
New Insights into Encodings from MaxCSP into Partial MaxSAT∗

Josep Argelich
DIEI, UdL

Lleida, Spain

Alba Cabiscol
DIEI, UdL

Lleida, Spain

Inês Lynce
IST, INESC-ID
Lisboa, Portugal

Felip Manyà
IIIA, CSIC

Bellaterra, Spain

Abstract

We analyze the existing encodings from MaxCSP into
Partial MaxSAT, and report on a number of new insights
that we have gained from our analysis, which can be sum-
marized as follows: (i) the at-most-one (AMO) condition
can be omitted in direct encodings from MaxCSP into Par-
tial MaxSAT, and auxiliary variables are not needed; (ii) the
sequential encoding of the cardinality constraint is, in fact,
a reformulation of a regular encoding; (iii) the AllDifferent
constraint based on regular literals may be simplified; (iv) if
we represent, in support encodings, the supporting values
of a variable using intervals, then we can derive a gen-
uine regular support encoding without exponential blowup;
and (v) the Equal constraint admits a concise representa-
tion with regular signs.

1 Introduction

Solving combinatorial decision and optimization prob-
lems via their reduction to Satisifability Problems (e.g.,
SAT and MaxSAT) depends on both the solver and the en-
coding. In previous work [2, 3, 4, 5], we presented a number
of original encodings —that rely on the well-known direct
and support encodings from CSP into SAT [9, 15]— that
map Max-CSP instances into Partial Max-SAT instances.
Besides, for the new direct and support encodings, we de-
fined three different ways of modelling the at-least-one
(ALO) and at-most-one (AMO) conditions, which were
called standard, regular, and sequential.

In this paper we analyze in more detail than ever before
the existing encodings from MaxCSP into Partial MaxSAT,
and report on a number of new insights that we have gained
from our analysis, which can be summarized as follows:

∗This research was funded by the Generalitat de Catalunya under grant
2009-SGR-1434, the Ministerio de Ciencia e Innovación research projects
CONSOLIDER CSD2007-0022, INGENIO 2010, TIN2006-15662-C02-
02, TIN2007-68005-C04-04, and TIN2009-14704-C03-01, FCT research
project SHIPs (PTDC/EIA/64164/2006), and European project Mancoosi
(FP7-ICT-214898).

(i) the at-most-one (AMO) condition can be omitted in di-
rect encodings from MaxCSP into Partial MaxSAT, and
auxiliary variables are not needed; (ii) the sequential encod-
ing of the cardinality constraint is, in fact, a reformulation
of a regular encoding; (iii) the AllDifferent constraint based
on regular literals may be simplified; (iv) if we represent, in
support encodings, the supporting values of a variable using
intervals, then we can derive a genuine regular support en-
coding without exponential blowup; and (v) the Equal con-
straint admits a concise representation with regular signs.

The structure of the paper is as follows. Section 2 con-
tains preliminary definitions about Max-SAT and Max-CSP.
Section 3 surveys the existing encodings from Max-CSP
into Partial Max-SAT, and Section 4 describes the new in-
sights we have gained after analyzing the encodings defined
in Section 3.

2 Preliminaries

2.1 Max-SAT Definitions

In propositional logic, a variable xi may take values 0
(for false) or 1 (for true). A literal li is a variable xi or its
negation x̄i. A clause is a disjunction of literals, and a CNF
formula is a multiset of clauses.

An assignment of truth values to the propositional vari-
ables satisfies a literal xi if xi takes the value 1 and satisfies
a literal x̄i if xi takes the value 0, satisfies a clause if it sat-
isfies at least one literal of the clause, and satisfies a CNF
formula if it satisfies all the clauses of the formula.

The Max-SAT problem for a CNF formula φ is the prob-
lem of finding an assignment of values to propositional vari-
ables that maximizes the number of satisfied clauses in φ.
In the sequel we often use the term Max-SAT meaning Min-
UNSAT. This is because, with respect to exact computa-
tions, finding an assignment that minimizes the number of
unsatisfied clauses is equivalent to finding an assignment
that maximizes the number of satisfied clauses.

We also consider the extension of Max-SAT known as
Partial Max-SAT as it is better suited for representing and
solving NP-hard problems. A Partial Max-SAT instance is

40th IEEE International Symposium on Multiple-Valued Logic

0195-623X/10 $26.00 © 2010 IEEE

DOI 10.1109/ISMVL.2010.17

46

40th IEEE International Symposium on Multiple-Valued Logic

0195-623X/10 $26.00 © 2010 IEEE

DOI 10.1109/ISMVL.2010.17

46

a CNF formula in which some clauses are relaxable or soft
and the rest are non-relaxable or hard. Solving a Partial
Max-SAT instance amounts to finding an assignment that
satisfies all the hard clauses and maximizes the number of
satisfied soft clauses. Hard clauses are represented between
square brackets, and soft clauses are represented between
round brackets.

2.2 Max-CSP Definitions

Definition 1. A Constraint Satisfaction Problem
(CSP) instance is defined as a triple 〈X ,D, C〉,
where X = {X1, . . . , Xn} is a set of variables,
D = {d(X1), . . . , d(Xn)} is a set of finite domains
containing the values the variables may take, and
C = {C1, . . . , Cm} is a set of constraints. Each constraint
Ci = 〈Si, Ri〉 is defined as a relation Ri over a subset
of variables Si = {Xi1 , . . . , Xik

}, called the constraint
scope. The relation Ri may be represented extensionally as
a subset of the Cartesian product d(Xi1) × · · · × d(Xik

).
The tuples belonging to Ri are called goods, and the rest of
tuples are called nogoods.

Definition 2. An assignment v for a CSP instance
〈X ,D, C〉 is a mapping that assigns to every variable
Xi ∈ X an element v(Xi) ∈ d(Xi). An assign-
ment v satisfies a constraint 〈{Xi1 , . . . , Xik

}, Ri〉 ∈ C iff
〈v(Xi1), . . . , v(Xik

)〉 ∈ Ri.
The Constraint Satisfaction Problem (CSP) for a CSP

instance P consists in deciding whether there exists an as-
signment that satisfies P .

The Max-CSP problem for a CSP instance 〈X ,D, C〉 is
the problem of finding an assignment that minimizes (max-
imizes) the number of violated (satisfied) constraints.

We can convert an arbitrary CSP to an equivalent binary
CSP [8]. In the sequel we assume that all CSP are unary
and binary; i.e., the scope of all the constraints has at most
cardinality two.

3 Encodings from Max-CSP into Partial
Max-SAT

3.1 Standard Encodings

We associate a Boolean variable xi with each value i that
the CSP variable X can take. Assuming that X has a do-
main d(X) of size m, the ALO clause of X is x1∨· · ·∨xm,
and ensures that the CSP variable X is given a value. The
AMO clauses of X are the set of clauses {xi ∨ xj |i, j ∈
d(X), i < j}, and ensure that the CSP variable X takes no
more than one value.

Definition 3. The direct encoding (dir) of a Max-CSP in-
stance 〈X ,D, C〉 is the Partial Max-SAT instance that con-
tains as hard clauses the above ALO and AMO clauses for
every CSP variable in X , and a soft clause xi ∨ yj for every
nogood (X = i, Y = j) of every constraint of C with scope
{X,Y }.

In the support encoding from CSP into SAT, besides
the ALO and AMO clauses, there are clauses that encode
the support for a value instead of encoding conflicts. The
support for a value j of a CSP variable X across a bi-
nary constraint with scope {X,Y } is the set of values of
Y which allow X = j. If v1, v2, . . . , vk are the support-
ing values of variable Y for X = j, we add the clause
xj ∨ yv1 ∨ yv2 ∨ · · · ∨ yvk

(called support clause). There is
one support clause for each pair of variables X,Y involved
in a constraint, and for each value in the domain of X . In
the standard support encoding, a clause in each direction is
used: one for the pair X,Y and one for Y,X [15].

In [2], we defined the minimal support encoding: it is
like the support encoding except for the fact that, for every
constraint Ck with scope {X,Y }, we only add either the
support clauses for all the domain values of the CSP vari-
able X or the support clauses for all the domain values of
the CSP variable Y .

Definition 4. The minimal support encoding of a Max-CSP
instance 〈X ,D, C〉 is the Partial Max-SAT instance that con-
tains as hard clauses the corresponding ALO and AMO
clauses for every CSP variable in X , and as soft clauses
the support clauses of the minimal support encoding from
CSP into SAT.

The support encoding of a Max-CSP instance 〈X ,D, C〉
is the Partial Max-SAT instance that contains as hard
clauses the corresponding ALO and AMO clauses for ev-
ery CSP variable in X , and contains, for every constraint
Ck ∈ C with scope {X,Y }, a soft clause of the form
SX=j ∨ck for every support clause SX=j encoding the sup-
port for the value j of the CSP variable X , where ck is an
auxiliary variable, and contains a soft clause of the form
SY =m ∨ ck for every support clause SY =m encoding the
support for the value m of the CSP variable Y .

Example 1. The Partial Max-SAT direct encoding for the
Max-CSP problem of the CSP instance 〈X ,D, C〉 =
〈{X,Y }, {d(X) = {1, 2, 3}, d(Y) = {1, 2, 3}}, {X ≤
Y }〉 is as follows:

ALO [x1 ∨ x2 ∨ x3] [y1 ∨ y2 ∨ y3]
AMO [x1 ∨ x2] [x1 ∨ x3] [x2 ∨ x3]

[y1 ∨ y2] [y1 ∨ y3] [y2 ∨ y3]
conflict clauses (x2 ∨ y1) (x3 ∨ y1) (x3 ∨ y2)

We get the minimal support encoding if we replace the con-
flict clauses with (x2∨y2∨y3), (x3∨y3), and get the support

4747

encoding if we replace the conflict clauses with (x2 ∨ y2 ∨
y3 ∨ c1), (y1 ∨x1 ∨ c1), (x3 ∨ y3 ∨ c1), (y2 ∨x1 ∨x2 ∨ c1).

In the experiments we use the support encoding (supxy),
and the minimal support encoding (supc), which is the min-
imal support encoding containing, for each constraint, the
support clauses for the variable that produces smaller size
clauses; we give a score of 16 to unit clauses, a score of 4
to binary clauses and a score of 1 to ternary clauses, and
choose the variable with higher sum of scores.

3.2 Regular Encodings

The regular encodings differ in the fact that they encode
the ALO and AMO conditions using a regular signed en-
coding [1]. To this end, for every CSP variable X , we as-
sociate a Boolean variable xi with each value i that can be
assigned to the CSP variable X in such a way that xi is
true if X = i. Moreover, we associate a Boolean variable
x≥

i with each value i of the domain of X such that x≥
i is

true if X ≥ i. Then, the regular encoding of the ALO and
AMO conditions for a variable X with d(X) = {1, . . . , n}
is formed by the following clauses [1]:

x≥
n → x≥

n−1 x1 ↔ x≥
2

x≥
n−1 → x≥

n−2 x2 ↔ x≥
2 ∧ x≥

3

· ·
x≥

3 → x≥
2 xi ↔ x≥

i ∧ x≥
i+1

x≥
2 → x≥

1 · · · · · · · · · · · · · · ·
xn−1 ↔ x≥

n−1 ∧ x≥
n

xn ↔ x≥
n

(1)

The clauses on the left encode the relationship among the
different regular literals of a variable while the clauses on
the right link the variables of the form xi with the variables
of the form x≥

i . Notice that x≥
2 → x≥

1 can be omitted.

Definition 5. The regular direct, support, and minimal sup-
port encodings are, respectively, the standard direct, sup-
port, and minimal support encodings from Max-CSP into
Partial Max-SAT but using the regular encoding of the ALO
and AMO conditions.

3.3 Sequential Encodings

The sequential encodings model the ALO condition as
in the standard encoding, and the AMO condition using the
following SAT encoding, based on sequential counters, of
the cardinality constraint ≤ 1(x1, . . . , xn) [14]:

(x1 ∨ s1) ∧ (xn ∨ sn−1)∧∧
1<i<n

(
(xi ∨ si) ∧ (si−1 ∨ si) ∧ (xi ∨ si−1)

)
,

where si, 1 ≤ i ≤ n − 1, are auxiliary variables. We refer
to such an encoding as the sequential encoding of the AMO
condition.

Definition 6. The sequential direct, support, and minimal
support encodings are, respectively, the standard direct,
support, and minimal support encodings from Max-CSP
into Partial Max-SAT but using the sequential encoding of
the AMO condition.

Example 2. The sequential minimal support encoding for
the Max-CSP problem of the CSP instance from Example 1
is formed by the following clauses:

hard clauses [x1 ∨ x2 ∨ x3] [y1 ∨ y2 ∨ y3]
[x1 ∨ sx

1] [x3 ∨ sx
2]

[x2 ∨ sx
2] [sx

1 ∨ sx
2] [x2 ∨ sx

1]
[y1 ∨ sy

1] [y3 ∨ sy
2]

[y2 ∨ sy
2] [sy

1 ∨ sy
2] [y2 ∨ sy

1]
support clauses (x2 ∨ y2 ∨ y3) (x3 ∨ y3)

We get the sequential support encoding if we replace the
previous support clauses with (x2 ∨ y2 ∨ y3 ∨ c1), (y1 ∨
x1 ∨ c1), (x3 ∨ y3 ∨ c1), (y2 ∨ x1 ∨ x2 ∨ c1). Finally, we
get the sequential direct encoding if we replace the previous
support clauses with (x2 ∨ y1), (x3 ∨ y1), (x3 ∨ y2).

In the sequential encodings, the number of clauses for
modelling the ALO and AMO conditions for a CSP variable
X with domain d(X) is on O(d(X)).

4 New Insights

4.1 Insight 1: AMO clauses can be omitted in
direct MaxSAT encodings and auxiliary vari-
ables are not needed

In encodings from CSP into SAT, CSP variables are often
encoded into SAT using the ALO and AMO clauses. For the
support encoding, ALO and AMO clauses are compulsory.
Actually, if AMO clauses are omitted, then the encoding
becomes incorrect as we show in the following example.

Example 3. Given the CSP instance 〈X ,D, C〉 =
〈{X,Y }, {d(X) = {1, 2, 3}, d(Y) = {1, 2, 3}}, {X =
Y }〉, the SAT support encoding without AMO clauses is as
follows:

ALO x1 ∨ x2 ∨ x3 y1 ∨ y2 ∨ y3

support clauses x1 ∨ y1 x2 ∨ y2 x3 ∨ y3

x1 ∨ y1 x2 ∨ y2 x3 ∨ y3

Assume that all the variables are set to true: x1 = x2 =
x3 = y1 = y2 = y3 = true. In this case, the encod-
ing should be unsatisfiable because there are combinations
such as x1 = y3 = true which are not permitted. However,
the encoding becomes satisfiable when all the variables are
set to true because each clause contains at least one posi-
tive literal. This counterexample proves the incorrectness of

4848

the encoding. The minimal support encoding has the same
drawback.

As a consequence of the previous result, we conclude
that ALO and AMO clauses are also compulsory in support
MaxSAT encodings.

As pointed out in [13], AMO clauses can be omitted in
the direct encoding from CSP into SAT in such a way that
the CSP is satisfiable iff the resulting SAT encoding is sat-
isfiable.

We claim that AMO clauses can also be omitted in
MaxSAT direct encodings, and there is no need to intro-
duce auxiliary variables. This is so because optimal solu-
tions of a MaxSAT direct encoding of a MaxCSP instance
violates exactly one clause per violated constraint, and we
can therefore establish a mapping between MaxSAT opti-
mal solutions and MaxCSP optimal solutions. If a MaxSAT
interpretation violates more than one clause per constraint,
then there is, for each violated constraint, at least one CSP
variable of the constraint scope with more than one value set
to true in its MaxSAT encoding; otherwise, there is exactly
one violated clause corresponding to one nogood. By set-
ting to false the values of that CSP variables that produce the
violation of more than one clause, we get a new MaxSAT
interpretation that violates just one clause per violated con-
straint. Observe that the new interpretation is correct be-
cause there is an ALO hard constraint for every CSP vari-
able, and the number of violated soft clauses has decreased
because now there is exactly one violated clause in every vi-
olated constraints and, moreover, there is no soft clause that
becomes unsatisfied due to the new interpretation because
all the soft clauses of a MaxSAT direct encoding are nega-
tive and we set some variables to false but we do not set any
variable to true. Therefore, an interpretation violating more
than one clause of a same constraint cannot be optimal.

4.2 Insight 2: The sequential encoding of the car-
dinality constraint ≤ 1(x1, . . . , xn) is a regular
encoding

The sequential encoding of the cardinality constraint
≤ 1(x1, . . . , xn) [14], which models the AMO condition,
is defined in Section 3.3. If we replace simultaneously x1

with xn, x2 with xn−1, . . ., xn with x1, and s1 with x≥
n , s2

with x≥
n−1, . . ., sn−1 with x≥

2 , we get the following encod-
ing of ≤ 1(x1, . . . , xn):

(xn ∨ x≥
n) ∧ (x1 ∨ x≥

2)∧∧
1<i<n

(
(xi ∨ x≥

i) ∧ (x≥
i+1 ∨ x≥

i) ∧ (xi ∨ x≥
i+1)

)
,

which is the regular encoding of the ALO and AMO con-
ditions defined in Section 3.2 without the ternary clauses.
Therefore, in a sense, the popular sequential encoding of
≤ 1(x1, . . . , xn) reinvented the regular encoding (defined

before). Moreover, this proves that the encoding resulting
from eliminating the ternary clauses in the regular encoding
is a valid encoding of the AMO condition.

Let us prove that the ternary clauses of the regular encod-
ing provide an alternative encoding of the ALO condition.
Given the clauses

x≥
2 → x1

x≥
2 ∧ x≥

3 → x2

· · · · · · · · · · · · · · ·
x≥

i ∧ x≥
i+1 → xi

· · · · · · · · · · · · · · ·
x≥

n−1 ∧ x≥
n → xn−1

x≥
n → xn,

(2)

we have that if x1 = x2 = · · · = xn = false, we get a
contradiction by applying unit propagation. Otherwise, if
any variable xi is true, then we can build a satisfying as-
signment by setting to true x≥

j for j ≤ i and setting to false

x≥
k for k > i. So, these ternary clauses encode the ALO

condition.
Another consequence of this insight is that the sequential

encoding is the encoding resulting by replacing, in the reg-
ular encoding, the regular ALO condition by the standard
ALO condition.

4.3 Insight 3: AllDifferent Constraint

The usual approach to encode the CSP constraint AllD-
ifferent into SAT is the pairwise encoding, which is based
on decomposing it into pairwise binary constraints X �= Y ,
and then encode these constraints using the direct encoding.

Gent and Nightingale [10] suggested to use regular lit-
erals (called ladder variables in [10]) for obtaining efficient
SAT encodings of the global constraint AllDifferent, and
showed that their encoding scales better than the pairwise
encoding. Given a set of variables and a set of values,
they encode the ALO and AMO conditions as in the reg-
ular encoding (cf. Section 3.2), and then use an exactly one
(ALO+AMO) condition to encode that each variable takes
exactly one value, and an AMO condition to encode that
each value can be used at most one.

For encoding the AMO condition with regular literals,
they take the regular encoding of the ALO+AMO condition
defined in Section 3.2 and add an additional variable. This
additional variable indicates that no variables are set to true.
Taking into account our Insight 2, we propose a simpler en-
coding of the AllDifferent constraint: we replace the AMO
encoding containing an additional variable with the AMO
encoding we have defined in Section 3.3. The new encod-
ing does not need to use additional variables and has fewer
clauses.

4949

4.4 Insight 4: Supports by intervals avoid expo-
nential blowup

The support clauses of the support and minimal support
encodings are as follows: xj ∨ yv1 ∨ yv2 ∨ · · · ∨ yvk

. If we
want to represent yv1 ∨ yv2 ∨ · · · ∨ yvk

using only regular
signs, there may be an exponential blowup due to the appli-
cation of distributivity to (y≥

v1
∧ y≥

v1+1) ∨ (y≥
v2

∧ y≥
v2+1) ∨

· · · ∨ (y≥
vk

∧ y≥
vk+1). Note that xj may be translated into

x≥
j ∨ x≥

j+1 because it is a negative literal.
A partial solution for avoiding this exponential blowup

was given in [1], using the so-called half regular encod-
ing: negative literals are represented with regular signs, and
positive literals are represented in the standard way (also
known as monosigned). This technique mitigates the ex-
ponential blowup when most of the literals have negative
polarity. However, in the support encodings, it is not useful
because most of the literals are positive.

We propose a new regular encoding, based on intervals,
in which yv1 ∨ yv2 ∨ · · · ∨ yvk

are entirely represented by
regular signs. In our encoding, for each support clause, we
need less than d(Y) clauses having at most three literals.

Given a support clause xj ∨ yv1 ∨ yv2 ∨ · · · ∨ yvk
, the

idea behind our new encoding is to represent by intervals the
supporting values of variable Y for X = j, and then encode
that the supporting variable Y has to take a value inside
one of the allowed intervals. We illustrate this idea with an
example: Assume that the domain of Y is {1, 2, . . . , 10},
and that the support clause is x1 ∨ y2 ∨ y3 ∨ y6 ∨ y8 ∨ y9.
Then, Y has to take a value in one of the following intervals:
[2, 3], [6, 6], and [8, 9]. The interval-based regular encoding
for this clause is as follows:

x≥
2 → y≥

2

x≥
2 ∧ y≥

4 → y≥
6

x≥
2 ∧ y≥

7 → y≥
8

x≥
2 → y≥

10

(3)

Another advantage of the interval-based encoding is that
there is exactly one violated clause for each direction of
each violated soft constraint. So, the new minimal support
encoding, which we will call minimal interval-based regu-
lar encoding, does not need to introduce auxiliary variables;
and the new support encoding, which we will call interval-
based regular encoding, only needs an auxiliary variable
per soft constraint.

Example 4. A minimal interval-based regular encoding for
the Max-CSP problem of the CSP instance from Example 1
is formed by the following clauses:

hard clauses [x≥
3 ∨ x≥

2] [y≥
3 ∨ y≥

2]
support clauses (x≥

2 ∨ x≥
3 ∨ y≥

2)
(x≥

3 ∨ y≥
3)

We get the interval-based regular encoding if we replace
the previous support clauses with (x≥

2 ∨x≥
3 ∨y≥

2 ∨c1), (x
≥
3 ∨

y≥
3 ∨c1)(y

≥
2 ∨x≥

3 ∨c1) and (y≥
2 ∨y≥

3 ∨x≥
2 ∨c1). Observe that

when we only use regular signs, the number of hard clauses
is reduced. We just need the left clauses of Equation 1 [1].

We conducted an empirical investigation to assess the
performance of the new encodings. The experiments were
performed on a cluster with 160 2 GHz AMD Opteron 248
Processors with 1 GB of memory.

In the experiments we use a variant of the minimal
interval-based regular encoding, which is the minimal
interval-based regular encoding containing, for each con-
straint, the support clauses for the variable that produces
smaller size clauses; we give a score of 16 to unit clauses,
a score of 4 to binary clauses and a score of 1 to ternary
clauses, and choose the variable with higher sum of scores.

To see the practical impact of the new encodings we
have solved, with MSUnCore [12], planning and ware-
house location instances from the collection of benchmarks
of the Soft Constraint Satisfaction Problem site1, and we
have solved, with WMaxSatz [11, 6], random binary CSPs2.
These solvers were selected for being the most suitable for
the different kinds of instances3. In our experiments we
compared the support encoding (supxy), the minimal sup-
port encoding (supc), the interval-based regular encoding
(supxy-regular), and the minimal interval-based regular en-
coding (supc-regular). The cutoff time of the structured in-
stances was set to 30 minutes. We used the cutoff time of
the MaxSAT Evaluation [7].

The experimental results obtained are shown in Table 1,
Table 2 and Figure 1. Table 1 and Table 2 provide empirical
evidence that the support encoding (supxy) is slightly supe-
rior to the interval-based regular encoding (supxy-regular)
(it solves one additional planning instance and the same
number of warehouse location instances), but the minimal
interval-based regular encoding (supc-regular) is clearly su-
perior to the minimal support encoding (supc) (it solves 6
additional planning instances and 22 additional warehouse
location instances).

Figure 1 provides empirical evidence of the superiority
of the (minimal) interval-based regular encoding over the
(minimal) support encoding on random binary CSPs. It is
worth noticing that the minimal interval-based regular en-
coding is up to three orders of magnitude faster than the

1http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/Benchmarks
2They were obtained with a generator of uniform random binary CSPs

—designed and implemented by Frost, Bessière, Dechter and Regin—
that implements the so-called model B: in the class 〈n, d, p1, p2〉 with
n variables of domain size d, we choose a random subset of exactly
p1n(n − 1)/2 constraints (rounded to the nearest integer), each with ex-
actly p2d2 conflicts (rounded to the nearest integer).

3We did not use instances from the MaxSAT Evaluation [7] because
they are in CNF format, and we need to know which clauses belong to
each constraint in order to derive the encodings we would like to test.

5050

Instance set # supc-regular supc supxy-regular supxy
bwt 11 3.70(10) 1.25(11) 46.60(10) 3.85(11)
depot 4 0.22(3) 0.03(3) 0.17(3) 0.18(4)
driverlog 20 0.07(2) 0.03(2) 0.15(2) 0.19(3)
driverlogs 2 2.17(1) 0.00(0) 0.00(0) 2.61(1)
logistics 4 0.54(4) 0.13(4) 1.58(4) 0.83(4)
mprime 12 3.84(11) 1.59(10) 16.90(11) 4.03(11)
rovers 4 2.57(3) 0.40(3) 0.00(0) 0.00(0)
satellite 7 1.46(4) 0.00(0) 0.00(0) 0.00(0)
zenotravel 8 8.84(4) 0.15(3) 171.45(6) 0.60(3)
Solved instances 72 42 36 36 37

Table 1. Planning benchmarks with MSUnCore. Mean time in seconds.

Instance set # supc-regular supc supxy-regular supxy
cap 37 24.25(34) 1.41(13) 30.48(37) 19.61(37)
warehouse 2 0.39(2) 0.07(1) 0.43(2) 0.26(2)
Solved instances 39 36 14 39 39

Table 2. Warehouse location benchmarks with MSUnCore. Mean time in seconds.

 0.01

 0.1

 1

 10

 100

 1000

 0 5 10 15 20 25

M
ea

n
C

P
U

 ti
m

e
in

 s
ec

on
ds

p

Uniform Random Binary CSP <15, 5, 60, p>

supc
supxy

supxy-regular
supc-regular

Figure 1. Random binary CSP benchmarks
with WMaxSatz.

minimal support encoding on the tested instances.

4.5 Insight 5: Equal Constraint

The usual approach to encode the CSP constraint X = Y
is to include the ALO and AMO conditions for the CSP
variables X and Y , and then add two clauses for every value
i of the domain: xi ∨ yi and xi ∨ yi (which can also be
represented by xi ↔ yi), where we assume that the domains
of X and Y are equal (d(X) = d(Y) = N).

We propose a new encoding that is entirely based on reg-

ular signs. First of all, we notice that the naive encoding
using regular signs would be to replace xi with x≥

i ∧ x≥
i+1

and yi with y≥
i ∧y≥

i+1 in the previous encoding, and replace

the AMO and ALO conditions with {x≥
i+1 → x≥

i |1 < i <

|N |} ∪ {y≥
i+1 → y≥

i |1 < i < |N |}. However, we pro-
pose to use a simpler and more efficient regular encoding
of xi ↔ yi, which consists of the following set of clauses
{x≥

i ↔ y≥
i |1 < i ≤ |N |}. Notice that the naive encoding

produces 4 ternary clauses for each value of the domain,
while our new encoding produces just 2 binary clauses.
Also notice that it is not straightforward to see that xi ↔ yi

and x≥
i ↔ y≥

i are equivalent.
In order to prove the correctness of the encoding we dis-

tinguish three cases: (i) X = Y = i: In this case we can
add the unit clauses x≥

i , x≥
i+1, y≥

i and x≥
i+1 (which encode

X = Y = i) , and then we can derive the empty formula
by applying unit propagation. Therefore, the encoding is
satisfiable. (ii) X > Y,X = i, Y = j: In this case, the en-
coding is unsatisfiable because the clause x≥

i ∨ y≥
i cannot

be satisfied; and (iii) Y > X,X = i, Y = j: In this case,
the encoding is unsatisfiable because the clause x≥

j ∨ y≥
j

cannot be satisfied.

References

[1] C. Ansótegui and F. Manyà. Mapping problems with finite-
domain variables into problems with boolean variables. In
Proceedings of the 7th International Conference on The-
ory and Applications of Satisfiability Testing (Revised Se-

5151

lected Papers), SAT-2004, Vancouver, Canada, pages 1–15.
Springer LNCS 3542, 2004.

[2] J. Argelich, A. Cabiscol, I. Lynce, and F. Manyà. Encoding
Max-CSP into partial Max-SAT. In Proceedings, 38th In-
ternational Symposium on Multiple-Valued Logics (ISMVL),
Texas/TX, USA. IEEE CS Press, 2008.

[3] J. Argelich, A. Cabiscol, I. Lynce, and F. Manyà. Mod-
elling Max-CSP as partial Max-SAT. In Proceedings of
the 11th International Conference on Theory and Applica-
tions of Satisfiability Testing, SAT-2008, Guangzhou, China,
pages 1–14. Springer LNCS 4996, 2008.

[4] J. Argelich, A. Cabiscol, I. Lynce, and F. Manyà. Regular
encodings from Max-CSP into partial Max-SAT. In Pro-
ceedings, 39th International Symposium on Multiple-Valued
Logics (ISMVL), Okinawa, Japan. IEEE CS Press, 2009.

[5] J. Argelich, A. Cabiscol, I. Lynce, and F. Manyà. Sequen-
tial encodings from Max-CSP into partial Max-SAT. In
Proceedings of the 12th International Conference on The-
ory and Applications of Satisfiability Testing, SAT-2009,
Swansea, UK, pages 161–166. Springer LNCS 5584, 2009.

[6] J. Argelich, C. M. Li, and F. Manyà. An improved exact
solver for partial Max-SAT. In Proceedings of the Interna-
tional Conference on Nonconvex Programming: Local and
Global Approaches, NCP-2007, Rouen, France, pages 230–
231, 2007.

[7] J. Argelich, C. M. Li, F. Manyà, and J. Planes. The first
and second Max-SAT evaluations. Journal on Satisfiability,
Boolean Modeling and Computation, 4:251–278, 2008.

[8] F. Bacchus and P. van Beek. On the conversion between
non-binary and binary constraint satisfaction problems. In
AAAI/IAAI, pages 310–318, 1998.

[9] I. P. Gent. Arc consistency in SAT. In Proceedings of the
15th European Conference on Artificial Intelligence (ECAI),
Lyon, France, pages 121–125, 2002.

[10] I. P. Gent and P. Nightingale. A new encoding of AllDif-
ferent into SAT. In Proceedings of the 3rd International
Workshop on Modelling and Reformulating Constraint Sat-
isfaction Problems, CP 2004 Workshop, Toronto, Canada,
pages 95–110, 2004.

[11] C. M. Li, F. Manyà, and J. Planes. New inference rules
for Max-SAT. Journal of Artificial Intelligence Research,
30:321–359, 2007.

[12] J. Marques-Silva and J. Planes. Algorithms for maximum
satisfiability using unsatisfiable cores. In Proceedings of De-
sign, Automation and Test in Europe (DATE 2008), pages
408–413, Munich, Germany, 2008.

[13] S. D. Prestwich. CNF encodings. In A. Biere, H. van
Maaren, and T. Walsh, editors, Handbook of Satisfiability,
pages 75–97. IOS Press, 2009.

[14] C. Sinz. Towards an optimal CNF encoding of boolean
cardinality constraints. In Proceedings of the 11th Inter-
national Conference on Principles and Practice of Con-
straint Programming, CP-2005, Sitges, Spain, pages 827–
831. Springer LNCS 3709, 2005.

[15] T. Walsh. SAT v CSP. In Proceedings of the 6th Inter-
national Conference on Principles of Constraint Program-
ming, CP-2000, Singapore, pages 441–456. Springer LNCS
1894, 2000.

5252

