∩Q are installation sets too.

The original P and Q are no longer needed, so in the following, for ease of
notation, ∆(p) ∩ P will be referred to as P , and ∆(q) ∩Q as Q.

destruct (installable in cone R C (exist (fun v⇒ v [≤] R) (singleton p) (s ss Hp))) as [P
[HP [HpP HPh]]].

apply→ inst coinst. apply Hpi. simpl in HP. simpl in HpP.
destruct (installable in cone R C (exist (fun v⇒ v [≤] R) (singleton q) (s ss Hq))) as [Q

[HQ [HqQ HQh]]].
apply→ inst coinst. apply Hqi. simpl in HQ. simpl in HqQ.

Then lemma 3.23 is applied. The union of P and Q is not peaceful, so there
must be a conflict (p′, q′) with p ∈ P and q ∈ Q.

destruct (not peaceful conflict P Q C) as [p’ [Hp’ [q’ [Hq’ HC]]]].
apply HPh.
apply HQh.
intro. apply HI. exists (union P Q). split. split.
apply abundant union. apply HPh. apply HQh. apply H. split.
apply union 2. apply HpP. apply singleton 2. reflexivity.
apply union 3. apply HqQ. apply singleton 2. reflexivity.

Now, (p′, q′) is a conflict. Furthermore, p′ is in the cone of p, so p � p′, and
in the same vein, q � q′. All this means that the conflict (p′, q′) is the needed
conflict. The lemma cone dep from the previous section is used to prove that
p′ is a dependency of p (and q′ of q).
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exists (p’, q’). split. apply HC. split.
elim (cone dep Dependencies (fun a ⇒ true) R (exist (fun v ⇒ v [≤] R) (singleton p)

(s ss Hp)) p’).
intros. left. apply singleton 1. apply H.
intros. right. destruct H as [x [Hx Hxdep]].
apply← (dependency compat eq Dependencies (fun ⇒ true) p x p’).
apply dependency in dependency with R. apply Hxdep.
apply singleton 1. apply Hx. apply HP. apply Hp’.

elim (cone dep Dependencies (fun a ⇒ true) R (exist (fun v ⇒ v [≤] R) (singleton q)
(s ss Hq)) q’).

intros. left. apply singleton 1. apply H.
intros. right. destruct H as [x [Hx Hxdep]].
apply← (dependency compat eq Dependencies (fun ⇒ true) q x q’).
apply dependency in dependency with R. apply Hxdep.
apply singleton 1. apply Hx. apply HQ. apply Hq’.

6.7 Triangle conflicts

The previous theorem being proven, let us prepare ourselves for theorem 3.28.
The proof starts with introducing the notion of reverse dependencies.

Variable ReverseDependencies: Package.t→ list PackageSet.t.
Axiom RevDep: ∀ (f : t→ bool) (p q: Package.t),

In p (dependency function Dependencies f q)↔
In q (dependency function ReverseDependencies f p).

Definition reverse dependency function (f : t→ bool) (p: Package.t): PackageSet.t :=
dependency function ReverseDependencies f p.

If p depends on q, then q reverse-depends on p:

Lemma pred ok: ∀ (f : t→ bool) (p q: Package.t),
direct dependency Dependencies f p q↔
In p (reverse dependency function f q).

Let us introduce a new dependency function, in order to remove superflu-
ous dependencies as per definition 3.27 in chapter 3.

Definition NoSupDependencies (R: PackageSet.t) (p: Package.t): list (PackageSet.t) :=
List.filter (fun dep ⇒ negb (existsb (fun a ⇒ strict subset a dep) (Dependencies p))) (De-

pendencies p).

The first thing to prove is that this does not hinder installability. For this,
a function is introduced that retains only the smallest subdependency of its
argument in a list of dependencies, and proves that the result of this function
is indeed a list that does not contain superfluous dependencies:
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Definition find smallest subdep (l: list PackageSet.t) (d: PackageSet.t): PackageSet.t :=
List.fold left (fun acc d’⇒
if strict subset d’ acc then d’ else acc

) l d.

Lemma smallest subdep is subset:
∀ l d, find smallest subdep l d [≤] d .

Lemma smallest subdep in list:
∀ l d, find smallest subdep l d = d ∨ List.In (find smallest subdep l d) l.

Lemma ss ok: ∀ (l: list PackageSet.t) (d: PackageSet.t),
¬ ∃ d’: PackageSet.t, List.In d’ l ∧ d’ [<] (find smallest subdep l d).

Follows the proof that removing superfluous dependencies does not influ-
ence installability.

Lemma NSD installability:
∀ (R: PackageSet.t) (C: ConflictSet.t) (p: Package.t), In p R→

(installable Dependencies R C p↔ installable (NoSupDependencies R) R C p).

Then, the definition of a triangle conflict.

Definition is triangle (R: PackageSet.t) (f : t→ bool) (c: Conflict.t): Prop :=
let (c1, c2) := c in
∃ t,

(∃ d, List.In d (Dependencies t) ∧ In c1 d ∧ In c2 d ∧
(∀ d’, (∃ t’, List.In d' (Dependencies t’)) ∧ (In c1 d’ ∨ In c2 d’)→

d [=] d’)).

To start with the proof of theorem 3.28, here is the condition: all concerned
conflicts are triangle conflicts.

Definition only triangles (R: PackageSet.t) (C: ConflictSet.t) (f : t→ bool) (A: PackageSet.t
| A [≤] R) :=

ConflictSet.For all (fun c⇒ concerned
(cone (NoSupDependencies R) f R A) c→
is triangle R f c ) C.

Also needed is a function K as specified in the proof of theorem 3.28. Here,
it is called packages to remove:

Definition packages to remove (R: PackageSet.t) (C: ConflictSet.t) (A: PackageSet.t) (B:
PackageSet.t) :=

PackageSet.filter (fun p⇒
ConflictSet.exists (fun c⇒ let (c1, c2) := c in

PackageSet.mem c1 A && PackageSet.mem c2 B && beq pkg p c1
) C

) (union A B).
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Lemma triangles ok:
∀ (R: PackageSet.t) (C: ConflictSet.t) (a: PackageSet.t | a [≤] R),

(For all (fun a⇒ installable (NoSupDependencies R) R C a) (proj1 sig a))→
only triangles R C (fun ⇒ true) a→
¬ ConflictSet.Exists (fun c⇒ let (c1, c2) := c in In c1 (proj1 sig a) ∨ In c2 (proj1 sig

a)) C→
co installable (NoSupDependencies R) R C (proj1 sig a).

We shall give this proof in full as well:

intros R C aa. destruct aa as [a Ha]. simpl. intros Hsep Htri Hcc.
unfold co installable. unfold For all in Hsep.
induction a using set induction.

The set a is a set of packages, such that ∆(a) does not contain any conflicts.
The proof proceeds by induction on a. The first case, consequently, is the case
a = ∅. This is fairly easy; the empty set is a peaceful and abundant set that
contains all elements of ∅.

exists empty. split. apply subset empty. split. rewrite (empty is empty 1 H).
reflexivity. split. unfold abundant. unfold For all. intros. absurd (In x empty).
intro. apply→ empty i�. apply H1. apply H0.
unfold peaceful. unfold ConflictSet.For all. intros. unfold concerned.
destruct x. intro. destruct H1. absurd (In t0 empty).
intro. apply→ empty iff. apply H3. apply H1.

Then the induction. There is a co-installable set a1. To be proven: that
a1 ∪ {x} is co-installable as well. It is known that x itself is installable. This
means that there exist sets A1 and Ax (the install sets of a1 and x respectively,
which per proposition 2.17 are part of the cone of a1 or x). Note that a1 is a
subset of the repository R, and that x ∈ R.

assert (a1 [≤] R) as Ha1. unfold Subset. intros. apply Ha. elim (H0 a). intros.
apply H3. right. apply H1.

elim (installable in cone (NoSupDependencies R) R C (exist (fun v⇒ v [≤] R) a1 Ha1)).
simpl. intros A1 X. destruct X as [HA1 1 [HA1 2 [HA1 A HA1 P]]].
assert (A1 [≤] R) as HA1. unfold Subset. intros.
apply (cone subset R (NoSupDependencies R) (fun ⇒ true) R (exist (fun v⇒ v [≤]

R) a1 Ha1)).
apply HA1 1. apply H1.
assert (In x R) as Hx. unfold Subset. apply Ha. elim (H0 x). intros. apply H2.

left. reflexivity.
elim (installable in cone (NoSupDependencies R) R C (exist (fun v ⇒ v [≤] R)

(singleton x) (s ss Hx))).
simpl. intros Ax X. destruct X as [HAx 1 [HAx 2 [HAx A HAx P]]].
assert (Ax [≤] R) as HAx. unfold Subset. intros.
apply (cone subset R (NoSupDependencies R) (fun ⇒ true) R (exist (fun v⇒ v [≤]

R) (singleton x) (s ss Hx))).
apply HAx 1. apply H1.

Now, installation set for a1∪{x} has been found. This set isA1 ∪Ax \K(A1, Ax).
Therefore, now, it must be proven that this set is a subset of R and that it con-
tains a1 ∪ {x}:
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exists (diff (union A1 Ax) (packages to remove R C A1 Ax)). split.
apply subset diff. apply (union subset 3 HA1 HAx).
split. unfold Subset. intros. apply← diff iff. split.
elim (proj1 (iff and (H0 a)) H1).
intros. apply union 3. apply HAx 2. apply singleton 2. apply H2.
intros. apply union 2. apply HA1 2. apply H2.

apply Hcc. exists (t0, t1). split.
apply H3. left. apply In 1 with a. apply→ beq pkg eq. symmetry. apply H6.

apply H1.
split.

Secondly, that the set is abundant (any dependency d is satisfied):

unfold abundant. unfold For all. intros. unfold satisfied pkg. intros.
rewrite diff iff in H1. destruct H1.

Used here is the fact thatA1 andAx are abundant, and therefore their union
is abundant as well (cf. corollary 2.5). In other words; the aforementioned
dependency d is satisfiable in either A1 or Ax, by a package x1 (x1 ∈ d ∩ (A1 ∪
Ax)).

elim (abundant union (NoSupDependencies R) A1 Ax HA1 A HAx A x0 H1 d).
intros x1 Hx1.

Now, either x1 ∈ K(A1, Ax), or not. The first case is that x1 ∈ K(A1, Ax).
This means that there is a conflict (t0, t1) with t0 ∈ A1, t1 ∈ Ax and t0 = x1.

elim (In dec x1 (packages to remove R C A1 Ax)).
intros. unfold packages to remove in a. rewrite (filter iff (union A1 Ax)

x1 (compat bool 3 C A1 Ax)) in a.
destruct a. rewrite ← (CFacts.exists iff C (compat bool 2 A1 Ax x1)) in

H5.
destruct H5. destruct H5. destruct x2. symmetry in H6. destruct

(andb true eq H6).
clear H6. destruct (andb true eq H7). clear H7.

It has already been established that (t0, t1) is a triangle conflict.

destruct (Htri (t0, t1) H5). unfold concerned. split.
apply (cone of subset is subset R (exist (fun v⇒ v [≤] R) a1 Ha1)).
simpl. unfold Subset. intros. elim (H0 a). intros. apply H11. right.

apply H7.
apply HA1 1. apply← mem iff. symmetry. apply H6.
apply (cone of subset is subset R (exist (fun v⇒ v [≤] R) (singleton x)

(s ss Hx))).
simpl. unfold Subset. intros. elim (H0 a). intros. apply H11. left. apply

singleton 1. apply H7.
apply HAx 1. apply← mem iff. symmetry. apply H9.

destruct H7. destruct H7. destruct H10. destruct H11.
assert (x3 [=] d). apply H12.
split. exists x0. unfold NoSupDependencies in H2. rewrite filter In in

H2. destruct H2.
apply H2. left. apply In 1 with x1. apply→ beq pkg eq. symmetry. apply

H8. apply (inter 2 Hx1).
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Then, it can be proven that t1 ∈ d∩ ((A1∪Ax)\K(A1, Ax)); in other words,
that t1 satisfies d.

exists t1. apply inter 3.
apply← diff iff. split.
apply union 3. apply← mem iff. symmetry. apply H9.
intro. unfold packages to remove in H14. rewrite (filter iff (union A1 Ax)

t1 (compat bool 3 C A1 Ax)) in H14.
destruct H14. rewrite ← (CFacts.exists iff C (compat bool 2 A1 Ax t1))

in H15.
destruct H15. destruct H15. destruct x4. symmetry in H16. destruct

(andb true eq H16).
clear H16. destruct (andb true eq H17).
apply (HAx P (t2, t3) H15). split. apply In 1 with t1.
apply→ beq pkg eq. symmetry. apply H18.
apply← mem iff. symmetry. apply H9.
apply← mem iff. symmetry. apply H19.
rewrite← H13. apply H11.

If x1 6∈ K(A1, Ax), then proving abundance is easy.

intros. exists x1. apply inter 3.
apply← di� i�. split.
apply (inter 1 Hx1). apply b. apply (inter 2 Hx1). apply H2.

Now it must be proven that our set (A1 ∪ Ax) \ K(A1, Ax) is peaceful.
This means that the fact must be proven that there is a conflict in (A1 ∪ Ax) \
K(A1, Ax) leads to a contradiction. Therefore, let us assume that there is such
a conflict:

unfold peaceful. unfold ConflictSet.For all. intros. destruct x0. intro.
unfold concerned in H2. destruct H2. rewrite diff iff in H2. destruct H2.
rewrite diff iff in H3. destruct H3. destruct (union 1 H2). destruct

(union 1 H3).

Having such a conflict means that there is a conflict (t0, t1), with t0 ∈ A1 ∪
Ax, t1 ∈ A1 ∪ Ax and neither an element of K(A1, Ax). The proof proceeds
by cases. The case that t0 ∈ A1 and t1 ∈ A1 can be excluded, because A1 is
peaceful:

apply (HA1 P (t0, t1)). apply H1. split. apply H6. apply H7.

Then the case that t0 ∈ A1 and t1 ∈ Ax. This leads to a contradiction,
because in that case, t0 would be an element of K(A1, Ax):

apply H4. unfold packages to remove. rewrite (filter iff (union A1 Ax) t0
(compat bool 3 C A1 Ax)).

split. apply H2. rewrite← (CFacts.exists iff C (compat bool 2 A1 Ax t0)).
∃ (t0, t1). split. apply H1.
apply andb true intro. split. apply andb true intro. split.
apply→ mem iff. apply H6. apply→ mem iff. apply H7.

apply← beq pkg eq. reflexivity.

Next case: t0 ∈ Ax and t1 ∈ A1. In this case, t1 would be in K(A1, Ax).
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destruct (union 1 H3).
apply H5. unfold packages to remove. rewrite (filter iff (union A1 Ax) t1

(compat bool 3 C A1 Ax)).
split. apply H3. rewrite← (CFacts.exists iff C (compat bool 2 A1 Ax t1)).
∃ (t1, t0). split. apply conflicts sym. apply H1.
apply andb true intro. split. apply andb true intro. split.
apply→ mem iff. apply H7. apply→ mem iff. apply H6.

apply← beq pkg eq. reflexivity.

And finally, t0 and t1 both in Ax. This is impossible, because Ax is peaceful.

apply (HAx P (t0, t1)). apply H1. split. apply H6. apply H7.

It just remains to prove that {x} and a1 are co-installable. First x:

elim (Hsep x). intros. ∃ x0. destruct H1. destruct H2. split.
apply H1. split. simpl. unfold Subset. intros. apply In 1 with x. apply

singleton 1. apply H4. apply H2.
apply H3.

elim (H0 x). intros. apply H2. left. reflexivity.

And finally, a1.

elim (IHa1 Ha1). intros. destruct H1. destruct H2.
∃ x0. split. apply H1. split. apply H2. apply H3.
intros. apply (Hsep x0). elim (H0 x0). intros. apply H3. right. apply H1.
unfold only triangles. unfold ConflictSet.For all. intros.
apply Htri. apply H1. unfold concerned in H2. destruct x0. destruct H2.
unfold concerned. split.
apply (cone of subset is subset R (exist (fun v⇒ v [≤] R) a1 Ha1)).
simpl. unfold Subset. intros. destruct (H0 a). apply H6. right. apply H4.
apply H2.

apply (cone of subset is subset R (exist (fun v⇒ v [≤] R) a1 Ha1)).
simpl. unfold Subset. intros. destruct (H0 a). apply H6. right. apply H4.
apply H3.

intro. apply Hcc. destruct H1. ∃ x0. destruct H1. split.
apply H1.
destruct x0. destruct H2.

left. destruct (H0 t0). apply H4. right. apply H2.
right. destruct (H0 t1). apply H4. right. apply H2.

This concludes the proof.
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Experimentation and
validation 7

. . . and searched the Scriptures daily, whether those things were true.
— ACTS 17:11

In the previous chapters, one of the justifications we have proposed for our
work has been that it offers distribution editors more insight into the structure
of their distribution, and therefore better ways of finding errors and, in general,
maintaining the quality of their product.

In this chapter, we shall discuss the results of various practical experiments
we have executed during the MANCOOSI project, and show the information
that can be gathered from these experiments.

The first part of the chapter will be devoted to a discussion of the time
involved in the computation of the notions discussed in previous chapters. In
chapter 4, we have discussed the theoretical complexity of the algorithms used,
but in every case, the actual run times are far below these theoretical maxima.
In addition to a discussion of this phenomenon, we also present a quantitative
assessment of the results of the calculations.

The second part of the chapter contains an analysis of the results them-
selves: patterns and other interesting features that have been uncovered by
studying the results.

For the experiments, we have made use of the latest Debian stable reposit-
ory amd64 architecture; the latest Mandriva repository, 2010.1; and the newest
written by Çagdas Bozman [Boz10].

7.1 Repositories

One fairly basic question one might ask oneself is how the number of packages
and dependencies evolve over time, especially in relation to each other. In
order to answer this question, consider figure 7.1, which shows the evolution of
the number of packages and dependencies in the Debian unstable distribution
from January 2007 to mid-June 2010.

The ‘number of dependencies’ in this graph is obtained by taking all direct
dependency relationships in the package; that is, for every pair of packages
(p, q) such that p→ q (i.e. q is mentioned in the dependency specification of p),
one is added to the total.

The first thing we can see is that both the number of packages (the red line,
scaled on the left side of the graph) and the number of dependencies (the green
line, scaled on the right of the graph) grow in a linear fashion over time, with
one notable exception: from mid-November 2007 to August 2008, the num-
ber of packages increases, but the number of dependencies decreases. This is
probably due to a change of packaging in packages that use the pkg-config

framework.
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Figure 7.1: Packages and dependencies in Debian unstable

Let us note in passing that the scale on both Y axes is equal, so that apart
from the aforementioned period, the growth rate for both packages and de-
pendencies really is equal.

This is even easier to see in a plot of the average number of (direct) depend-
encies per package against the time, as in figure 7.2:
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Figure 7.2: Average number of dependencies per package in unstable

Before mid-November 2007, there are on average around 4.8 dependen-
cies per package; this drops to 4.4 in three months, where it remains until the
present time.
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7.2 Run time of the installability algorithm

The basic algorithm presented in the previous chapters was the installability
problem; more specifically, checking a distribution for packages that are not
installable under any circumstances (‘broken’). We have noted already that
while this problem is NP-complete and therefore theoretically exponential in
complexity, the actual instances encountered when checking distributions can
be solved very quickly. In this section, we shall present data to corroborate this.

7.2.1 Installability for a single distribution

To find out the actual run time of the algorithm that checks for broken pack-
ages, we shall take the contents of the Debian and Mandriva distributions over
time, and check the run times. For Debian, we start with version 2.0, since
previous distributions were too small to give good results.

The results for Debian are in the following table1.

Distribution Year Packages Broken Solver time
2.0 1998 1524 1 0.03
2.1 1999 2269 7 0.06
2.2 2000 3889 12 0.21
3.1 2005 15195 2 4.15
4.0 2007 18052 5 3.37
5.0 2009 22311 0 4.74
5.0.6 2010 22000 9 4.15

distributions used: debian/i386 main

For Mandriva, the results are as follows:

Distribution Packages Broken Solver time
2007.0 5123 53 0.77
2007.1 5517 39 0.61
2008.0 6083 11 0.75
2008.1 6410 28 0.98
2009.0 6860 69 0.73
2009.1 6936 29 0.70
2010.0 7340 20 1.46
2010.1 7566 61 2.04

distributions used: mandriva main/i386

These stable distributions give us some data points, but not enough to give
a clear indication of a relation between distribution size and run time.

To get a better indication of this relations, We have run the algorithm on
every Debian stable, testing and unstable distribution (for the amd64 archi-
tecture) of the first day of the month from May 2007 through June 2010. The
results are shown in figure 7.42.

1All run times in this chapter and the next were obtained by running the tools on a 4-core, 3
GHz, AMD Athlon II, with 4 Gb of memory and running FreeBSD 8.1.

2All figures from this section can be found at the end of the chapter.
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The curve is mostly linear, though there are significant outliers. This is be-
cause there can be great differences between two distributions that are similar
in size: as an example, the unstable distribution for June 1st, 2008, has almost
the same size as the testing for December 1st, 2008, but the testing distri-
bution takes 20% longer to solve. This can be attributed to the fact that there
are 5044 broken packages in the unstable distribution: many of these broken
packages are broken because of the same reason, which greatly speeds up the
work of the SAT solver.

7.2.2 Installability for multiple distributions

What happens if one takes two different distributions (stable and testing, or
testing and unstable) and check them for broken packages? Looking at fig-
ure 7.5, we can see that the progression is still linear, but that the constant
becomes much higher.

To explain this, let us note first that if two distributions are added together,
in many cases, this union contains two different versions of the same package.
So, many dependencies that before had only one solution now have two solu-
tions; and to add insult to injury, these two solutions are in conflict with each
other.

Let us give an example. In Debian 5.0.4, from January 2010, there is one
version of the package libc6, to wit 2.7-18lenny1. Any dependency on libc6

will therefore have exactly one way to resolve it.
However, in a Debian testing from May 2010, there is another version of

libc6: libc6-2.10.2-6. Since the dependency on libc6 is usually specified
as libc6 (>= 2.7-1), this second version of libc6 also satisfies the depend-
encies, of which there are some 10 000. This enormously complicates the task
of the SAT solver.

And when libc6 from the Debian unstable of the same date is added, there
is another version: libc6-2.10.2-7, which triples the problem.

Another interesting observation from figure 7.5 is that there are three dis-
tinct lines to be seen. The first line corresponds to the distributions from May
2007 up to and including February 2009. On February 14, 2009, Debian 5.0 was
released, so that the up-to-then testing became stable. This resulted in a de-
crease in the number of packages (the combination stable and testing dropped
from around 38 000 packages to less than 28 000). Given that on that date the
stable distribution contained some 22 000 packages, there were a lot less pack-
ages with multiple available versions (as explained in the previous paragraph),
which explains the reduction in solver time.

The second line, therefore, represents the packages from March 2009 up to
and including November 2009. There is a smaller drop here, which coincides
with an upgrade of the libc package (reducing the number of libc packages
available from two to one). We have already seen that this package is depended
on by a great many packages in the distribution, so this explains the effect
(every package that depends on libc no longer has to make the choice between
two versions, but can simply install the single available version).

This becomes clearer in a 3d plot of the number of packages versus the
solver time versus the date, as in figure 7.6. The actual plot in this graph is the
red line; the two other black lines are just projections of this line on the back
and bottom plane, added for clarity.
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Following the red line shows that up until February 2009, there is a steady
increase of both the number of packages, as well as the solver time; this is
the expected behaviour which also occurs when checking single distributions.
Then, there is a sudden drop which brings us back to the same number of
packages (and solver time) as in February 2007. This is the release of Debian
5.0 mentioned before.

The second phenomenon mentioned, the change in libc, is less obvious in
this graph; it is the small drop in November 2009. Looking at the two projec-
tions, we can see that the number of packages does not change (the line on the
back plane), but that there is a drop in solver time (the bottom plane).

Indeed, the libc package itself is only one package, but there is a difference
in solver time, because all packages that depend on libc6 can be solved more
easily when there is only one available version.

Looking at figure 7.7, where the numbers for the union of stable, testing and
unstable have been added, we can see that the same phenomenon is observable
there.

A 3d version of this plot, with only the line for stable, testing and unstable
shown, is in figure 7.8.

7.3 Run time of the strong dependency algorithm

Let us continue the run time analysis with the algorithms that are based on
this installability algorithm, starting with the algorithm used for computing
the strong dependency graph of a distribution. In chapter 4, we noted that the
problem of determining whether two packages strongly depend on each other
is co-NP-complete; we shall show here that the actual time needed to produce
a strong dependency graph of an entire distribution (using the algorithms from
chapter 4) remains reasonable.

The following table shows the run time of algorithm 5, the most highly
optimised algorithm shown to compute the strong dependency graph.

In this table, V and E are the vertices and edges in the strong dependency
graph (the transitive version); and Time is the time needed to construct this
graph (in seconds).

Distribution V E Time
stable (5.0.6) 22 000 729 977 98.78
stable + testing 47 434 244 899 3371.83
stable + testing + unstable 50 533 239 419 4160.16

distributions used: debian/amd64 main

The first observation to be made here is that for a single distribution, the
strong dependency graph can be computed in a matter of minutes. While this
is not enough to run this in real time, it is more than fast enough to run as part
of a daily analysis for the benefit of distribution editors.

We can also observe is that if the algorithm is run on multiple distributions
together, not only does the run time increase dramatically, but the number of
edges in the strong dependency graph also decreases.

This is due to the fact that when considering multiple distributions at the
same time, there are multiple versions of the same package, which will provide

95



7. Experimentation and validation

more ways of satisfying dependencies. Since a dependency that can be satis-
fied by multiple packages is not a strong dependency, the number of strong
dependencies decreases.

The increase in run time is due to this same effect. First, there will be less
conjunctive dependencies, so the SAT solver will have to be invoked more of-
ten to determine whether a dependency is a strong dependency or not. In
addition, as already noted in the previous paragraph, having multiple ways to
satisfy a dependency complicates the task of the SAT solver.

An example of this is figure 7.3. In the repository 7.3a, there is a direct con-
junctive dependency from alpha on bravo, and therefore a strong dependency.
If the actual specification of this dependency is just bravo, however, without
any version numbers, this dependency is no longer conjunctive when another
version of bravo is added, as in repository 7.3b. Since it is now possible to
install either version of bravo in order to satisfy the dependency of alpha, the
strong dependency disappears.alphabravo 1

(a) One version

alphabravo 1 bravo 2#
(b) Two versions

Figure 7.3: Strong dependencies and multiple versions

7.4 The dominator graph

The algorithm for computing the dominator graph uses the strong dependency
graph algorithm. As we have noted before, there are two different methods of
computing the dominator graph: a ‘classical’ method presented in chapter 4
and a ‘Tarjan’ method which takes advantage of the fact that dominators for
dependency graphs are equivalent to the notion of dominators as known from
control flow graphs (see theorem 3.19) to use the Lengauer-Tarjan algorithm [LT79]
to compute the dominator graph.

In the first part of this section, we shall discuss the run time of these two
algorithms.

In the second part, we shall discuss interesting patterns that can be found
in the dominator graphs thus computed.

7.4.1 Run time of dominator graph calculation

Let us start with the first algorithm (algorithm 7): the classical method that
follows the transitive strong dependency graph and finds out if there are dom-
inators (see chapter 4 for a more extensive presentation). This algorithm is the-
oretically very slow (O(|V |2) for a completely connected graph), but in practice
its run time remains reasonable, as can be seen in the following table. V and
E are the number of vertices and edges in the strong dependency graph; Dom
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denotes the time needed to generate the dominance graph, and RelDom5 the
time needed to generate the relative dominance graph (up to 5 percent; see
definition 3.10). This does not comprise the time needed for creating the strong
dependency graph, since it can be found in the table in the previous section.

Distribution V E Dom RelDom5
stable (5.0.6) 22 000 792 977 6974.43 7051.04
stable + testing 47 434 244 899 467.27 395.35
stable + testing + unstable 50 533 239 419 368.50 371.38

distributions used: debian/amd64 main

Then there is the Tarjan algorithm (algorithm 9). This algorithm uses the
strong dependency graph as a starting point, in a modified form, where cycles
have been replaced by a single vertex and that has been transitively reduced
(which explains the reduced number of vertices and edges, in comparison to
previous graphs).

As noted in chapter 4, the theoretical complexity of computing the trans-
itive reduction of a graph is O(|V |3). In practice, computing the transitive re-
duction of a strong dependency graph never takes more than a few seconds.
This can be explained by the nature of the graph, which, though transitive and
therefore having many more edges than vertices, is far from being completely
connected; the strong dependency graph of Debian 5.0.6, for example, contains
only 0.2% of the number of possible edges.

In the table below, the V and E columns contain, respectively, the number of
vertices and the number of edges of the strong dependency graph (transitively
reduced and with cycles replaced by a single node). The TG column contains
the time needed to generate this reduced strong dependency graph, and the
TD column is the run time of the Tarjan algorithm. The total run time is the
entire run time of the algorithm, which includes parsing of the distribution file
(and therefore is higher than the sum of TG and TD). All these times are in
seconds.

Distribution V E TG TD Total
stable (5.0.6) 21 940 43 412 50.06 103.69 160.15
stable + testing 47 373 41 796 451.53 334.73 801.26
stable + testing + unstable 50 465 42 854 508.52 375.08 904.63

distributions used: debian/amd64 main

7.4.2 Characteristics of the dominator graph

Considering the structure of the dominator graph, let us note that it consists
of a large amount of independent clusters. Many patterns are noticeable here.
For example, the largest cluster in a recent testing distribution, consisting of
47 nodes, is the one shown in figure 7.93.

The node in the centre is cairo-dock-plugins, and it dominates all the
nodes at the edge of the graph.

3All cluster images from this subsection can be found at the end of the chapter
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This cluster models a package (cairo-dock-plugins), with a lot of depend-
encies that are only reachable via this package (this is because of the dominator
relationship). This could be interesting for analysis purposes, since basically
this entire cluster is one package that can be installed in part (only the needed
plugins)—it is certain that the plugins will not be needed by someone else, so
removing them will never be a problem.

In figure 7.10, there is an example of a smaller cluster, focusing on the
tzdata-java package.

This pattern is interesting as well: it shows us three packages that mutu-
ally dominate each other: openjdk6-jre-lib, openjdk16-jre-headleass and
ca-certificates-java; these three packages all dominate tzdata-java.

The first three packages will always be installed together, so it might be
interesting to consider merging them into a single package—of course, there
could be external factors to prevent this, such as the fact that they have different
maintainers, or licensing issues.

Finally, as seen in figure 7.11, much more complex patterns exist as well.
What can be seen here is a combination of several clusters, dominated by

the kdepim-runtime package.
Sometimes a cluster seems more complicated at first sight than it actually

is. Consider the cluster around mono-devel, in figure 7.12:
This looks complicated, but actually many of the edges shown here are

transitive edges. When they are removed, a more recognisable pattern emerges
of a central package that dominates a great number of other packages, like
already seen in figure 7.9.

7.5 Run time of the strong conflict algorithm

The algorithm used for computing strong conflicts, as presented in chapter 4,
theoretically has a very high complexity. As shown in that chapter, many op-
timisations are possible to reduce the practical run time to something accept-
able.

In the first part of this section, we shall discuss the actual time needed to
compute the strong conflicts in a distribution. In the second part, we shall
present a few significant examples from the Debian distribution.

In the following table, there is data about the running of the strong conflicts
algorithm. As an example, for Debian, there are 1003 explicit conflicts (E), of
which there are 940 left after removal of triangles (T). Running the algorithm
results in some 10 million potential strong conflicts (P; i.e. pairs connected to
an explicit conflict by a dependency path that contains at least one disjunctive
dependency). There are 6600 conjunctive strong conflicts (CSC; i.e. pairs con-
nected to an explicit conflict by a conjunctive dependency path), and finally,
of the potential strong conflicts, 1714 were actual strong conflicts, giving 8314
total strong conflicts (SC).

Distribution Packages Trimmed E T P CSC SC Time

debian 5.0.4 22 299 22 295 1 003 940 10 071 609 6 600 8 314 1309s
mandriva 2010.1 7 566 7 505 51 50 2 542 248 282 80s
eclipse-helios 4 027 3 996 25 22 883 33 33 13s
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When we look at the numbers for Debian first, we can see that the larger
part of the strong conflicts are found directly using only conjunctive depend-
encies. About ten million possible strong conflicts (that is, pairs of packages
that have a path to a conflict that includes at least one disjunctive dependency;
see also theorem 3.25) are found, but only a very small part of these possibilities
actually are strong conflicts.

Note also that while the triangle optimisation only removes 63 conflicts, one
of these is the conflict between the packages debconf-i18n and debconf-english.
Since these two packages are (through debconf) heavily depended on, the re-
moval of this conflict reduces the number of candidates by a huge amount.

When we look at the specific conflicts, it turns out that almost 40 percent of
the strong conflict candidates have the conflict between libgamin0 and libfam0

as their root. This is not unduly surprising, since the gamin and fam libraries
are well used (as can be verified when looking at the number of packages that
strongly depend on them).

When we look at the list of the 10 packages with the highest inclusion set,
as shown in table 7.1, we can see that the size of the exclusion set is an excellent
method to spot problematic packages.

Exclusion Package Explicit Explicit Closure Closure
set conflicts dependencies size height

2362 ppmtofb 2 3 6 4
127 libgd2-noxpm 2 5 8 4
127 libgd2-noxpm-dev 4 6 15 5
107 heimdal-dev 2 8 121 10
71 dtc-toaster 0 11 429 9
71 dtc-postfix-courier 2 22 348 8
69 citadel-suite 0 5 133 9
69 citadel-mta 1 6 123 9
65 xmail 4 6 105 8
63 apache2-mpm-worker 2 5 123 10

Table 7.1: Top 10 of packages with large exclusion sets in Debian 5.0.6

7.5.1 Significant examples of strong conflicts in Debian

Let us look at the packages in the Debian top 20 for some more detail, to see
what explanations can be found for their large exclusion sets.

To begin with, the case of ppmtofb has already been shown in chapter 3: a
dependency on an obsolete component.

Insufficient precision in the metadata

When we look at the two next packages in the top 20, libgd2-noxpm and
libgd2-noxpm-dev, we can immediately see that these packages seem very
similar. Let us look at the presentation given by the tool:
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127 libgd2-noxpm-dev:

127 (libgd2-xpm <-> libgd2-noxpm)

* zoph (conjunctive)

(...)

127 libgd2-noxpm:

127 (libgd2-xpm <-> libgd2-noxpm)

* zoph (conjunctive)

(...)

All strong conflicts of both packages are caused by one explicit conflict. Look-
ing at the metadata, this conflict seems justified: it is reasonable to assume that
libgd2-xpm and libgd2-noxpm are two versions of the same library and there-
fore should not be installed together (and indeed, by studying the metadata
further, this turns out to be the case).

In fact, both packages contain the same library, but libgd2-noxpm is a base
version, whereas libgd2-xpm adds support for the XPM (X PixMap) image
format. It seems reasonable, therefore, to say that the functionality of libgd2-xpm
is a superset of the functionality of libgd2-noxpm.

The two packages do not actually conflict with each other; it is true that
they cannot be installed together, but it is always possible to resolve the con-
flict by removing libgd2-noxpm and installing libgd2-xpm, without losing any
functionality.

This could be reflected in the metadata by adding a Replaces field or by
having libgd2-xpm provide libgd2-noxpm, thus removing the strong conflicts.

For the next package, heimdal-dev, 106 of its 107 strong conflicts are caused
by one explicit conflict, the one between libkrb5-dev and heimdal-dev. This
falls in the same category as the previous case: heimdal aims to be a compatible
reimplementation of libkrb5 (the Kerberos security system). But in that case,
should there be a conflict between the two? Apparently, if both libraries are
compatible, it does not matter which one is installed. This situation might be
resolved by adding a virtual package kerberos-dev, which is provided both
by libkrb5-dev and heimdal-dev.

Justified strong conflicts

Not all strong conflicts are problematic, however. For example, next in the list
is dtc-toaster, which has 71 strong conflicts. Here the pattern is different:
there is not one explicit conflict that is the root cause of all these strong con-
flicts, but many different ones (the most important one being the one between
courier-mta and postfix, which causes a strong conflict between dtc-toaster

and 29 other packages): in total there are 24 explicit conflicts at the root of this
exclusion set.

This exclusion set therefore seems to be justified. Given that 71 packages is
only 0.3% of the total distribution size, such an exclusion set does not seem to
pose a very large problem anyway.

Note that all the solutions given here are propositions: it might very well be
that there are technical difficulties that preclude these solutions. The important
lesson is that with the presentation given here, it is very simple to find prob-
lematic packages and note the root cause that leads to their having such large
exclusion sets.
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7.5.2 Strong conflicts in Mandriva and Eclipse

Then, let us look at to the results for Mandriva, shown in table 7.2. Here, there
are far fewer explicit conflicts (even speaking relatively, taking into account the
fact that the Mandriva distribution is smaller than Debian), and consequently
there are less strong conflicts as well.

This is a result of Mandriva (and RPM) design policy: in general, the idea
in Mandriva is to alter packages that potentially conflict to have them exist
alongside each other, which is not the case in Debian.

Exclusion Package Explicit Explicit Closure Closure
set conflicts dependencies size height
32 vsftpd 4 25 62 8
30 pure-ftpd 5 24 47 6
30 pure-ftpd-anonymous 0 1 48 7
30 pure-ftpd-anon-upload 0 1 48 7
18 lib64db4.7-static-devel 11 1 58 10
18 lib64db4.7-devel 11 5 57 9
18 lib64db4.6-static-devel 9 1 62 10
18 lib64db4.6-devel 9 6 61 9
18 lib64db4.2-static-devel 6 1 62 10
18 lib64db4.2-devel 6 6 61 9

Table 7.2: Top 10 of packages with large exclusion sets in Mandriva 2010.1

When we look at the package from Mandriva with the most strong con-
flicts, we can immediately see that proportionally, there are not as many as for
Debian: 32 on 7566, less than 0.5%.

In fact, the four top packages in the strong conflict list are related: the strong
conflicts involving vsftpd, pure-ftpd, pure-ftpd-anonymous and pure-ftpd-anon-upload

all involve two explicit conflicts: one between proftpd and vsftpd and one
between proftpd and pure-ftpd.

Since all these packages involve FTP software, here again some adjustment
in the metadata might eliminate these conflicts, like we have shown for the
libgd2 packages above; but this of course depends on the distribution and
the specifics of the package. At any rate, we can see again that using the root
conflict, it is easy to identify the underlying cause of those large exclusion sets.

For Eclipse, there are no packages that have large exclusion sets (the largest
exclusion set found has three elements); besides, every strong conflict is due
to a self-conflict (i.e. an explicit conflict of a package with itself, which in fact
means that the singleton flag is set, as explained in chapter 2).

This is due to the peculiarities of the Eclipse format: there are no explicit
conflicts between plugins; the Eclipse quality assurance process insures that
plugins from the official distribution are always usable together.

7.5.3 Daily generation of data

All of the algorithms discussed in this chapter are intended to provide data to
distribution editors, so that they can in turn improve the distribution.
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In order to make this easy, on the MANCOOSI site, we have put a system in
place that generates the dominator graphs of Mandriva and Debian (testing
and unstable; not stable, since it does not change every day) on a daily basis.

This daily generation also allows distribution editors to check the evolution
of their distribution over time; data is available from April 2009 onwards.

Since, as noted above, the dominators graph is highly clustered, there also
is a break-down of the graph into its component clusters. This can be used
to monitor changes in dependencies; for example, to check if packages move
between clusters, if clusters merge or if they disappear. This might be indicat-
ive of changes in the distribution.
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Figure 7.8: Solver times for three distributions
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Graph properties of
distributions 8

Qualsiasi dato diventa importante se è connesso a un altro. La connessione cambia la
prospettiva.

— UMBERTO ECO, Il pendolo di Foucault

The relationships between components can be used to compute relevant
quality measures, for example in order to identify particularly fragile compon-
ents [DML+04, KAJH99, Liv05]. This chapter is devoted to a discussion of this
idea; more specifically, we shall discuss the properties of distributions when
seen as a graph.

It has been observed that in networks of objects generated by human activ-
ity it is often the case that the number of hops needed to reach a vertex from
another vertex is relatively small. This is called the small world property, first
described by Stanley Milgram in [Mil67] (the famous concept of ‘six degrees of
separation’), and can be found in the graph of the Internet [CMP00], the graph
of the Web [BA99], and many other types of complex networks [AB02]. As
Barabasi says in his founding paper on small world properties, it seems that
these large networks are ”governed by robust self-organizing phenomena that
go beyond the particulars of the individual systems”.

It is quite natural to ask the question whether free software distributions,
whose properties are being discussed in this thesis, also exhibit such scale-free
behaviour when considered as a graph. This is the question we are going to
answer in this chapter, after recalling the basic notions about the ‘small world’
properties of a graph.

8.1 Small world properties

Formally, a network is deemed small-world if it satisfies two properties [WS98]:

1. The clustering coefficient (the chance that two neighbours of a vertex are
connected) is significantly higher than that of random networks.

2. On average, the path length between two vertices is low (on the same
order as that of random networks);

Let us start with a more formal definition of these two concepts, the clus-
tering coefficient and the path length. Assume that there is a directed graph G,
with V the set of its vertices and E ⊆ V × V the set of its edges (if (p, q) ∈ E,
then there is an edge from p to q).
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8. Graph properties of distributions

Definition 8.1 (Clustering coefficent)
Given a vertex v, the clustering coefficient cc(v) is defined as:

cc(v) =


0, if succ(v) = ∅
1, if succ(v) = {p} for some p
|{(p,p′)∈E|p,p′∈succ(v)∧p 6=p′}|

1
2∗|succ(v)|∗(|succ(v)|−1)

otherwise

The clustering coefficient cc(G) of a graph G is the average clustering coeffi-
cient of all of its vertices.

Then the average path length. First, the path length P (v, v′) is defined as
the length of the shortest path between v and v′; if v and v′ are not connected,
then P (v, v′) =∞.

Definition 8.2 (Average path length)
The average path length apl(v) of a vertex v is defined as:

apl(v) =

{
0, if succ(v) = ∅∑
{P (v,v′)|P (v,v′)6=∞}
|{P (v,v′)|P (v,v′)6=∞}| , otherwise

Again, the average path length apl(G) of a graph G is the average of the aver-
age path lengths of all of its vertices.

In a small world network, these two properties result in a network that
consists of many clusters (or near-clusters), whose central nodes are connected.
This makes for the short average path lengths mentioned above.

These hubs can be recognised by looking at the degrees of the different
nodes in the graph. There are a few hubs—nodes that have many connections—
and many nodes that have very few connections; thus, the degree distribution
conforms to the well-known Pareto principle, also known as the 80/20-law.

When looking at a plot of the degrees of a Debian stable distribution graph,
as presented in figure 8.1, this pattern can be recognised. In this graph, the de-
gree is presented on the Y axis, and the number of nodes that has this particular
degree is presented on the X axis. We can see easily that there are many nodes
with a low degree, and few nodes with a high degree.

This particular structure makes such a graph very resistant to random at-
tacks [AJB00]; if a random node is removed, the chance is very small that the
average path length will increase: the only way the path length can be in-
creased for many nodes is by removing a hub node, and as shown above, there
are few of these.

By the same argument, however, a small world graph is very vulnerable
to directed attacks: by deleting only a few specific nodes (the hub nodes), the
entire network can be paralysed.
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Figure 8.1: Distribution of degrees in Debian stable (method 3)

8.2 Distributions as small world networks

The argument presented above makes sense from a distribution principle as
well: there are many packages in a distribution (all sorts of applications) that,
if broken or removed (which can be seen as an ‘attack’), will not have much
impact on packages other than themselves. The remark about directed attacks
holds as well: there are a few packages (libraries such as libc, for example,
or script interpreters such as perl or python) that, in case of bugs or other
problems, will have a major impact on the distribution.

In this section, we shall discuss the application of the small world concept
to F/OSS distributions. Such distributions exhibit important differences with
other objects usually studied as small world networks, but as we shall show,
it is still possible to apply many of the concepts from small world networks to
distributions.

Most network models so far have simply ignored the directedness of the
network, treating all edges as if they were symmetric. However, there are net-
works where this is not the case; for example, in the World Wide Web, there
is a difference in distribution between ingoing and outgoing edges [BKM+00]
(both follow a power law, but the distribution is different).

In the definitions for clustering coefficient and path lengths mentioned above,
the directedness of the graph has already been considered, as well as in the
degree distribution (here, too, there is a difference in distribution between in-
coming and outgoing edges, though both obey a power law).

There is a second difference, however: unlike the Internet, the Web, or so-
cial networks, a distribution graph contains different kinds of edges: while a
dependency edge may well be considered as a connection in the same sense as
in a social network, a conflict edge has a very different meaning. Also, depend-
encies are directed edges, while conflicts, which specify a symmetrical relation-
ship, are undirected ones.

Therefore, it is not at all obvious what graph one should use to check whether
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8. Graph properties of distributions

the small world properties apply. At least three main possibilities for graph
generation methods can be identified:

1. Treat all edges equally, irrespective of their significance (dependency, re-
commendation, conflict, . . . ). More formally, there is an edge between
packages p and q if and only if q is mentioned in one of the relationships
of p (notice that this notion totally misrepresents the semantics of a con-
flict, which is symmetric)

2. Use the dependency closure; there is an edge between p and q if and only
if q is a member of ∆(p). This creates an edge between p and all possible
dependencies of p.

3. Use strong dependencies: there is an edge between p and q if and only if
p⇒ q1.

All these possibilities have different properties. If the idea is for an edge
from p to q to represent the fact that q is needed to install p, then using the
dependency closure will result in an over-estimation (not every package in the
dependency closure is installed every time, but packages that are not in the
dependency closure are guaranteed not to be needed), whereas using strong
dependencies will result in an under-estimation—a strong dependency is guar-
anteed to be installed, but usually other packages will be installed as well to
satisfy alternative dependencies.

There has been some prior research on the scale-free behaviour of Debian
networks; in [LW04], it is claimed that Debian distributions show small-world
characteristics.

It is difficult, however, to attach conclusions to this claim, because the meth-
odology used is not discussed in any detail. The numbers shown in the paper
suggests that the authors have added an edge between two packages if there
was a dependency (conjunctive or disjunctive) between two packages, which
is akin to our method 1.

The problem with this approach is that such a relationship can mean very
different things. First, that a package depends on another does not necessarily
mean that this other package is actually going to be installed; if the dependency
is disjunctive, another package might be chosen to satisfy the dependency. And
second, a package can be installed even if it is not linked by a direct depend-
ency: see chapter 3 on strong dependencies for more information on this.

Another paper [NNR09], also claims to have found small-world character-
istics in the different stable Debian distributions.

Again, it is not clear which methodology has been used, but the numbers
suggest that for the dependency relationships, the same approach in graph
generation has been used as in [LW04].

There are two differences in approach between the two papers, though:
in [NNR09], a distinction is made between the graph of dependency relation-
ships and the graph of conflict relationships; and the directedness of the graph
is taken into account insofar as the in and out degrees are treated separately.

1This is the method used to create the degree distribution graphs presented in the previous
section.
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Furthermore, it is argued in this paper that the small-world model (as demon-
strated by the degree distribution) does not hold for packages with either very
few or very many dependencies (the ‘saturation effect’).

This is a puzzling claim to make, because the whole point of the small-
world phenomenon is to distinguish between those two types of packages. Our
results tend to show that FLOSS distributions conform very well to the small-
world model: there are few packages with many dependencies, and many
packages with few dependencies.

In [MSSvK08] and [NNR09], the validity of Zipf’s law [Zip49] for Debian
distributions has been demonstrated. However, again, in these papers the sort
of graph used for the calculations is not mentioned.

It turns out that with respect to small-world networks, it does not matter
which representation is chosen: all three graphs have the small world property,
though the numbers differ.

Method V E CC APL Comp CpAvg LComp
1 22 000 177 805 0.46 8.27 338 65.09 21 655
2 22 000 1 726 931 0.30 0.91 1 427 15.42 20 519
3 22 000 792 977 0.29 0.91 1 484 14.82 20 445

distribution used: debian/amd64 5.0.6 stable

In this table, the three methods are represented. First V and E, the number
of vertices and edges in the graph. Obviously, the number of vertices does
not change, since the same distribution was used everywhere; there are many
more edges for the three last methods, because these graphs are transitive.

Then the small world characteristics, clustering coefficient (CC) and aver-
age path length (APL). The clustering coefficient is relatively low, but lower
for the two transitive graphs (2 and 3) than for the non-transitive graph. This
might surprise at first sight, because there are many more edges in these graphs,
which should translate in more edges and thus a higher clustering coefficient.
However, in a transitive graph, vertices have many more direct neighbours
than in a non-transitive graph, so this balances out.

As for the APL, this really is an effective measure only in the first graph;
for the other graphs, since they are transitive, path lengths are either 0 (not
connected) or 1 (connected). Hence the values lower than 1 in this column.

Then, the components—in this case, when calculating the components edge
direction is not considered: their number (Comp), their average size (CpAvg)
and the size of the largest component (LComp). Whatever the method used,
the distribution is made up of one enormous component and many smaller
ones. Using the first method, however, there are far fewer components than
using the other two: the reason of this is that using the first method, conflicts
are represented by edges in the graph, which means that clusters that are con-
nected by a conflict edge are grouped together.

8.2.1 Hub nodes in the strong dependency graph

We have noted earlier that distributions are directed graphs. Most graphs that
the small-world principle has been applied to (such as social networks, or the
graph of the Web), are undirected graphs.

This requires us to modify the notion of a hub. In an undirected graph,
a hub is a node with many connections, no matter what the nature of these
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8. Graph properties of distributions

connections actually is.
However, in a directed graph, the connections to a node can either be incom-

ing or outgoing. A node with many connections can thus fall into one of three
categories:

• A node with many incoming connections, but few outgoing ones. In a
distribution context, a good example of this would be a library.

• A node with many outgoing connections, but few incoming ones. In a
distribution context, this would be a meta-package—a package that does
not contain any files, but only serves to easily install a collection of many
packages, such as KDE or Gnome.

• A node with both many incoming connections and many outgoing con-
nections.

Debian

To assess which of these package types actually occur in F/OSS distributions,
we have plotted the incoming and outgoing degrees in the strong dependency
graph (the normal, transitive version) of Debian-stable in figure 8.2.
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Figure 8.2: In and out degrees in Debian stable, strong dependencies

This figure shows clearly that there are a few library packages (high in de-
gree, low out degree), a few meta-packages (high out degree, low in degree),
but no packages that combine a high in degree with a high out degree. Schem-
atically, the distribution looks like shown in figure 8.3.

Let us look at the ten packages with the highest in and out degrees (in the
strong dependency graph) respectively.
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meta-packageslibraries
Figure 8.3: Schematic repository structure

Highest in degrees Highest out degrees
Name In degree Out degree Name In degree Out degree
gcc-4.3-base 19 821 0 kde 0 579
libgcc1 19 819 2 gnome 0 564
libc6 19 819 2 gnome-desktop-environment 1 463
libstdc++6 14 710 3 gnome-devel 0 415
libselinux1 13 884 3 gnome-core-devel 1 376
lzma 13 299 4 gnome-dbg 0 348
libattr1 13 254 3 kde-devel 0 339
libacl1 13 232 4 gnome-office 0 332
coreutils 13 219 6 audacious-plugins-dev 0 312
dpkg 13 215 9 gnome-accessibility 0 295

The first thing we can see is that many of the packages seem to come from
the same software suite: the gcc-4.3-base, libgcc1 and libc6 packages, for
example, and all the gnome packages. It is reasonable to assume that these
packages depend on each other, and thus that some of their impact sets overlap
(as noted in the section on dominance of chapter 3).

When we look at the dominator graph, we can see that libc6, libgcc1 and
gcc-4.3-base form a cluster (see figure 8.4a), and that dpkg, coreutils, lzma,
libacl1 and libattr1 are in the same cluster, together with perl-base (see
figure 8.4b).

libc6 (= 2.7-18lenny4)

gcc-4.3-base (= 4.3.2-1.1)

libgcc1 (= 1:4.3.2-1.1)

(a) libc6

coreutils (= 6.10-6)

libacl1 (= 2.2.47-2)

libattr1 (= 1:2.4.43-2)

dpkg (= 1.14.29)

lzma (= 4.43-14)

perl-base (= 5.10.0-19lenny2)

(b) coreutils

Figure 8.4: Clusters in the top 10 of in degrees in Debian 5.0.6

For the packages with high out degrees, gnome is in a cluster with gnome-desktop-environment,
and gnome-devel with gnome-core-devel.
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8. Graph properties of distributions

This allows us to ‘purify’ the top 10 list, by only mentioning one package
per cluster (the one with the highest degree). In this way, the table will contain
only independent packages, and not packages whose degree is artificially aug-
mented by a dependency on a package that itself has a high degree. Here is the
new list:

Highest in degrees Highest out degrees
Name In degree Out degree Name In degree Out degree
gcc-4.3-base 19 821 0 kde 0 579
libstdc++6 14 710 3 gnome 0 564
libselinux1 13 885 3 gnome-devel 0 415
lzma 13 299 4 gnome-dbg 0 348
debconf 11 144 11 kde-devel 0 339
zlib1g 10 866 3 gnome-office 0 332
libncurses5 10 680 3 audacious-plugins-dev 0 312
libdb4.6 9 581 3 gnome-accessibility 0 295
debianutils 8 097 3 planner-dev 0 284
libgdbm3 8 094 3 koffice-dev 0 284

Just by looking at the package names, our classification seems to be justi-
fied: the packages with high in degree seem to be libraries, and the packages
with high out degree seem to be high-level metapackages.

There is a way to check this more quantitatively. Most Debian packages
have a list of tags that indicate the type of package. Let’s look at the tags that
occur more than once in the packages mentioned above2:

High in degrees High out degrees
Tag Count Tag Count
role::shared-lib 5 suite::gnome 6
interface::commandline 4 interface::x11 5
devel::library 3 role::metapackage 4
implemented-in::c 3 uitoolkit::gtk 4
role::program 3 special::meta 3
scope::utility 3 x11::application 3
suite::gnu 3 devel::library 2
admin::configuring 2 role::devel-lib 2
implemented-in::perl 2 role::dummy 2
interface::text-mode 2 use::editing 2
suite::debian 2
use::compressing 2

We can see that packages with a high in degree are often (shared) librar-
ies, or administration utilities. Packages with a high out degree are often
metapackages or dummies, or high-level applications. Our classification is
therefore confirmed by Debian’s own tagging system.

There is only one tag that appears both right and left: devel::library.
One should expect this tag for packages with a high in degree, but its pres-
ence in packages with a high out degrees is less obvious. The two packages
from our top 10 of highest out degrees that have the tag are planner-dev and
koffice-dev.

In fact, the planner-dev and koffice-dev packages are development pack-
ages (they both have the devel::library tag, but also the role::devel-lib

tag). They have all the dependencies the normal koffice and planner pack-
ages have, hence the large out degree, but there are no packages that depend
on them (packages rarely need the development libraries to function, only the
main package itself).

2Three packages, libdb4.6, kde and kde-devel, did not have any tags at all.

116



Mandriva

The values mentioned in the previous paragraph have been computed on Debian
distributions; in this subsection, we shall try to identify if they are also pertin-
ent for the Mandriva distribution.

This would seem to be the case: the fact that the libc6 package is very
important, for example, is inherent in Linux and should not depend on distri-
bution policies.

Let us see if the figures corroborate this intuition. First the table of measures
that are important for small world characteristics.

Method V E CC APL Comp CpAvg LComp
1 7 566 84 855 0.47 7.49 289 26.18 7 273
2 7 566 1 170 721 0.25 0.94 333 22.72 7 230
3 7 566 721 162 0.25 0.94 339 22.32 7 223

distribution used: mandriva/x86 64 2010.1 main

The meaning of the values in this table have already been discussed in the
section on Debian, but we shall recall them quickly: V and E denote the num-
ber of vertices and edges in the graph, CC its clustering coefficient, APL the
average path length, Comp the number of components (when not taking edge
direction into account), CpAvg the average component size and LComp the
size of the largest component.

The three methods used for generating the graphs are, respectively: taking
any relationship between two packages to add an edge to the graph; taking the
fact that there is a dependency path between two packages to add an edge to
the graph; and taking the fact that two packages have a strong dependency to
add an edge to the graph (see the start of the section for more details).

From the values, we can see that Mandriva has small world characteristics,
but the clustering coefficient is lower than for Debian.

This is corroborated by examining the degree distribution plot shown in
figure 8.5 (this is the same graph as in figure 8.1, but this time for Mandriva):
it is more difficult to see a power law distribution here, because there is much
more deviation in the values.

Figure 8.6 contains a plot of the in and out degrees together (it is the same
figure as 8.2). This figure shows a clearer image: the distribution of the in and
out degrees looks comparable to the distribution in Debian, except that there
are several outlying packages with a high out degree.

This is due to two packaging particularities in Mandriva: first, there are
several task packages in Mandriva that serve to be able to install one set of
packages that fulfil a specific function—the X window system, for example—
in one go. In Debian, these tasks exist as well, but they are not implemented
as packages, but rather as fields in the metadata of existing packages. These
task packages are like meta packages in that they have a high out degree, but a
small in degree, and this explains the outliers in the graph.

Second, there are simply much more dependencies in Mandriva. A package
like knetwalk, which is a standard KDE application, has 368 strong dependen-
cies in Mandriva, whereas it has 116 strong dependencies in Debian.

When we look at the top 10 of high-degree packages for Mandriva (it has
already been corrected for clustering; see the previous section on Debian for
more details on this procedure), we can see many recognisable packages: one
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Figure 8.5: Distribution of degrees in Mandriva 2010.1 (method 3)

noticeable absent in the high in degree column, however, is libc. This is be-
cause the glibc package dominates dash-static and has therefore been re-
moved (it has an in degree of 7 105).

The presence of the dash-static package itself might also seem surprising;
however, this is explained by the fact that many Mandriva packages need a
shell to run their pre- and post-install scripts; this requirement translates into a
dependency on dash-static (dash is a very light-weight shell).

Highest in degrees Highest out degrees
Name In degree Out degree Name In degree Out degree
dash-static 7 106 0 task-kde4-devel 0 824
lib64termcap2 5 862 2 kimono-devel 0 683
perl-base 5 274 2 smoke4-devel 4 675
libgcc1 5 206 2 kdenetwork4-devel 0 655
lib64pcre0 4 836 4 kipi-plugins-devel 0 651
uClibc 4 719 5 kdepim4-devel 0 645
ncurses 3 272 5 kdeplasma-addons-devel 0 630
lib64gdbm3 3 202 2 nepomuk-scribo-devel 0 606
openssl-engines 3 196 3 kdewebdev4-devel 0 605
lib64xau6 3 056 2 kdepimlibs4-devel 11 599

distribution used: mandriva/x86 64 2010.1 main

Evolution over time

Does the small-world nature of distributions evolve over time? In the follow-
ing tables, we have summarised the evolution of the relevant properties over
time for the Debian and Mandriva distributions. The columns have largely the
same significance as in previous tables, to wit: V and E the number of ver-
tices and edges, respectively, in the strong dependency graph; E/V the ratio
between these (the number of edges per vertex); CC the clustering coefficient;
APL the average shortest path length; ZDP the percentage of zero-degree pack-
ages in the strong dependency graph, i.e. the number of packages in the dis-
tribution that both do not have any strong dependencies and are not strongly
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Figure 8.6: In and out degrees in Mandriva 2010.1, strong dependencies

depended on by any package; Comp the number of weakly connected com-
ponents; CpAvg the average size of the weakly connected components; and
LComp the size of the largest weakly connected component.

Distribution Year V E E/V CC APL ZDP Comp CpAvg LComp

3.0 2002 8 273 87 078 10.52 0.36 0.90 7.81 657 12.59 7 575
3.1 2005 15 195 339 786 22.36 0.34 0.91 6.77 1 056 14.39 15 063
4.0 2007 18 052 510 214 28.26 0.27 0.91 6.75 1 241 14.55 16 744
5.0 2009 22 311 804 486 36.05 0.29 0.91 6.50 1 482 15.05 20 757
5.0.6 2010 22 000 792 977 36.04 0.29 0.91 6.61 1 484 14.82 20 445

distribution used: debian/i386 and debian/amd64 stable

Here are the equivalent numbers for Mandriva:

Distribution V E E/V CC APL ZDP Comp CpAvg LComp

2007.0 5 123 393 514 76.81 0.36 0.97 2.3 121 42.34 5 002
2007.1 5 517 357 386 64.77 0.37 0.96 3.1 175 31.53 5 339
2008.0 6 083 387 377 63.68 0.39 0.95 4.0 248 24.53 5 832
2008.1 6 410 431 378 67.29 0.24 0.94 4.5 293 21.88 6 110
2009.0 6 860 536 402 78.19 0.26 0.94 4.5 311 22.06 6 542
2009.1 6 936 545 064 78.58 0.26 0.94 4.7 330 21.02 6 602
2010.0 7 340 627 801 85.53 0.25 0.94 4.6 344 21.34 6 992
2010.1 7 566 721 162 95.31 0.25 0.94 4.4 339 22.32 7 223

distribution used: mandriva/x86 and mandriva/x86 64 main

There are no great surprises in the tables shown above, except two: the rise
in ratio between edges and vertices, and the decrease in clustering coefficient.
These two figures are especially interesting in combination; in a random graph,
one might expect the two to be correlated: having relatively more edges means
that there is a higher chance that neighbours of one vertex are also neighbours
of each other, which would result in a higher clustering coefficient.

119



8. Graph properties of distributionsalphabravo charlie delta
Figure 8.7: Example of the evolution of a repository

The strong dependency graph, however, is not a random graph. The pat-
tern can be explained by the historical evolution of the distributions. The first
packages to have been added are generally the most important and oft-used
ones: a high proportion of these are libraries.

The packages that are added afterwards are applications that depend on
some of these libraries. But because the graph is transitive, any dependency
on an intermediate library such as X immediately results in dependencies on
every library that is used by X as well—which explains the rise in number of
edges relative to the number of vertices.

Furthermore, if the libraries were not already neighbours of each other, they
do not become neighbours by such additions; the only edges that are added are
the transitive edges between added packages and dependencies—and thus, the
clustering coefficient does not increase.

In figure 8.7, we shall show an example that clarifies this. Suppose that
packages bravo, charlie and delta are already in the repository, each with
their own set of strong dependencies (represented by the dashed triangles).
Now, a package alpha is added with strong dependencies on bravo, charlie
and delta. Since strong dependencies are transitive, any strong dependencies
of bravo (and charlie and delta) are strong dependencies of alpha as well,
which considerably increases the number of edges in the graph.

However, the clustering coefficient does not increase; the neighbours of
alpha are not neighbours of each other, unless they already were neighbours
before the addition of alpha.

The difference between Mandriva and Debian is that the numbers for Man-
driva are much more stable. This can be explained by the fact that the time
frame for the Mandriva distributions that we have investigated is much smal-
ler; the numbers for Debian change primarily in the first releases, from before
2008.

8.2.2 Hub nodes in the direct dependency graph

The conclusion that there are no packages with both a high in degree and a
high out degree holds for the strong dependency graph, which is not the same
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as the direct dependency graph. The two cannot be directly compared, though,
because the strong dependency graph is transitive, whereas the direct depend-
ency graph is not. Taking the transitive closure of the dependency graph, the
graph shown in figure 8.8 is obtained.
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Figure 8.8: In and out degrees in Debian stable, direct transitive closure

In figure 8.8, there is an interesting change: the same pattern as for the
earlier strong dependency graph is present, but there is a curious echo of this
pattern to the right.

By looking at the table, we can see that this ‘echo’ is generated by packages
that are intermediate: libraries that are used often, but that themselves also
depend on more primitive libraries such as libc6. The first examples found
are xfonts-utils, xfonts-encodings and x11-common: all part of the X library,
which is used by almost every program that has a graphical user interface, but
which itself depends on libraries like libc6 or zlib.

The reason that this ‘echo’ does not show up in the strong dependency
graph is that many of the dependency relations mentioned above are disjunct-
ive, and therefore will not be found in the strong dependency graph (xfonts-utils,
for example, in the transitivised direct dependency graph has an in degree of
11 729 and an out degree of 102, whereas in the strong dependency graph it
has an in degree of 121 and an out degree of 23).

8.2.3 Hub nodes in non-transitive graphs

Instead of taking the transitive closure of the direct dependency graph as a
basis of comparison with the strong dependency graph, one can also take the
transitive reduction of the strong dependency graph and compare it with the
original direct dependency graph.

The graph for the (original, non-transitivised) direct dependency graph is
shown in figure 8.9. This is the pattern seen earlier in the strong dependency
graph: many nodes with a low in and out degree, few nodes with a high in
degree, few nodes with a high out degree, and no nodes with both a high in
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8. Graph properties of distributions

degree and a high out degree. The only change is in the numbers: the average
in and out degrees are lower than before—which is easily explained by the fact
that this graph is not transitive and therefore contains fewer edges.
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Figure 8.9: In and out degrees in Debian stable, direct dependencies

As for the actual tables, the list of packages with a high in degree does
not change much with respect to the strong dependency graph: libc6 is the
package with the highest in degree, followed by libgcc1 and libstdc++6.

The list of packages with a high out degree does change: the package with
the highest out degree when considering only direct dependencies is gdm, fol-
lowed by texlive-full and xserver-org. This change is caused by the fact
that the graph is non-transitive: the kde package with has the highest out de-
gree in the strong dependency graph may not have many direct dependen-
cies, but these direct dependencies themselves have other dependencies and
so forth.

In order to compare this direct dependency graph with the strong depend-
ency graph, there is still the problem of transitivity. In the previous section we
have taken the transitive closure of the direct dependency graph so as to com-
pare two transitive graphs; another option is to take the strong dependency
graph and de-transitivise it (i.e. take its transitive reduction). The result of this
operation is shown in figure 8.10.

This graph shows much the same pattern as the direct dependency graph
(and the transitive strong dependency graph), though here the average in de-
gree has decreased rather a lot: the package with the highest in degree, libstdc++6,
has 535 incoming edges (in the previous graphs, the highest in degree was in
excess of 10 000). Apparently many of the packages that depend on packages
like libc6 also depend on ‘intermediate’ packages that also depend on libc6,
thus creating a transitive arc which has now been removed.

There are three rather obvious outliers: three packages that have a relat-
ively high in and out degree. These packages are libgtk2 (450 in, 11 out),
kdelibs4c2a (379 in, 17 out) and qt3-mt (149 in, 9 out). Like the ‘echo’ seen
in the transitive closure of the direct dependency graph (figure 8.8), these are
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Figure 8.10: In and out degrees in Debian stable, strong transitive reduction

intermediate libraries that are used by many packages (Gnome, KDE and Qt re-
spectively) and that depend on many, more primitive, libraries (the X libraries,
for example).
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Conclusion 9
Now this is not the end. It is not even the beginning of the end.

But it is, perhaps, the end of the beginning.
— WINSTON CHURCHILL

In this chapter, I will start with a summary of the material presented in the
previous chapters, together with some thoughts about its practical usage. Then
follows a discussion of related works, together with a discussion of possible
future research.

9.1 Summary

The technical matter in this thesis can be divided into four main parts:

1. The definitions of the theory of packages, and the new concepts that are
derived from it such as strong dependencies and strong conflicts (chapters 2
and 3);

2. Algorithms that use these definitions, and their implementation (chapters 4
and 5);

3. A formalisation and verification of the definitions (chapter 6);

4. Observations about the general structure and evolution of distributions
collected during the application of our tools (chapters 7 and 8).

In the first part, the groundwork has been laid for the rest of this thesis; a
mathematical model that allows reasoning about distributions without having
to think about the messier details of packaging. Furthermore, the concepts
introduced: strong dependencies, dominators and strong conflicts allow us to
look at the relations between packages at a higher, more semantic level, which
allows us to see errors that would otherwise have been hidden in the enormous
amount of data that a distribution contains.

The second part, then, is the application of the first part: how to use the con-
cepts presented to get concrete information about distributions? I have shown
how to use certain properties to obtain algorithms that are optimised enough
to be run in a few minutes, so that it becomes possible to run them every so
often on distributions that can change quickly.

In the third part, some material from the first part is formalised and verified
using the Coq proof assistant. The utility of this is fairly obvious: it gives more
assurance that the proofs presented are in fact correct.

Finally, the fourth part is more empirical: there is information about the
practical run time of the tools, showing that they can indeed be run in a useful
timeframe, as well as observations about the constitution of the average F/OSS
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distribution. The bulk of these observations centre around the small-world
nature of F/OSS distributions: the various characteristics that are connected
with this small-world nature, when analysed, provide interesting information
about F/OSS distributions.

9.2 Practical usage

The material presented in this thesis is fairly practically oriented, the idea be-
ing to adapt known theories in computing science to the specific problem of
distribution management. In this section, I will suggest some practical uses for
the material presented here.

9.2.1 Theory of packages

In chapters 2 and 3, I have presented a precise, unambiguous specification of
the ‘theory of packages’, developed during the EDOS and MANCOOSI pro-
jects. This theory does not depend on any specific package format or distri-
bution, and can therefore be used as a basis for any further works on package
management.

Chapter 6 discusses a formalisation in Coq of this theory of packages. This
formalisation is not complete (see also the section on future work, later in this
chapter), but it could very well be used as a basis for extension efforts.

Another way to use the formalisation is as a basis for formal verification
efforts of existing or future package tools.

9.2.2 Tools

The most important practical results from this thesis are the algorithms presen-
ted in chapter 4, as well as their implementations, presented in chapter 5.

In part, these tools are already in use with distributions: to name one ex-
ample, the distcheck tool is in use with Debian to make sure that there are no
broken packages in its releases.

In section 7.5.3, I have shown another potential usage of the algorithms and
tools: daily generation of reports. For the moment, these reports concern only
the dominator graph (which primarily serves for analysis of patterns found
in the distribution structure), but the reports on strong conflicts could also be
useful in this regard: packages with a large exclusion set—which is potentially
indicative of errors in the distribution—can thus be identified and eventual
errors removed.

9.2.3 Distribution analysis

In chapters 7 and 8, I have presented experimental results obtained by the ap-
plication of our methods and tools to the Debian, Mandriva and Eclipse distri-
butions.
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9.3 Related works

The general field of research on component-based systems is quite extensive,
and there is a great amount of literature on the usage of formal methods to
improve component interaction. In the following paragraphs, I will discuss
some of the literature that explores thematics similar to the ones presented in
this thesis.

9.3.1 Predictable assembly

The problem of static analysis of F/OSS distributions is related to the problem
of predictable assembly, as discussed in [CSSW02]. As defined there, a problem in
predictable assembly is a problem that can be reduced to the form: “Given a set
of components C, predict property P of an assembly A of these components”.
Taking C as a distribution, A as a set of packages, and P as the properties
described before (installability, strong dependency, etcetera), our problems can
be seen as instances of problems in predictable assembly.

In [HMSW01], the concept of latency has some connections to our concept of
abundance (definition 2.4); the latency of a component depends on the latency
of its dependency. Something similar applies in [LWNC02], where a concept of
consistency is introduced that again resembles our definition of abundance.

9.3.2 Software product lines

A software product line is a family of related programs; the distinction between
the different members of a family lies in the features they support.

Features are similar to software packages in that there can be dependencies
and conflicts between them: an application might, for example, have support
for two mutually exclusive methods of encryption that both depend on a gen-
eric cryptographical module.

The standard method to reason about this is by using feature models [KCH+90],
encoded in feature diagrams [SHT06]. These diagrams are a formal way of spe-
cifying the relations between different features, and as such there is a decided
similarity between them and the problems discussed in this thesis.

As a matter of fact, it has been shown in [DCZ10] that a significant subset of
free feature diagrams can be encoded as a package problem. This would open
the way to re-using the results from this thesis in the field of software product
lines.

The configuration of a complex piece of software, for example the Linux
kernel, can also be seen as a software product line with features, where certain
options imply others, or forbid them; this approach is presented in ??.

Another article that discusses product lines in conjunction with F/OSS dis-
tributions is [HRCGB08]. This paper advocates the use of a product line ap-
proach by noting that historically, the number of dependencies in Debian dis-
tributions grows faster than the number of packages, which will eventually
lead to unmanageable distributions.

Though our data (see chapter 7) indicates that in recent distributions, the
growth ratio between packages and dependencies has converged, the conclu-
sion does stand that distributions, due to their size, need advanced manage-
ment techniques.
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9.3.3 F/OSS quality assurance

The field of quality assurance of F/OSS distributions has seen a fair amount of
growth these last few years.

I should start here by mentioning the EDOS project, and its successor, MAN-
COOSI, as a part of which project this thesis has been written. The EDOS pro-
ject (Environment for the development and Distribution of Open Source soft-
ware), which ran from 2004 to 2007, has studied the problems associated with
the production, management and distribution of F/OSS packages. Some of the
most important results from this project can be found in this thesis, as well as
in [MBDC+06].

One of the results of the EDOS project is the EDOS weather site [pro10],
where all current information about non-installable packages in the Debian
distribution is condensed into a “weather report”, which tells a user the state
of the current distribution. This then allows the user to determine whether to
run an update, or to postpone it until the distribution is in a better state.

The successor project, MANCOOSI, has continued the work of EDOS, with
the results seen in this thesis. The project is larger than this subject alone, how-
ever. An example is research done on a complete model for F/OSS package
systems, as presented in [DRPPZ09].

Another area of research in the MANCOOSI project is the elaboration of
techniques for solvers; in this thesis, we have treated the SAT solver as a black
box, but in [LBP08] and [TLO10], the specific problems of solving dependency
problems (using SAT solvers and pseudo-boolean optimisation respectively)
are treated in more detail.

There has also been work on transactional upgrading and rollback; in this
case, if an upgrade goes wrong in some way or turns out not to have been
satisfactory, it is possible to go back to an earlier situation. This brings with
it a large set of problems, the management of dependencies for example; one
article that discusses this is ??.

Finally, in the project, there has also been some work on optimisation cri-
teria, so that a user can specify in as much detail as possible how to select
the packages to install (prefer the newest versions; change as little as possible;
etcetera). More information on this can be found in [ALMS09].

The QUALOSS project, another project funded by the European Union, has
the objective to create an objective method to assess the quality of open source
software. Although this thesis focuses on the quality of open source distribu-
tions, the subject of QUALOSS complements it quite nicely: after all, the quality
of the software that is distributed has an enormous impact on the quality of the
distribution itself.

A fourth project funded by the European Union, QaliPSo, has as its motto
“Trust and Quality in Open Source Systems”. In contrast with the MANCOOSI
project, it focuses more on the management side of things; its goal is to facilitate
the use of free and open source software by industries and government. This
goal is to be reached by defining and implementing the technologies, processes
and policies that can be used by all the actors.

This mission has a certain overlap with this thesis, in that the results presen-
ted here are technologies that, in providing improved methods for distribution
quality assurance and therefore improving the quality of open source distribu-
tions, make it easier to use free and open source software.
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9.3.4 Distribution structure

As seen in chapter 8, the subject of small-world networks and its application to
F/OSS distributions has already been treated in [LW04] and [MSSvK08].

The conclusions drawn in this thesis are similar to the ones drawn in these
papers: F/OSS distributions present small-world characteristics.

However, since neither of the papers go into much detail about method-
ology, it is difficult to draw many conclusions from them—and indeed, the
authors do not. They do indicate, however, especially in [LW04] that further
study of the subject is necessary.

In [MSSvK08], a very detailed model is created that also takes into account
the evolution of the repository.

Here also, no conclusions are drawn about what this actually means for the
structure of the repository and its management—the authors merely note that
the fact that it is possible to create a model for F/OSS distributions can be used
as a first step in creating models for even more complex systems.

Within the broader topic of analysis of the structure of F/OSS distribu-
tions, an extensive analysis of the evolution of Debian distribution is presented
in [GBRM+09]. In this paper, the authors note that whereas every release is
double the size of its predecessor, the average size of packages does not change
between distributions, which is consistent with our findings.

Furthermore, the authors present observations about the evolution of Debian
distribution, adding data about the usage of different programming languages,
the persistence of packages between different releases and the evolution of the
package population in terms of lines of code of the source packages.

9.3.5 Other component-based systems

F/OSS distributions are not the only component-based systems where depend-
encies exist, even though they are amongst the most complex. For example, we
have already seen that software product lines also can be analysed using the
dependency model.

The Eclipse software development environment been discussed in this thesis;
it is similar to F/OSS distributions, though its different scope of application
(plugins instead of independent applications) and the difference in quality as-
surance processes (far less conflicts) make that the challenges are not entirely
the same. More detail about the Eclipse environment and its handling of plu-
gins and their relations can be found in [LBR10] and [Boz10].

Another well-known component framework is the OSGi component model [All09],
which is used for Java modules instead of software packages. Nevertheless, the
ideas are much the same and there is a relatively straightforward translation to
SAT as well, as presented in [JDG10].

A different approach to the problem can be found in [VR02]. In this pa-
per, the same general idea is used: a formal component description (in this
case, using XML), followed by an automated phase in which dependencies are
resolved (using partially ordered multisets). This approach is not oriented to-
wards any specific component-based system, but can be used for any system
that involves components and dependencies between them.
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9.4 Future work

9.4.1 Tools

At the moment, the pkglab tool (see chapter 5) is implemented using dose2.
An obvious improvement would be to re-implement it using dose3; this re-
implementation effort would be a good time to implement some more import-
ant changes as well.

First and foremost among these is a redesign of the DQL language, to in-
tegrate it more with the underlying API. This would have the effect that if a
new algorithm were implemented in dose3, it would be accessible in the DQL
without much extra effort.

Another usage would be to revive the anla tool, to be an extensive Web-
based synthesis of all the results that can be found using the algorithms and
methods presented in this thesis. Not only would it be possible to browse
distributions on-line, but also to follow their evolution through time.

9.4.2 Algorithm verification

In chapter 6, I have presented a formalisation using Coq of some of the theor-
ems presented in this thesis. This formalisation is not complete; one notable
theorem that is still missing is theorem 3.19.

After the formalisation is complete, it can be used to formally verify the
algorithms presented in chapter 4, for example using Matthieu Sozeau’s PRO-
GRAM extension to Coq.

A major obstacle for such a verification is the fact that one would need a
certified SAT solver, which is not the easiest thing to implement.

One way around this using a methodology equivalent to that proposed by
Xavier Leroy in [Ler06]. For the certified compiler proposed there, some al-
gorithms are not certified completely; only the results are verified by a certified
checker. The idea in our case would be not to provide a certified SAT solver,
but only to verify the result of the SAT solver a posteriori.

This approach cannot be translated directly; it is true that a positive res-
ult by the SAT solver can be verified quite easily, a negative result needs to be
verified as well, which can only be done by a SAT check.

However, if our SAT solver gives a negative results, it also gives a reason for
this negative result (usually an unsatisfiable dependency or a conflict between
two necessary packages). It should be possible to use this reason to verify a
negative result.

Another option is the usage of minimal unsatisfiable clauses. A SAT solver
using this technique can give a minimal subset of the problem that is unsatis-
fiable. Since this subset is small, it should be possibly to verify this even with
a basic (possibly brute-force) SAT solver, which can easily be certified.

130



Acknowledgements A
‘Who did that?’

‘You owe a drink to Rogue Two, son.’
‘Drink, hell, I’ll buy you a distillery!’

— AARON ALLSTON, Wraith Squadron

The six years of which this thesis is the culmination have been quite an
adventure, and none of it would have been possible without the help of many
people. I would like to take the time to thank some of them here.

First of all, my supervisor and the scientific leader of the MANCOOSI pro-
ject, Roberto Di Cosmo, who even when (as he usually is) flooded with other
work, still found time to help me along when I got stuck.

Thanks also to Peter Van Roy and Carsten Sinz, to whom I am very grate-
ful for having accepted to review this thesis; and to Jesús González-Barahona,
Diomidis Spinellis, Jean-Bernard Stefani and Ralf Treinen, whose presence in
the jury I appreciate greatly.

A big grazie to the Italians of the fifth floor, past and present: Fabio Man-
cinelli, Pietro Abate and Stefano Zacchiroli.

This thesis has been written within the MANCOOSI project, which has been
a great experience and a wonderful team. I would especially like to mention
Yacine Boufkhad for correcting my French summary, and Sophie Cousin and
Anne-Sophie Refloc’h for their administrative support.

During the work for this thesis, I have been a member of the PPS group,
which is not at all a bad place to be. Thanks to all people at PPS for a great
atmosphere, good cheer and nice discussions during lunch.

And finally, on a more personal note, I would like to thank my parents,
my brother, my family and my friends Andrew, Pieter-Paul and Annemiek for
having supported me (in all possible senses of the word) during the writing of
this thesis.

131



132



List of Figures F
1 Dépôts d’exemple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1 Example repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Example repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Metadata for the Debian ocaml package . . . . . . . . . . . . . . . . 35
2.4 Synthesis data for ocaml in Mandriva 2010.0 . . . . . . . . . . . . . 36
3.1 Simple example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 More complicated example . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Significant configurations in the strong dependency graph . . . . . 40
3.4 Path from start to w in dominator graph . . . . . . . . . . . . . . . . 46
3.5 Simple strong conflict example . . . . . . . . . . . . . . . . . . . . . 46
3.6 More complex strong conflict example . . . . . . . . . . . . . . . . . 47
3.7 Example of a triangle conflict . . . . . . . . . . . . . . . . . . . . . . 49
3.8 Example of a degenerate triangle conflict . . . . . . . . . . . . . . . 50
4.1 Example distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 Example distribution with strong dependencies . . . . . . . . . . . 57
4.3 Example distribution with transitive strong dependencies . . . . . 57
5.1 Structure of the dose2 library . . . . . . . . . . . . . . . . . . . . . . 69
5.2 Dose3 structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.1 Packages and dependencies in Debian unstable . . . . . . . . . . . 92
7.2 Average number of dependencies per package in unstable . . . . . 92
7.3 Strong dependencies and multiple versions . . . . . . . . . . . . . . 96
7.4 Solver times for one Debian distribution . . . . . . . . . . . . . . . . 103
7.5 Solver times for stable and testing . . . . . . . . . . . . . . . . . . 103
7.6 Solver times for stable and testing, in 3D . . . . . . . . . . . . . . . . 104
7.7 Solver times for three distributions . . . . . . . . . . . . . . . . . . . 104
7.8 Solver times for three distributions . . . . . . . . . . . . . . . . . . . 105
7.9 Cluster around cairo-dock-plugins . . . . . . . . . . . . . . . . . . 105
7.10 Cluster around tzdata-java . . . . . . . . . . . . . . . . . . . . . . 106
7.11 Cluster around kdepim-runtime . . . . . . . . . . . . . . . . . . . . 106
7.12 Cluster around mono-devel . . . . . . . . . . . . . . . . . . . . . . . 107
8.1 Distribution of degrees in Debian stable (method 3) . . . . . . . . 111
8.2 In and out degrees in Debian stable, strong dependencies . . . . . 114
8.3 Schematic repository structure . . . . . . . . . . . . . . . . . . . . . 115
8.4 Clusters in the top 10 of in degrees in Debian 5.0.6 . . . . . . . . . . 115
8.5 Distribution of degrees in Mandriva 2010.1 (method 3) . . . . . . . 118
8.6 In and out degrees in Mandriva 2010.1, strong dependencies . . . 119
8.7 Example of the evolution of a repository . . . . . . . . . . . . . . . . 120
8.8 In and out degrees in Debian stable, direct transitive closure . . . 121
8.9 In and out degrees in Debian stable, direct dependencies . . . . . 122
8.10 In and out degrees in Debian stable, strong transitive reduction . . 123

133



LIST OF FIGURES

134



List of Algorithms A
1 Compare the version strings v1 and v2, Debian style . . . . . . . . . 22
2 Compare the version strings v1 and v2, RPM style . . . . . . . . . . 26
3 Computation of strong dependencies, version 1 . . . . . . . . . . . . 55
4 Computation of strong dependencies, version 2 . . . . . . . . . . . . 56
5 Computation of transitive strong dependency graph . . . . . . . . . 58
6 Adding an edge to a transitive graph . . . . . . . . . . . . . . . . . . 58
7 Classic algorithm for dominance . . . . . . . . . . . . . . . . . . . . 59
8 Classic algorithm for relative dominance . . . . . . . . . . . . . . . 59
9 Fast Tarjan algorithm for dominance . . . . . . . . . . . . . . . . . . 60
10 Computation of strong conflicts . . . . . . . . . . . . . . . . . . . . . 62
11 Computation of the dependency cone . . . . . . . . . . . . . . . . . 62

135



136



Bibliography B
Dem, der studiert, um Einsicht zu erlangen, sind die Bücher und Studien bloß Sprossen der

Leiter, auf der er zum Gipfel der Erkenntnis steigt.
— ARTHUR SCHOPENHAUER

[AB02] Réka Albert and Albert-László Barabási. Statistical mechanics of
complex networks. Rev. Mod. Phys., 74(1):47–97, Jan 2002.

[ADCBZ09] Pietro Abate, Roberto Di Cosmo, Jaap Boender, and Stefano Za-
cchiroli. Strong dependencies between software components.
In ESEM ’09: Proceedings of the 2009 3rd International Symposium
on Empirical Software Engineering and Measurement, pages 89–99,
Washington, DC, USA, 2009. IEEE Computer Society.

[AJB00] Réka Albert, Hawoong Jeong, and Albert Barabási. Error and
attack tolerance of complex networks. Nature, 406:378, 2000.

[All09] The OSGi Alliance. OSGi service platform core specification ver-
sion 4.2, 2009.

[ALMS09] Josep Argelich, Inês Lynce, and Joao Marques-Silva. On solving
boolean multilevel optimization problems. In IJCAI, pages 393–
398, 2009.

[Apa09] Apache Software Foundation. Maven project. http://maven.

apache.org/, 2009.

[BA99] Albert-László Barabási and Réka Albert. Emergence of Scaling in
Random Networks. Science, 286(5439):509–512, 1999.

[Bai97] Edward C. Bailey. Maximum RPM, taking the Red Hat package
manager to the limit. http://rikers.org/rpmbook/, 1997.

[BDCV+08] J. Boender, R. Di Cosmo, J. Vouillon, B. Durak, and F. Mancinelli.
Improving the quality of gnu/linux distributions. In Computer
Software and Applications, 2008. COMPSAC ’08. 32nd Annual IEEE
International, pages 1240 –1246, jul. 2008.

[BKM+00] Andrei Broder, Ravi Kumar, Farzin Maghoul, Prabhakar
Raghavan, Sridhar Rajagopalan, Raymie Stata, Andrew Tomkins,
and Janet Wiener. Graph structure in the web. Computer Networks,
33(1-6):309 – 320, 2000.

[Boz10] Çagdas Bozman. Converting Eclipse metadata into CUDF. Tech-
nical Report TR5.3, MANCOOSI, September 2010.

[CMP00] G. Caldarelli, R. Marchetti, and L. Pietronero. The fractal proper-
ties of internet. EPL (Europhysics Letters), 52(4):386, 2000.

137

http://maven.apache.org/
http://maven.apache.org/
http://rikers.org/rpmbook/


[CR08] Eric Clayberg and Dan Rubel. Eclipse Plug-ins. Addison-Wesley
Professional, 3 edition, December 2008.

[CSSW02] Ivica Crnkovic, Heinz Schmidt, Judy Stafford, and Kurt Wallnau.
Anatomy of a research project in predictable assembly. In Proceed-
ings of the 5th ICSE Workshop on Component-Based Software Engin-
eering, 2002. White paper.

[DCB10] Roberto Di Cosmo and Jaap Boender. Using strong conflicts to
detect quality issues in component-based complex systems. In
ISEC ’10: Proceedings of the 3rd India software engineering conference,
pages 163–172, New York, NY, USA, 2010. ACM.

[DCMB+06] Roberto Di Cosmo, Fabio Mancinelli, Jaap Boender, Jerome Vouil-
lon, Berke Durak, Xavier Leroy, David Pinheiro, Paulo Trezentos,
Mario Morgado, Tova Milo, Tal Zur, Rafael Suarez, Marc Lijour,
and Ralf Treinen. Report on formal mangement of software de-
pendencies. Technical report, EDOS, 2006.

[DCZ10] Roberto Di Cosmo and Stefano Zacchiroli. Feature diagrams as
package dependencies. In Jan Bosch and Jaejoon Lee, editors,
Software Product Lines: Going Beyond, volume 6287 of Lecture Notes
in Computer Science, pages 476–480. Springer Berlin / Heidelberg,
2010.

[DG98] Debian Group. Debian policy manual. http://www.debian.org/
doc/debian-policy/, 1996–1998.

[DML+04] Scott Dick, Aleksandra Meeks, Mark Last, Horst Bunke, and Ab-
raham Kandel. Data mining in software metrics databases. Fuzzy
Sets and Systems, 145(1):81–110, 2004.

[DP06] Debian Project. deb - Debian binary package format. deb(5)
manual page, 2006.

[DRPPZ09] Davide Di Ruscio, Patrizio Pelliccione, Alfonso Pierantonio, and
Stefano Zacchiroli. Towards maintainer script modernization in
foss distributions. In Proceedings of the 1st international workshop on
Open component ecosystems, IWOCE ’09, pages 11–20, New York,
NY, USA, 2009. ACM.

[GBRM+09] Jesús M. González-Barahona, Gregorio Robles, Martin Michl-
mayr, Juan José Amor, and Daniel M. Germán. Macro-level soft-
ware evolution: a case study of a large software compilation. Em-
pirical Software Engineering, 14(3):262–285, 2009.

[HMSW01] S. A. Hissam, G. A. Moreno, J. Stafford, and K. C. Wallnau. Pack-
aging predictable assembly with prediction-enabled component
technology. Technical Report CMU/SEI-2001-TR-024 ESC-TR-
2001-024, Carnegie Mellon University, Software Engineering In-
stitute, 2001.

138

http://www.debian.org/doc/debian-policy/
http://www.debian.org/doc/debian-policy/


[HRCGB08] I. Herraiz, G. Robles, R. Capilla, and J.M. Gonzalez-Barahona.
Managing libre software distributions under a product line ap-
proach. In Computer Software and Applications, 2008. COMPSAC
’08. 32nd Annual IEEE International, pages 1221 –1225, August
2008.

[JDG10] Graham Jenson, Jens Dietrich, and Hans W. Guesgen. An empir-
ical study of the component dependency resolution search space.
In CBSE, volume 6092 of LNCS, pages 182–199. Springer, 2010.

[KAJH99] Taghi M. Khoshgoftaar, Edward B. Allen, Wendell D. Jones, and
John P. Hudepohl. Data mining for predictors of software quality.
International Journal of Software Engineering and Knowledge Engin-
eering, 9(5):547–564, 1999.

[KCH+90] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.
Peterson. Feature-oriented domain analysis (FODA) feasibility
study. Technical report, CMU, 1990.

[LBP08] Daniel Le Berre and Anne Parrain. On sat technologies for de-
pendency management and beyond. In ASPL, pages 16–19, 2008.

[LBR10] Daniel Le Berre and Pascal Rapicault. Dependency management
for the eclipse ecosystem: An update. In 3rd International Work-
shop on Logic and Search(Lash2010), jul 2010.

[Ler06] Xavier Leroy. Formal certification of a compiler back-end or:
programming a compiler with a proof assistant. SIGPLAN Not.,
41(1):42–54, 2006.

[Liv05] Benjamin Livshits. Dynamine: Finding common error patterns by
mining software revision histories. In In ESEC/FSE, pages 296–
305. ACM Press, 2005.

[LT79] Thomas Lengauer and Robert Endre Tarjan. A fast algorithm for
finding dominators in a flowgraph. ACM Trans. Program. Lang.
Syst., 1(1):121–141, 1979.

[LW04] Nathan LaBelle and Eugene Wallingford. Inter-package depend-
ency networks in open-source software. CoRR, cs.SE/0411096,
2004.

[LWNC02] Magnus Larsson, Anders Wall, Christer Norström, and Ivica
Crnkovic. Using prediction-enabled technologies for embedded
product line a rchitectures. In Proceedings of CBSE5, 2002.

[MBDC+06] Fabio Mancinelli, Jaap Boender, Roberto Di Cosmo, Jerome Vouil-
lon, Berke Durak, Xavier Leroy, and Ralf Treinen. Managing the
complexity of large free and open source package-based software
distributions. In ASE, pages 199–208, 2006.

[Mil67] Stanley Milgram. The small world problem. Psychology Today,
1(1):60–67, 1967.

139



[MSSvK08] T. Maillart, D. Sornette, S. Spaeth, and G. von Krogh. Empirical
Tests of Zipf’s Law Mechanism in Open Source Linux Distribu-
tion. Phys. Rev. Lett., 101(21):218701, Nov 2008.

[NNR09] R. Nair, G. Nagarjuna, and A. K. Ray. Semantic structure and
finite-size saturation in scale-free dependency networks of free
software. ArXiv e-prints, January 2009.

[pro10] EDOS project. EDOS weather site. http://edos.debian.net,
2006–2010.

[PvL88] J.A. La Poutré and J. van Leeuwen. Maintenance of transitive
closures and transitive reductions of graphs. In WG ’87, volume
314 of Lecture Notes in Computer Science, pages 106–120, 1988.

[Sch08] Michael Schröder. Using SAT for solving package dependencies.
In FOSDEM 2008, 2008.

[SHT06] Pierre-Yves Schobbens, Patrick Heymans, and Jean-Christophe
Trigaux. Feature diagrams: A survey and a formal semantics.
In RE’06, pages 136–145. IEEE, 2006.

[Syr99] Tommi Syrjänen. A rule-based formal model for software con-
figuration. Research Report A55, Helsinki University of Techno-
logy, Laboratory for Theoretical Computer Science, Espoo, Fin-
land, December 1999.

[Szy02] Clemens Szyperski. Component Software: Beyond Object-Oriented
Programming, second edition. Addison Wesley Professional, 2002.

[TLO10] Paulo Trezentos, Inês Lynce, and Arlindo L. Oliveira. Apt-pbo:
solving the software dependency problem using pseudo-boolean
optimization. In Proceedings of the IEEE/ACM international con-
ference on Automated software engineering, ASE ’10, pages 427–436,
New York, NY, USA, 2010. ACM.

[TZ09] Ralf Treinen and Stefano Zacchiroli. Common upgradeability de-
scription format (cudf) 2.0. Technical Report TR003, Mancoosi,
November 2009.

[VR02] Marlon Vieira and Debra Richardson. Analyzing dependencies in
large component-based systems. Automated Software Engineering,
International Conference on, 0:241, 2002.

[WS98] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of
small-world networks. Nature, 393(6684):440–442, June 1998.

[Zip49] G. K. Zipf. Human Behavior and the Principle of Least Effort.
Addison-Wesley Press, Cambrige, Mass., 1949.

140

http://edos.debian.net

	Résumé
	La théorie des paquets
	Algorithmes et outils
	Formalisation
	Validation et analyse
	Conclusions et perspectives

	Introduction
	F/OSS Software Distributions
	Contributions
	Structure

	Definitions
	Existing package formats
	Definitions
	Installability
	Dependencies

	Strong dependencies and conflicts
	Strong dependencies
	Dominators
	Dominators in strong dependency graphs and control flow graphs
	Strong conflicts

	Algorithms
	Installability
	Strong dependencies
	Dominators
	Strong conflicts

	Tools
	distcheck
	dose
	Ceve
	Pkglab

	Formalisation
	Repository
	Dependencies
	The dependency cone
	Repository properties
	Installability
	Strong dependencies and conflicts
	Triangle conflicts

	Experimentation and validation
	Repositories
	Run time of the installability algorithm
	Run time of the strong dependency algorithm
	The dominator graph
	Run time of the strong conflict algorithm

	Graph properties of distributions
	Small world properties
	Distributions as small world networks

	Conclusion
	Summary
	Practical usage
	Related works
	Future work

	Acknowledgements

