
Managing model conflicts in distributed development ?

A. Cicchetti, D. Di Ruscio, and A. Pierantonio

Università degli Studi dell’Aquila,
Dipartimento di Informatica

via Vetoio, Coppito I-67010, L’Aquila, Italy
{cicchetti|diruscio|alfonso}@di.univaq.it

Abstract. The growing complexity of current software systems naturally con-
veyed their development toward incremental and distributed approaches to speed
up the process. Several developers update the same artefact operating concurrent
manipulations which need to be coherently combined. The interaction among
those changes inevitably involves conflicts which must be detected and recon-
ciled.
This paper proposes a domain specific language able to define and manage con-
flicts caused by cooperative updates over the same model elements. The approach
relies on a model-based representation of model differences and enables the spec-
ification and the detection of both syntactical and semantic conflicts.

1 Introduction

Software engineering projects are inherently cooperative, requiring many software en-
gineers to coordinate their efforts to produce large systems [1]. With models becoming
more and more commonplace, the collaboration among software developers in a dis-
tributed environment must increasingly consider also the management of models life-
cycle [2]. For the collaboration based on software artefacts, version control systems are
frequently used and play an important role among software engineers. However, the
documents stored in these tools are almost code-level programs, and lack a reasonable
organization and abstraction from designer’s perspective. In this respect, merging docu-
ments representing modifications of models in a distributed environment is a challeng-
ing operation, both for its effectiveness and technical intricacy. In fact, every time mod-
ifications are merged, they may compete on the same resources giving place to conflict
related issues. Conflicts can be distinguished into syntactic and semantic ones [3]. The
former refers to modifications which interfere from a syntactic point of view, e.g. two
modifiers give in parallel two different names to the same model element. The latter
consists of collisions which are implicit and cannot be inferred from the structure of the
performed modifications only.

A number of works have been proposed to deal with the problem of conflict man-
agement (see Sect. 4 for a discussion); nevertheless, they are usually based on implicit
mechanisms for conflict detection, i.e. an a priori evaluation to understand which prob-
lems can arise and what are the ones to be checked. This makes impossible to find a
? Partially supported by the European Communitys 7th Framework Programme (FP7/2007-

2013), grant agreement n. 214898.

2

technique capable of an arbitrary accuracy [3] and forces the designer to find a trade-off
between false-positive and false-negative occurrences (in a similar way to e-mail spam
filters).

This work proposes a conflict definition technique consisting of a domain-specific
language able to specify both syntactic and semantic conflicts endowed with associated
resolution criteria. To this end, difference models (already presented in [4]) are used to
represent modifications between subsequent versions of a model. Therefore, conflicts
are formalized in terms of relations between difference models representing parallel and
conflicting modifications. Arbitrary scenarios can be described enabling the identifica-
tions of semantics-related patterns usually neglected by the traditional structural-based
methods. The aim is to pursue a flexible conflict management toward the support of
domain specific versioning through customizable conflict sets.

The paper is organized as follows: Sect. 2 introduces the difference representation
approach which underpins the proposed techniques. Next section illustrates the conflict
specification metamodel and its application by means of a running example. Sect. 4
gives an overview of related works and finally, Sect. 5 draws some conclusions and
presents possible perspective work.

2 Background

Increasingly, complex software systems are cooperatively designed in distributed envi-
ronments and suitable techniques are required to detect and represent the various de-
sign modifications software systems undergo during their life-cycle. In the same way,
changes performed in parallel need to be analyzed since they may cause conflicts which
require to be managed.

This section recalls the technical background which underpins the approach pro-
posed in this paper. In particular, Sect. 2.1 outlines the technique which is adopted in
this work to represent model differences. The technique relies on suitable difference
models which can be composed both in sequence and in parallel to represent more
complex modifications as described in Sect. 2.2.

2.1 Representing model differences

The problem of model differences is intrinsically complex and requires specialized al-
gorithms and notations [5]. Encoding the relevant information about modifications as
models allows the designer to derive from model differences powerful and interesting
artefacts. In particular, they enable a wide range of possibilities, such as reconstructing
the final model starting from an initial one, performing subsequent analysis, or detecting
and manipulating conflicts. In this paper, model differences are represented according
to the approach proposed in [4] and illustrated in Fig. 1: given two base models M1 and
M2 which conform to an arbitrary base metamodel MM, their difference ∆ conforms to
a difference metamodel MMD derived from the former by means of an automated trans-
formation MM2MMD. The approach does not impose any restriction over the metamodel
MM, i.e. it is metamodel-independent and can be applied to any arbitrary modeling

3

language as the simplified UML metamodel in Fig. 2. In particular, the metamodel ex-
tension implemented in the MM2MMD transformation consists of adding new constructs
able to represent the possible modifications that can occur on models that are additions,
deletions, and changes. For instance, the application of the MM2MMD transformation to
the sample UML metamodel in Fig. 2 produces the difference metamodel in Fig. 3:
essentially, for each metaclass MC of the source metamodel, the additional metaclasses
AddedMC, DeletedMC, and ChangedMC are produced.

The generated difference metamodel is able to represent all the differences amongst
models which conform to the base metamodel. For example, the instances of the new
metaclass AddedClass in Fig. 3 can be used to represent additions of new classes in the
initial model. In a similar way, the metaclasses which extend the Deleted one will be
used to specify deletions of existing model elements. Interestingly, the difference meta-
model is able to represent also model updates by means of instances of Changed ele-
ments. For instance, the visibility modification of the attribute mouse performed on the
model M1 in Fig. 4 leading to M2 is represented in the upper side of the delta model in
Fig. 5.a by means of ChangedClass, ChangedAttribute, and ChangeOperation

elements. Changed elements are also used in the difference model in Fig. 5.b to repre-
sent the modifications performed in the model M1 in Fig. 4 to obtain M3. In particular,
a ChangedClass instance is defined to represent the changes affecting the class Mouse
in which a new constructor has been added.

The difference representation mechanism introduced above satisfies a number of
properties, as illustrated in [4]. One of them is the applicability, i.e. difference mod-
els can be exploited to re-apply changes to arbitrary input models (see [4] for fur-
ther details) and for managing model co-evolution induced by metamodel manipula-
tions [6]. Another interesting property is the compositionality, that is the possibility to
combine difference models by means of operators like the sequential and the parallel
ones. This is crucial in cooperative environments where many software engineers have
to coordinate their efforts to produce large software systems [1]. In this respect, com-
bining difference models can give place to conflict issues which need to be resolved, as
discussed in the rest of the section.

Fig. 1. Overall structure of the model difference representation approach

4

2.2 Composition of model differences

The evolution of a model consists of the initial specification and a number of difference
models in such a way the final model can be obtained by applying all the modifications
to the original one. In general, it can be convenient composing the difference models
in order to obtain a unique one capturing all the occurred modifications. The composi-
tion can be performed in sequence and/or in parallel. In particular, if we consider only
two subsequent modifications represented in the difference models ∆1 and ∆2, their
sequential composition corresponds to merging the modifications conveyed by the first
document with the second one, i.e.

∆ = ∆1 ; ∆2 (1)

with “;” the sequential composition operator. The resulting difference model contains
a minimal difference set, i.e. only those modifications which have not been overridden
by subsequent modifications. Interestingly, the representation technique has operators
which are compositional, i.e. they are algebraically compatible with the induced trans-
formations [4]. More precisely, the transformation T∆1 ; ∆2 induced by the composed
difference model ∆1 ; ∆2 is completely defined by the transformations T∆1 and T∆2 ,
respectively, i.e.:

T∆1 ; ∆2 = T∆1 · T∆2 (2)

with “;” as before and · an appropriate composition operator among transformation, i.e.
the functional composition of transformations. Sequential compositionality is always
assured by the sequential independence condition (see [3] for an extended discussion
on the topic), i.e. when the modifications do not interfere with each other and can take
place independently in any order.

Parallel compositions are exploited to combine modifications operated from the
same ancestor in a concurrent way. In case both manipulations are not affecting the
same model elements they are said to be parallel independent and their composition is
obtained by merging the difference models. More formally, two difference models ∆1

and ∆2 are parallel independent if the following condition holds

∆1 | ∆2 = (∆1 ; ∆2) + (∆2 ; ∆1) (3)

Association

+isComposition : boolean = false
+isAggregation : boolean
+isDependency : boolean

+name : String
+visibility : VisibilityKind
+isConstructor : Boolean

Operation

Attribute

+name : String
+visibility : VisibilityKind

Class

+isAbstract : boolean

Parameter

+name : String

Classifier

+name : String

+type

+returnType

+operations

+type

+source

+parameters

{ordered}*

+attributes

*

+parent

+target

Fig. 2. Sample UML metamodel

5

Association

+isComposition : boolean = false
+isAggregation : boolean
+isDependency : boolean

+name : String
+visibility : VisibilityKind
+isConstructor : Boolean

Operation

ChangedAssociation

Attribute

+name : String
+visibility : VisibilityKind

DeletedAssociation

ChangedParameter

AddedOperation ChangedOperationDeletedOperation

Class

+isAbstract : boolean

AddedAssociation

DeletedParameter

AddedAttribute

DeletedAttribute

ChangedAttribute

AddedParameter

ChangedClass

DeletedClass

Parameter

+name : String

Classifier

+name : String

AddedClass

+type
+returnType

+parameters
{ordered} *

+source

+operations

+type

updatedElement

+target +attributes

*

updatedElement

+parent

updatedElement

updatedElement
updatedElement

Fig. 3. Sample UML difference metamodel

where “+” denotes the non determinist choice. In essence, their application is not af-
fected by the adopted order since they do not present any interdependencies. Otherwise,
∆1 and ∆2 are referred to as parallel dependent since conflict issues arise which need to
be detected and eventually resolved. This is the case of the sample modifications ∆1,2,
and ∆1,3 reported in Fig. 5. In particular, ∆1,2 represents the necessary modifications
required to apply the singleton design pattern [7] (which will be considered through-
out the paper as explanatory example) to the first version of the class Mouse reported in
Fig. 4.a: the class constructor and the attribute mouse have been changed to private, and
the new operation getInstance() has been added. The modifications represented in
∆1,3 consist of the addition of the new constructor Mouse(posX: Integer, posY:

Integer) keeping the rest of the model unchanged (see Fig. 4.c).
According to (1) and (3), ∆1,2 and ∆1,3 in Fig. 5 are neither sequentially nor par-

allel independent. In fact, they interfere with the visibility of the attribute mouse and
of the constructor Mouse(). In general, this kind of conflicts are called syntactic con-
flict (since the modifications interfere from a syntactical point of view) and there are
a number of approaches which are able to detect them [3], even though their resolu-
tion generally requires manual interventions. For instance, according to [8] in order
to maintain the singleton modification, the conflicts can be resolved by applying ∆1,3

and subsequently ∆1,2. In this way all the modifications are merged and the conflicting
ones represented in ∆1,3 are overwritten by those in ∆1,2 leading to the target model in
Fig. 6.

Although all the syntactic conflicts have been resolved, the obtained model in Fig. 6
does not adhere to the singleton design pattern prescriptions. In fact, taking into account
the semantics behind the singleton, the accessibility of the new constructor Mouse(posX:
Integer, posY: Integer) breaks that design pattern principles. This is due to par-
allel changes which interfere on a level which concerns the underlying pattern semantics

6

Fig. 4. Sample model modifications

and that are not syntactically detectable. In particular, the addition of the new construc-
tor specified in the model ∆1,3 does not conflict with any modification represented in
∆1,2, even though it raises problems with respect to the semantic of the singleton de-
sign pattern. In general, this kind of conflicts are called semantic conflicts (according to
the terminology in [3]) and demand explicit techniques to support their specification as
advocated in [3].

The rest of paper proposes an approach able to support semantic conflicts. In par-
ticular, the proposal is based on a meta-model to specify conflicts and corresponding
resolution criteria, and to (partly) automate their parallel composition.

3 A metamodel for conflict management

The mechanism proposed in this paper is inspired by the work in [9], where the au-
thors introduce the Join Point Description Diagrams (JPPDs) which are a mechanism
to locate modification points in the source code (called join points according to aspect-
oriented software development [10] terminology) from the model abstraction level. Each
join point is defined through a set of UML model element patterns, which can be directly
mapped toward OCL expressions. In order to minutely pick up source code points such
descriptions must be fine-grained, which makes the resulting pattern definition very
powerful. In this respect, OCL is widely accepted as a model query language, and its
usability and scalability benefits are discussed in [9].

This paper extends and adapts the mentioned mechanism introduced in order to
define a conflict specification formalism which relies on a model-based pattern language
endowed with constructs for resolution criteria descriptions. In the following, the details
of the conflict specification language will be explained together with its semantics given
in terms of OCL expressions.

7

(a) ∆1,2

(b) ∆1,3

Fig. 5. Sample delta models

Fig. 6. Sample model T∆1,3;∆1,2(M1)

3.1 Representing Conflicts

Incompatibilities between parallel model modifications are precisely specified by means
of conflict models relating left- and right- hand sides which represent not allowed con-
temporary matches. If one of them occurs, a conflicting situation has been found and
needs to be solved. The reconciliation can be left to the manual intervention of devel-
opers, even if it could become a tedious and error prone task in the context of large
systems. Besides, direct manipulation hides the rationale which guided the different
choices. Therefore, we made it possible to attach resolution criteria by decorating the
links between element patterns with reconciliation decisions.

An excerpt of the conflict specification metamodel is given in Fig. 7: a Conflict
Block groups a number of pattern boxes and relations between them. In order to have
a valid specification at least two patterns and one ConflictRelation between them
are needed. In other words, conflict models must contain at least a left-hand side and

8

Fig. 7. The conflict specification meta-model.

a right-hand side visualizing an undesired scenario. A PatternBox contains a number
of DifferenceElements each of which can have some related MetaData, i.e. general
information which is not intrinsic to the specific difference model like the creation/mod-
ification date, the author and so on. Since a difference element represents a pattern, its
properties can be used to narrow the matching set if specified; moreover, a variable can
be declared which will be bound if there is at least one match (boundVariableName).
The importance of this variable is that it can be referred to by other patterns through its
name; in this way, when a pattern is matched the variable is substituted with the current
binding whenever it has been used.

Negative patterns can be specified by means of the inverseSelection flag, which
can be considered as the not boolean operator. Moreover, two or more element patterns
can be combined for refinement purposes; by default, they are joined through AND rela-
tions, i.e. they have all to be matched. Whereas, by means of BooleanRestrictions
it is possible to compose patterns by using different boolean operators. In this respect,
precedences between boolean operators are established through the next association.
Finally, the negativePattern flag in each ConflictLinkEnd can be activated to
negate the selection of the referred PatternBox. When negativePattern is en-
abled (i.e. set to true) an interesting collision management scenario takes place, since
it means that there is a problem if a given modification has not been performed. Con-
sequently, mandatory manipulations can also be prescribed through the proposed ap-
proach. The conflicting scenarios can be given corresponding resolution criteria through
ReconciliationStrategy, which states how each conflict should be resolved. Cri-

9

teria are expressed by means of OCLExpressions [11] and combine Rules, i.e. pred-
icates in terms of Metadata information. In this paper, we focus on conflict specifi-
cations only, the interested reader can refer to [12] for a detailed discussion about the
definition of reconciliation strategies.

As already mentioned, conflict definitions are based on DifferenceElements. In
particular, elements to be related are selected through the corresponding delta meta-
classes obtained by means of the automated meta-model generation procedure illus-
trated in Sect. 2.1. The dashed part in Fig. 7 shows how the current delta language is
bound to the pattern. It has to be noted that AddedMC, DeletedMC and ChangedMC

entities are used as placeholders of the current derived elements, as for example the
AddedClass, ChangedClass and DeletedClass of the simplified UML metamodel
shown in Fig. 2. Moreover, three new meta-classes have been added to match all in-
stances of a certain kind of manipulation, that are Added, Deleted and Changed. In
summary, delta elements can be selected at different levels of granularity, like the kind
of manipulation they represent, the portion of input model entities involved in the mod-
ifications and the specific values used to perform the revision.

The definition of the conflict metamodel, as customized for the particular source
metamodel taken into account, has been automated through a model transformation
(currently implemented in ATL [13]) that takes as input the source metamodel and gen-
erates the corresponding conflict specification metamodel. For example, starting from
the SimpleUML metamodel in Fig. 2 it is possible to automatically obtain the corre-
sponding SimpleUMLCSpec metamodel, that is the appropriate conflict specification
language. The description of the details of such transformation goes beyond the scope of
this paper. However, it can be simply obtained by extending the mechanism for the dif-
ference metamodel derivation and the interested reader can find it for download at [14].

The obtained SimpleUMLCSpec conflict metamodel can be used to specify conflicts
like the one depicted in Fig. 8 through the ConflictBlock element cb. For presenta-
tion purposes, the model is given as an object diagram which contains instances of the
conflict metamodel even though alternative concrete syntaxes can be defined to have
more human readable documents. The model specifies the singleton violation conflict
which can be exploited to detect the semantic collision introduced in the previous sec-
tion. In particular, it presents a collision in which two concurrent updates of a class (cC1
and cC2) bound to the cClass variable, do not converge to compatible results. Going
deeper, the left pattern (see the pbLeft element named Singleton) captures the min-
imal updates required to introduce the singleton design pattern that can be summarized
as follows: (i) the modifications which involve the visibility of the attribute containing
the instances of the class itself, and that of the constructor (see the elements attr1

and opt1, respectively), and (ii) the addition of a new public operation which returns
instances of the class (see the op2 operation named getInstance).

The right-hand side of the conflict specification (see the pattern box pbRight named
Singleton violation) specifies some modifications which corrupt the requirements
prescribed for the singleton design pattern. Hence, neither the constructor should be
made public (see the cOp2 operation updated with the element op3), nor an additional
public constructor should be added (see op4), nor the shared instance value should be
made modifiable through a public attribute (see attr2). Such changes are grouped by

10

Fig. 8. A model specifying the singleton violation conflict.

means of the OR boolean operator represented by the restriction element. As said
before, pattern entities are glued through an AND by default, which would require the
contemporary matching of all the conditions. In this case it is sufficient that one of the
three different updates is matched to violate the singleton pattern, or in other words to
cause a collision with the left-hand side pattern box.

It is worth noting that this conflict definition abstracts from a particular class, whereas
it refers to a generic situation where the singleton design pattern is introduced and in
the mean time some concurrent delta corrupts that specific pattern. In this respect, it
becomes evident the usefulness of bound variables, which can be exploited to refer to
the particular values of the current matches (see the property boundVariableName of
the elements cC1 and cC2).

The application of the model in Fig. 8 to the difference models in Fig. 5 detects the
occurrence of a semantic conflict consisting of the singleton violation introduced by the
model ∆1,3 with respect to the differences represented in ∆1,2. In fact, by matching
∆1,2 with the left pattern box in Fig. 8 and ∆1,3 with the right one, a semantic conflict

11

is identified and human interventions are required instead of generating models like
the one in Fig. 6 (as current syntactical approaches do) which does not adhere to the
singleton prescriptions.

The syntactic description of collisions has to be assisted by its semantics, in the
same way difference metamodels induce transformations on input models. Therefore,
in the following it is explained how to give precise meanings to conflict declaration
models.

3.2 Interpreting Conflict Models

The interpretation of conflict models induces the verification of co-existing updates
in the input difference models ∆1 and ∆2. Difference element patterns can be seen
as model queries which are naturally expressed by OCL expressions, therefore, each
model conforming to the metamodel shown in Fig. 7 can be translated into the corre-
sponding OCL constructs (in a similar way to the approach given in [9]), which interro-
gate the couple of concurrent manipulations to detect collisions and eventually to give
them a reconciliation. It has to be noted that the matching procedure has to be founded
on a minimal set of expected entities and related properties, which are provided by the
meta metamodel.

Let ml and mr be the instances for ∆1 and ∆2 models, respectively. Then the general
OCL rule to match patterns against input models can be formulated as follows:

1 c o n t e x t ConflictRelation : :
2 matchingPatternBoxes (ml : Sequence (DifferenceElement) ,
3 mr : Sequence (DifferenceElement)) :
4 Sequence (TupleType (matchedL : Sequence (DifferenceElement) ,
5 matchedR : Sequence (DifferenceElement)))
6 pos t : result =
7 self .matchPBL (ml ,self .left)−>
8 iterate (
9 lm ; res = Sequence {} |

10 l e t rightMatches = self .matchPBR (lm ,mr ,self .right) in
11 if (rightMatches−>notEmpty ())
12 then
13 res−>
14 append (Tuple{matchedL = lm , matchedR = rightMatches})
15 else
16 res
17 endif
18)

Listing 1.1. The general OCL rule to match conflicting changes in parallel delta
composition.

The function matchingPatternBoxes returns a collection of conflicting situation
pairs by means of tuples; in turn, each tuple contains a sequence of elements result-
ing either from the left pattern (matchedL) or from the corresponding right pattern
selection (matchedR). Firstly, left pattern matches are detected through the matchPBL
function (see line 6); then, this collection of elements is exploited to look for matches
on the right-hand side of conflict specification (lines 7-14). In particular, matchPBR is
iterated on left matchings to detect corresponding elements on the right; if the returned
set of elements is not empty, the computed pair of changes is appended as an entry in the
current result. In this way, left selections allow to resolve variable bindings which have

12

been eventually exploited in the right part too, while the right pattern ones are computed
autonomously and are not intended to be used on the left-hand side. For example, the
cClass variable shown in Figure 8 is bound at the beginning of the matching process
and then its value is exploited to find the remaining correspondences. In this respect,
each time a variable is bound its value is resolved wherever it has been referred to.

Both the function matchPBL and matchPBR detect correspondences in the same
way, by starting with variables which need to be bound (if there exist) and then resolv-
ing the remaining portion of correspondences. Listing 1.2 shows a key OCL function
called by matchPBL and matchPBR for selecting entities which match against a given
difference pattern.

1 c o n t e x t DifferenceElement : : matches (de : Sequence{DifferenceElement}) :
2 Sequence (DifferenceElement)
3 pre : negate : Boolean = self .inverseSelection and
4 failed : Boolean = false
5 pos t : result =
6 de−>
7 select (
8 mEl |
9 (mEl .oclIsTypeOf (self .oclType ()) and

10 (mEl .isAbstract = self .isAbstract or
11 self .isAstract .oclIsUndefined) and
12 (mEl .name = self .name or
13 self .name = isUndefined)) xor
14 negate@pre
15)−>
16 iterate (
17 mEl ; result = Sequence {} |
18 self .structuralFeatures−>
19 iterate (
20 sF1 ; res = Sequence {} |
21 if (sF1 .oclIsTypeOf (Reference))
22 then
23 mEl .structuralFeatures−>
24 select (
25 sF2 |
26 sF2 .oclIsTypeOf (Reference) and
27 (sF1 .matchReference (sF2) xor
28 negate@pre) and
29 (not sF1 .opposite .oclIsUndefined () implies
30 ((sF1 .opposite .matchReference (sF2 .opposite) xor
31 negate@pre))) and
32 (sF1 .type .matches (sF2 .type)−>notEmpty ())
33)−>
34 res−>collect({sF2 , sF1 .type .matches (sF2 .type) })
35 and
36 res−>isEmpty () implies failed = true
37 else
38 res−>collect (sF1 .matches (de .structuralFeatures)) and
39 res−>isEmpty () implies failed = true
40) and
41 if (not failed)
42 then result−>collect({mEl ,res})
43 endif
44)

Listing 1.2. The general OCL rule to match a delta element pattern.

More precisely, given a difference element pertaining to the model specifying conflicts,
the matches OCL function looks for possible correspondences in the input difference
document provided as parameter. Therefore, firstly potential matching meta-classes are
selected (lines 7-14) and then the related set of structural features needs to be met (lines

13

16-43). Going into more details, for each outgoing Reference both its properties and
the linked element have to match (lines 21-35). In an analogous manner, the remaining
structural properties (i.e. attributes) have to be considered as new patterns to be matched
through recursive calls (lines 37-38).

At the end of the outlined process, a sequence is returned; if it is empty then the
matching computation failed, i.e. no conflicts have been found, otherwise it contains
entities in the difference document which correspond to the patterns depicted in the
conflict model. In this respect, the binding of variables is preserved implicitly by means
of the DifferenceElement meta-class which allows to enrich a delta element with
the declared bound variable.

4 Related works

This paper deals with colliding revisions of artefacts developed in parallel. Especially,
it copes with interferences which can not be detected by means of syntactic analyses
and are usually referred to as semantic conflicts [3]. Those issues are considered in few
works, which tend to provide support only to a particular modeling language (see [15]
for a detailed discussion). In this respect, the proposed technique can be considered as
an extension of [16] to arbitrary metamodels.

In [15] the authors illustrate SMoVer, that is a model versioning tool able to deal with
both syntax (structural) and semantic (behavioural) conflicts. In particular, the seman-
tic issues are faced by exploiting appropriate view definitions toward which structural
specifications are mapped. In other words, they use translational semantics in order to
elicit particular interferences. With respect to our work, the mechanism in [15] requires
new domain characterizations to customize the set of the identified interferences. More-
over, conflicts are detected by comparing the whole concurrent revisions, whereas here
collisions are managed taking into account only difference documents, i.e. only the el-
ements involved by changes.

Composition of differences is partly considered in few works which mainly focus
on software refactoring like [8] and differences occurring on systems developed in par-
allel [17]. In [8] the authors propose a graph-based technique to discover couples of
manipulation conflicts (critical pairs). Then, a set of conflict reduction heuristics is
given, even if developers can not specify their own resolution criteria. The work in [17]
deals with differences occurring on systems developed in parallel; through the use of
program slicing and system dependency graphs, semantic interferences are detected.
However, the level of abstraction is too low with respect to models. In this respect,
we presented an approach to raise the level of abstraction by reformulating part of the
knowledges and experiences of these works in a model-driven setting.

A number of efforts deal with the general problems of consistency management
and model composition; as software systems are specified by means of disparate nota-
tions related to different points of view of the same application, keeping the different
documents coherent with each others is an unavoidable issue to take care of [18, 19].
In particular, consistency management is faced by defining a kind of conflicts between
modifications occurring on the different views which are solved by propagating the
changes toward newer coherent documents. However, in general these solutions are

14

specifically designed for the problem domain they are applied in, like the UML dia-
grams and similar. Moreover, inconsistencies are always thought as existing between
a pair of elements, while conflicts can be defined as ranging from a single and in-
dependent entity update to an arbitrary group of element manipulations. In summary,
consistency management can be considered as a sub-problem of conflict issues.

In [20] a set of common definitions are provided to outline the key requirements of a
model composition solution, in terms of language and tool support. Moreover, in [21] a
number of operators for model integration are described and they have partially inspired
the composition constructs proposed so far. Finally, other works take into account the
specific issue of model merging, both in the case of different versions of a system de-
sign [22] and in a generic scenario, like [23, 24] for example. However, those papers
seem to focus on establishing correspondences between elements of the input models
(matching phase), while conflict troubles are largely missed out.

5 Conclusions and future work

Increasingly, complex software systems are cooperatively designed in distributed envi-
ronments and the interaction among concurrent manipulations inevitably causes con-
flicts which must be detected and reconciled.

This paper illustrated a model-driven conflict specification mechanism based on the
declarative description of incompatibilities between competing difference models. In
particular, a conflict metamodel has been proposed to specify conflict patterns between
difference elements which cannot take place at the same time. This way, it is possible
to introduce non-syntactical conflicts which usually would not be identified by merging
approaches based on implicit conflict detection techniques. As a benefit, it is possible to
improve conflict management adaptability to different application domains, since each
domain has a set of its own semantic dependencies which need to be specified to obtain
a useful detection and resolution method.

Future work will necessarily encompass further validation against large projects in
order to evaluate the efforts demanded to the developer for managing model composi-
tions. For example, the process could benefit of improved automation degree by taking
into account heuristics and by-example approaches [15]. Finally, an enhancement of
the conflict specification language will be investigated for supporting multi-view con-
sistency, which demands the description of change interferences between models not
necessarily conforming to the same metamodel, and hence inducing disparate differ-
ence metamodels.

References

1. Whitehead, J.: Collaboration in software engineering: A roadmap. In: FOSE ’07: 2007
Future of Software Engineering, Washington, DC, USA, IEEE Computer Society (2007)
214–225

2. Favre, J.M.: Meta-Model and Model Co-evolution within the 3D Software Space. In: Procs.
of the Int. Workshop ELISA at ICSM. (September 2003)

3. Mens, T.: A State-of-the-Art Survey on Software Merging. IEEE Trans. Softw. Eng. 28(5)
(2002) 449–462

15

4. Cicchetti, A., Di Ruscio, D., Pierantonio, A.: A Metamodel Independent Approach to Dif-
ference Representation. Journal of Object Technology 6(9) (October 2007) 165–185

5. Lin, Y., Zhang, J., Gray, J.: Model Comparison: A Key Challenge for Transformation Testing
and Version Control in Model Driven Software Development. In: OOPSLA Work. MDSD.
(2004)

6. Cicchetti, A., Di Ruscio, D., Eramo, R., Pierantonio, A.: Model Differences for Supporting
Model Co-evolution. In: Procs. MoDSE, 2nd Workshop on Model-Driven Software Evolu-
tion. (2008) To appear.

7. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison-Wesley (1995)
8. Mens, T., Taentzer, G., Runge, O.: Detecting Structural Refactoring Conflicts Using Critical

Pair Analysis. Electr. Notes Theor. Comput. Sci 127(3) (2005) 113–128
9. Stein, D., Hanenberg, S., Unland, R.: A Graphical Notation to Specify Model Queries for

MDA Transformations on UML Models. In: MDAFA’03 and MDAFA’04. Volume 3599 of
LNCS., Springer-Verlag (2005) 77–92

10. Filman, R., Elrad, T., Clarke, S., Aksit, M.: Aspect-Oriented Software Development.
Addison-Wesley (2004)

11. Object Management Group (OMG): OCL 2.0 Specification (2006) OMG Document
formal/2006-05-01.

12. Cicchetti, A.: Difference Representation and Conflict Management in Model-Driven Engi-
neering. PhD thesis, University of L’Aquila, Computer Science Dept. (2008)

13. Jouault, F., Kurtev, I.: Transforming Models with ATL. In Bruel, J.M., ed.: MoDELS Satellite
Events. Volume 3844 of LNCS., Springer-Verlag (2005) 128–138

14. Cicchetti, A., Di Ruscio, D., Pierantonio, A.: Management of conflicts on the AMMA plat-
form. http://www.di.univaq.it/cicchetti/conflictManagement.php (May 2008)

15. Altmanninger, K., Bergmayr, A., Schwinger, W., Kotsis, G.: Semantically Enhanced Conflict
Detection between Model Versions in SMoVer by Example. In: Procs of the Int. Workshop
on Semantic-Based Software Development at OOPSLA 2007, Montral, Canada. (October
2007) to appear.

16. Cicchetti, A., Rossini, A.: Weaving models in conflict detection specifications. In: Procs of
the ACM Symposium on Applied Computing (SAC ’07), Model Transformation track, New
York, NY, USA, ACM (2007) 1035–1036

17. Thione, G.L., Perry, D.E.: Parallel Changes: Detecting Semantic Interferences. In: COMP-
SAC, IEEE Computer Society (2005) 47–56

18. Egyed, A.: Fixing Inconsistencies in UML Design Models. In: Procs. of the 29th ICSE 2007,
IEEE Computer Society (2007) 292–301

19. Nentwich, C., Emmerich, W., Finkelstein, A.: Consistency Management with Repair Ac-
tions. In: Procs. of the 25th ICSE 2003, May 3-10, IEEE Computer Society (2003) 455–464

20. Bézivin, J., Bouzitouna, S., Fabro, M.D.D., Gervais, M.P., Jouault, F., Kolovos, D., Kurtev,
I., Paige, R.: A Canonical Scheme for Model Composition. In Rensink, A., Warmer, J., eds.:
Procs of the 2nd ECMDA-FA. Volume 4066 of LNCS., Springer (2006) 346–360

21. Reiter, T., Kapsammer, E., Retschitzegger, W., Wimmer, M.: Model Integration Through
Mega Operations. In: Workshop on MDWE 2005. (Jul 2005)

22. Kolovos, D.S., Paige, R.F., Polack, F.: Merging Models with the Epsilon Merging Language
(EML). In Nierstrasz, O., Whittle, J., Harel, D., Reggio, G., eds.: Procs. of MoDELS 2006,
Genova, Italy, October 1-6. Volume 4199 of LNCS., Springer (2006) 215–229

23. Engel, K.D., Paige, R.F., Kolovos, D.S.: Using a Model Merging Language for Reconciling
Model Versions. In Rensink, A., Warmer, J., eds.: Procs of the 2nd ECMDA-FA. Volume
4066 of LNCS., Springer (2006) 143–157

24. Pottinger, R., Bernstein, P.A.: Merging Models Based on Given Correspondences. In: VLDB.
(2003) 826–873

