
Towards a Framework for Distributed and Collaborative Modeling∗

Antonio Cicchetti
School of Innovation, Design and Engineering, Mälardalen University, Västerås, Sweden

antonio.cicchetti@mdh.se
Henry Muccini, Patrizio Pelliccione, Alfonso Pierantonio

Dipartimento di Informatica, Università degli Studi dell’Aquila, L’Aquila, Italy
{henry.muccini,patrizio.pelliccione,alfonso.pierantonio}@di.univaq.it

Abstract

Increasingly, models are becoming first class core assets,
and model-driven engineering requires novel techniques,
tools, and practices to face the globalization of software
development in the (always more) pervasive IT world.

This paper proposes a framework for synchronous and
asynchronous concurrent and collaborative modeling. Syn-
chronous collaborative modeling offers services for sharing
the modeling space, models, documentation, and configura-
tion, while asynchronous collaborative modeling offers ser-
vices for supporting merging of models modified and edited
separately by different software engineers. Our approach is
based on the observation that it is in general more conve-
nient to store differences between subsequent versions of a
system than the whole models of each stage.

1 Introduction

In today’s society individuals and organizations deal

with an every growing load and diversity of information

and content. The content is becoming of multimedia na-

ture, such as diagrams, pictures, photos, video, etc. and it is

produced in a distributed way. World globalization requires

collaborative services, especially for non-stable, volatile,

self-organizing communities that contribute to content pro-

duction [4]. This implies that existent technologies for col-

laboration based on text documents are becoming more and

more obsolete and a new way to uniformly represent these

different pieces of content should be devised. Model-driven

development has recently become a reality, thanks to main

forces such as the Unified Modeling Language (UML) [15]

and the Model-Driven Engineering (MDE) [18]. Conse-

quently, models are primary artifacts retained as first class

∗Partially supported by they European Community’s 7th Frame-

work Programme (FP7/2007–2013), http://www.mancoosi.org MAN-

COOSI project, grant agreement n◦214898.

entities that can be analyzed and manipulated by means of

automated tools. In general we can assume that the content

and information can be abstractly represented by means of

models. Models permit to easily relate the knowledge that

can be represented in several different ways, and to auto-

mate several aspects of the knowledge sharing.

In this paper we propose DISCOM, a framework for

distributed and collaborative modeling. DISCOM supports

both synchronous (also referred as real-time) and asyn-

chronous collaborative modeling. Synchronous collabo-

rative modeling offers means for sharing information and

multimedia content (expressed in terms of models), while

asynchronous collaborative modeling offers means for sup-

porting merging of models modified and edited separately

by different players. During synchronous distributed col-

laborative work, many users collaborate together on the

same artefact/model, they can switch from a model to an-

other, and they can take the lock to some portions of the

model according to some defined rules. During asyn-

chronous distributed modeling, different users can take the

model from the repository and apply changes in parallel. As

usual, the problem to be managed here consists in compar-

ing the different models for identifying differences and in

merging the different versions of the models edited sepa-

rately by different users. These operations must take into

account dependencies among the different models. Seman-

tic relations among models must be defined and taken into

account to calculate models dependencies. In general, dif-

ferences represent a profitable mechanism each time mul-

tiple versions of documents must be stored, transmitted, or

processed, and version management is one of the contexts in

which they are commonly exploited [6]. Therefore, starting

from an initial version of a model, we propose to calculate

the differences between the initial version and its updates,

and subsequently to represent them in delta documents.

The paper is organized as follows: Sect. 2 presents

the DISCOM framework. In particular, Sections 2.2, 2.3,

and 2.4 describe the theoretical results that allow us to man-

2009 18th IEEE International Workshops on Enabling Technologies: Infrastructures for Collaborative Enterprises

1524-4547/09 $25.00 © 2009 IEEE

DOI 10.1109/WETICE.2009.48

149

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on March 27,2010 at 17:39:35 EDT from IEEE Xplore. Restrictions apply.

age model versions. Section 3 compares DISCOM with re-

lated researches for model versioning, while Sect. 4 con-

cludes the paper and outlines future work.

2 Engineering Distributed and Collaborative
Modeling

Figure 1 schematizes DISCOM: a centralized server con-

tains the modules enabling conflicts management (i.e., the

Conflict manager component), an optimizer that manages

the modifications storage (i.e., the Optimizer component),

and version management (i.e., the Versions manager com-

ponent). The different versions are stored in a Database.

Borrowing the lessons learnt in version management expe-

riences for text documents, our approach is based on the

observation that it is in general more convenient to store
differences between subsequent versions of a system than

the whole models of each stage. In fact, on one hand it is

possible to save storage space; on the other hand, it is more

evident and understandable which changes the models un-

dergone and the underlying objectives.

Figure 1. An overview of DISCOM

Thus, starting from an initial version of a system model,

we propose to calculate the differences between the initial

version and its updates, and subsequently to represent them

in delta documents. Hence, differences are stored in the

database (in figure represented with the symbol δ) instead

of storing the different versions of the document. Some-

times, when there are a lot of small and consequent mod-

ifications stored, some of them could be collapsed to one

single difference to reduce the amount of space needed and

to optimize the computation of a particular version when

asked for. This is the case of the synchronous or realtime

collaborative modeling in which the commit operation (i.e.,

the operation that communicates to the shared view of the

document the operation performed) is performed very fre-

quently. In particular situations, when a version is consid-

ered stable, it could be preferable to save a new model ver-

sion instead of a new difference; in this way it is possible

to reduce the inefficiency of having sequences of multiple

small changes, for instance. The computation that resolves

these different solutions and that decides what is the better

solution in a particular situation is performed by the Opti-
mizer component.

The manipulations performed by each developer are en-

coded as difference models. When multiple changes are op-

erated by different users, the framework will compose the

initial model with the different changes, so to create a mod-

ified model while identifying possible conflicts. Following

what described above, in general the actual version of the

document, called D in Fig. 1, is obtained by applying all

the modifications, following the defined order, to the last

version of the document stored in the repository.

This computational model works both for synchronous
and asynchronous collaborative modeling. The difference

between these two situations is on the arrangement of the

commit operations. In case of synchronous collaborative

modeling the commit operation is performed at each oper-

ation so to simulate a shared screen. Thus, conflicts cannot

appear since, on the server side, the operations are totally

ordered. Different situation is for asynchronous collabora-

tive modeling. In this case it is not possible to totally order

the modifications. Let us suppose that two clients, C1 and

C2, are modifying the same version of the document, i.e., D.

Let us suppose that C1 and C2 have produced the difference

δ1 and δ2, respectively, off-line. It is typically impossible to

decide which is the modification order. Thus, let us sup-

pose that C1 is the first one to perform the commit of δ1.

Now the document in the server is D+δ1. When C2 tries

to perform the commit it is noticed by the system that the

operation is not allowed since the version of the document

that has been modified by C2 is old with respect to the one

that is currently in the server. Thus, C2 is asked to update

the document and possible conflicts are calculated. In case

of conflicts C2 has three possible choices:

• D+δ1+δ2: δ2 is considered consecutive to δ1

• D+δ2+δ1: δ1 is considered consecutive to δ2

• D+(δ2‖δ1): in this case δ1 and δ2 are considered par-

allel modifications and then they are merged and then

applied to D.

Conflicts can be due to modifications performed in a spe-

cific order [14], and in that case it makes sense to focus on

the first two choices. A possible alternative is to associate

roles to users so that depending on the user’s role, a pol-

icy among the three presented above is chosen. The idea

is that users that have more rights perform operations that

in case of conflict overwrite what done by other users with

less rights, and it is easily obtained by properly ordering

manipulations.

150

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on March 27,2010 at 17:39:35 EDT from IEEE Xplore. Restrictions apply.

a) b) c)

Figure 2. The sample a) initial model and b), c) two possible revisions.

In other situations conflicts are not caused by a spe-

cific revision sequence, thus demanding for appropriate

techniques for detection and reconciliation [14]. In this

proposal, conflicts identification and resolution exploits a

model-based composition engine [8]. It tries to merge

δi couples by unifying parallel independent modifications

which can be considered as sequential changes on the same

model. Then, when it finds diverging updates involving the

same element it keeps them separated. Subsequently, rec-

onciliation criteria can be given to solve each issue. Other-

wise, the remaining conflicts are left unsolved and delegated

to the user manual intervention.

The next sections introduce an example application in

Sect. 2.1 and then detail the aspects of the version man-

ager, the optimizer, and the conflict manager components

(in Sections 2.2, 2.3, and 2.4, respectively) that constitute

the technical base the proposed framework relies on.

2.1 Example Application

Let us consider a typical collaboration among members

of development and verification&validation teams [2]: the

software analyst, the software designer, and the software

verifier. The collaboration assumed in [2] is regulated in a

loop of actions that avoids concurrent tasks. By removing

this assumption we allow concurrent modeling.

Figure 2 shows how collaborative work on the same

model can cause conflicts between the changed models.

More precisely, Fig. 2.a shows the initial model. It repre-

sents a HTML document (HTMLDoc) composed of HTML

elements (HTMLDocElem), which have a particular type

HTMLList. Let us suppose that two different teams are

collaborative working on the model, M1, and that they

produce two different revisions, M2 and M3, respectively.

There are two possible scenarios: (i) the revisions are tem-

porarily ordered and then M3 is build on M2 or M2 is build

on M3 (accordingly with the order) and (ii) the revisions are

not ordered and then M2 and M3 must be merged, thus pro-

ducing a new model M4. Focusing on the latter scenario,

Fig. 2.b and Fig. 2.c show two possible revisions. In partic-

ular, the M2 model (in Fig. 2.b) has added a new subclass

HTMLForm of HTMLDocElem and the type of the size at-

tribute is changed in float. Simultaneously, the other de-

veloper produce the M3 model (in Fig. 2.c) in which a new

class HTMLCombo is added as subclass of HTMLList and

the type of the size attribute is updated in int.

Figure 3. The result of a merging strategy.

These two revisions need to be merged and Fig. 3 shows

the new model obtained after the merge. The obtained

model contains both the HTMLForm and HTMLCombo
classes and the conflict on the type of the size attribute of

HTMLList is set to float since an integer can be ob-

tained from a float without information loss, but the vice

versa is not true.

2.2 Versions Manager

What described so far can be applied also to concurrent ver-

sions systems for textual documents and depicts a frame-

work that is very similar to Concurrent Versions System

(CVS). However, it is important to note that despite a num-

ber of concurrent versions systems are available for tex-

tual documents, the hierarchical nature of models requires

specific tools and techniques for model comparison, model

composition and model version management [12, 10]. In

151

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on March 27,2010 at 17:39:35 EDT from IEEE Xplore. Restrictions apply.

fact, even if there exist some serialization mechanisms able

to map models toward corresponding structured documents

(see for example XMI [16]), by decreasing the level of ab-

straction for the comparison the result will face a preci-

sion degradation. In other words, the abstraction level mis-

match between text-based comparison and model-based de-

sign prevent the possibility for the former to return differ-

encing results at the same abstraction level (and related se-

mantics) of the corresponding models.

In MDE models are not considered as merely documen-

tation but precise artifacts that can be understood by com-

puters and can be automatically manipulated. In this sce-

nario metamodeling plays a key role. It is intended as

a common technique for defining the abstract syntax of

models and the interrelationships between model elements.

Metamodeling can be seen as the construction of a collec-

tion of concepts (things, terms, etc.) within a certain do-

main. A model is an abstraction of phenomena in the real

world, and a metamodel is yet another abstraction, high-

lighting properties of the model itself. This model is said

to conform to its metamodel like a program conforms to the

grammar of the programming language in which it is writ-

ten.

As described so far, designers work on the same docu-

ment stored in a shared repository. Each time they com-

mit a new version, a document representing the changes

is sent to the repository to update the current version of

the artefact and to inform the other developers about the

manipulations. Regardless the kind of concurrent develop-

ment process (i.e., synchronous or asynchronous) it relies

on differences. Consequently, an agreement on the repre-

sentation of modifications is needed. In [7] a metamodel

independent approach has been proposed to deal with such

task. Given two models that conform to a given metamodel

(namely MM), their difference has to conform to another

metamodel (MMd) that can be automatically derived from

MM. In particular, MMd has to provide the constructs capa-

ble to express the modifications that have to be performed

on the initial version of a given model in order to obtain the

last one. While D is a model conforming to MMd, each δi

is an instance of the meta-model of the differences. Hav-

ing the meta-models assures that each model obtained by

making modifications conforms to the meta-model, and the

same holds for the differences that conform to the corre-

sponding meta-model.

Since there is not a unique metamodel for representing

the differences between the models that conform to any

metamodel, according to the proposed approach each meta-

class MC of a given metamodel, gives place to the AddedMC,

DeletedMC and ChangedMC metaclasses that enable the

representation of additions, deletions and changes of ele-

ments conforming to the MC metaclass, respectively. As a

consequence, the approach is said to be metamodel inde-

pendent meaning that it can deal with any kind of meta-

model; however, once the source metamodel MM has been

given, all the environment is built up (and hence fixed) as

tailored to the input metamodel MM.

Such representation mechanism has a number of prop-

erties, several of which can be profitable in the context of

collaborative modeling and are recalled in the following1:

- minimalistic and self-contained, each difference model

stores the minimum information to represent the evolution

neglecting the context in which manipulations have been

operated;

- transformative, a difference model induces a transforma-

tion, such that whenever applied to the initial model yields

the final one. Moreover, the transformation can be applied

to arbitrary input models (conforming to the base meta-

model MM) giving place to patch-like updates. In this latest

scenario, minimalistic and self-contained properties ensure

the right behaviour;

- invertible, each difference model can be inverted, such that

whenever applied to the final model nullifies changes thus

getting the initial model;

- compositional, the result of subsequent or parallel mod-

ifications is a difference model whose definition depends

only on difference models being composed and is compati-

ble with the induced transformations.

It is worth noting that a model-based representation of

differences enables the integration between different mod-

eling tools. In fact, once agreed on the common evolution

description, developers can still work by using their own

environments and producing as a result manipulations doc-

umented through the shared representation formalism. In

the same way, updates can be retrieved from the shared

format and applied in the corresponding development plat-

form. Moreover, minimality and self-containedness make it

possible to focus on the entities which have been manipu-

lated and the corresponding change characteristics, thus al-

lowing an easier management of distributed evolution. Fi-

nally, invertibility and compositionality permit to support

the common operations in CVSs.

2.3 Optimizer

The evolution of a model consists of the original model and

a number of difference models in such a way the final model

is obtained by applying all the modifications to the origi-

nal one. A useful construction would be the compositions

of delta documents, like the sequential merging of several

versions; in fact, it can be exploited to group two or more

subsequent modifications in a single difference model.

For the sake of simplicity, let us consider only two subse-

quent modifications over the original model. The sequential

1Due to space limitations a complete description of those properties is

not provided. The interested reader is referred to [6] for further details.

152

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on March 27,2010 at 17:39:35 EDT from IEEE Xplore. Restrictions apply.

composition of such manipulations would mean to merge

the modifications conveyed by the first document and then,

in turn, by the second one in a resulting difference model

containing a minimal difference set, i.e., only those mod-

ifications which have been not overridden by subsequent

modifications. Given a couple of subsequent modifications

affecting the same element, the optimization management

will behave as summarized in Table 1. Going deeper, when

a (added, deleted) sequence occurs it is possible to ig-

nore both the manipulations being one the dual of the other,

while in the case of a (changed, deleted) it is possi-

ble to perform only the deletion of the element since the

changes would be lost anyway. To compact a (deleted,

added) couple an update should be built which changes

the version of the element depicted in deleted with the

re-added one in added. In the situations where a (added,

changed) or a (changed, changed) occur, it is possible to

group the manipulations in a single added and changed

delta, respectively. In particular, in the former case the

addition can be completed with the subsequent changes,

whereas in the latter the updates can be composed in a sin-

gle merged one. Finally, the other couples can be simply

ignored because it is not possible they could occur; for in-

stance, it is not possible to update an element before creat-

ing it (changed, added) or to modify a previously deleted

element (deleted, changed). It is worth noting that this

simple optimization procedure is enabled by the abstraction

level at which model comparison is computed and its result

represented.

δ1 \ δ2 added changed deleted
added \ added⊕changed

changed \ changed⊕changed deleted
deleted added \ \

Table 1. Optimization cases.

2.4 Conflict Manager

In a distributed environment modifications can be operated

also diverging from the same ancestor in parallel. In case

both modifications are not affecting the same elements (or

in other words are parallel independent) their composition

is obtained by merging the difference models. This property

can be easily shown by performing the parallel independent

modifications by interleaving the single changes and assim-

ilating it to the sequential composition. Unfortunately, the

result of two parallel modifications can give place to con-

flicting results, i.e., elements in the original model which

are changed by both difference models without converging

to a common result. In this case, conflicting modifications

either have to be resolved by the corresponding designers

(see for instance [1]), or they need some mechanisms to

support such a task [8].

In case of synchronous development, the mechanism of

commits enforces the resolution of the mentioned conflicts

by arranging the updates in a sequence (therefore the last

commit will replace the previous one). In an asynchronous

scenario, there is the need to choose one of the illustrated

modifications. As said before, this process can be aided by

some automation if criteria have been specified (like devel-

oper role priority); otherwise, the reconciliation is delegated

to manual intervention of the architects.

3 Related Works

Version management has been largely investigated giving

place to a number of tools, like CVS2 and SubVersion3 to

mention a few. However, those text-based systems tend to

be less efficient with models because of the hierarchical na-

ture of the latter ones; in fact, they are not able to fully

detect structural manipulations.

Nonetheless, there exist several modeling tools based

on textual differencing, like Borland Together4 and Mag-

icDraw5 which mainly rely on the XMI serialization format

of models [16]. Unfortunately, the difference calculation

and representation are tool specific; moreover, they are of-

ten based on the internal storage mechanisms of each tool

which imply the use of unique identifiers. Those issues tend

to lock the development process to the particular tool and

pose several problems to document exchange [1]. In the

same way, other tools lock the development to a particular

metamodel, that is a fixed domain specific language; for ex-

ample, Rational Software Architect6 and Enterprise Archi-

tect7 offer an interesting set of functionalities for managing

changes in modeling files; however, those features are re-

stricted to the UML metamodel. On the contrary, this work

is based on metamodel independent techniques which ease

document exchange and tool integration.

Reference [11] offers a tool integration infrastructure

with versioning and synchronization facilities. In other

words, starting from different models conforming to their

own metamodels, a set of mappings is provided to build

a chain of models by translating a source model to a tar-

get one. Whenever some change occurs, a synchronization

mechanisms updates the models involved by such updates.

From the point of view of this paper, the mentioned work

can be considered as a useful view integration methodol-

ogy which could be exploited to update diagrams (or views)

stored in the centralized repository. However, it is provided

neither any support for distributed development of the same

2CVS web site: http://www.nongnu.org/cvs.
3Subversion web site: http://subversion.tigris.org.
4Borland Together: http://www.borland.com/us/products/together.
5MagicDraw: http://www.magicdraw.com.
6Rational Software Architect: http://www-01.ibm.com/software/awd-

tools/swarchitect/websphere/.
7Enterprise Architect: http://www.sparxsystems.com.au/products/ea.html

153

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on March 27,2010 at 17:39:35 EDT from IEEE Xplore. Restrictions apply.

model, nor a manipulation sharing technique based on dif-

ferences.

Finally, approaches like [5, 13, 3, 9] provide the support

to represent the history of changes in a model-based fash-

ion. However, this aspect can be considered orthogonal to

the one related to difference representation.

4 Conclusions and Future Work

In this work we presented a step towards the definition of a

framework to support collaborative and concurrent model-

ing. In this respect, several problems need to be faced, like

version management, optimization of stored versions and

conflict resolution. The framework is based on metamodel

independent techniques, or in other words each mechanism

is defined in a general way and can be automatically adapted

to the specific metamodel given as input.

On the future work side we plan to further investigate and

implement the techniques here introduced. In particular the

identification and the resolution of conflicts between mod-

els opens several problems in automatizing and supporting

the merging. In fact, collisions can be also originated by

interconnections between different models, which need to

be specified and handled through appropriate mechanisms.

In order to deal with the intrinsic complexity of that prob-

lem, those techniques should at least encompass transac-

tion management and cyclic relationship checks [17]. In

any case, those approaches will exploit the representation

of model evolution by means of differences. Finally, future

work encompasses also real world case studies in order to

improve the illustrated set of techniques in terms of scala-

bility, performance and usability.

References

[1] M. Alanen and I. Porres. Difference and Union of Models.

In UML 2003 - The Unified Modeling Language, volume

2863 of LNCS, pages 2–17. Springer, 2003.

[2] M. Angelaccio and A. D’Ambrogio. A model transforma-

tion framework to boost productivity and creativity in col-

laborative working environments. In proceedings of Collab-
orateCom 2007, pages 464–472, Nov. 2007.

[3] Auckland Bioengineering Institute at the University

of Auckland. CellML Model Repositories Project.

http://www.cellml.org/wiki/CellMLModelRepositories.

[4] J. A. B. Blaya, I. Demeure, P. Gianrossi, P. G. Lopez,

J. A. M. Navarro, E. M. Meyer, P. Pelliccione, and F. Tastet-

Cherel. Popeye: providing collaborative services for ad hoc

and spontaneous communities. Service Oriented Computing
and Applications, 3(1), 2009.

[5] M. Carey. Data delivery in a service-oriented world: the

bea aqualogic data services platform. In Proceedings of the
ACM SIGMOD’06, pages 695–705. ACM Press, 2006.

[6] A. Cicchetti. Difference Representation and Conflict Man-
agement in Model-Driven Engineering. PhD thesis, Univer-

sity of L’Aquila, Computer Science Dept., 2008.
[7] A. Cicchetti, D. Di Ruscio, and A. Pierantonio. A Meta-

model Independent Representation of Model Differences.

Journal of Object Technology Special Issue, 6(9), 2007.
[8] A. Cicchetti, D. D. Ruscio, and A. Pierantonio. Managing

Model Conflicts in Distributed Development. In Procs. of
the 11th Int. Conf. MoDELS ’08, pages 311–325, 2008.

[9] H. B. et al. The FAMOOS Object-Oriented Reengineering
Handbook, 1999. http://www.iam.unibe.ch/ famoos/hand-

book/4handbook.pdf.
[10] D. S. Kolovos, R. F. Paige, and F. A. Polack. Model compar-

ison: a foundation for model composition and model trans-

formation testing. In Procs of GaMMa ’06. ACM Press,

2006.
[11] G. Kramler, G. Kappel, T. Reiter, E. Kapsammer, W. Rets-

chitzegger, and W. Schwinger. Towards a semantic infras-

tructure supporting model-based tool integration. In Procs
of GaMMa ’06, pages 43–46. ACM Press, 2006.

[12] Y. Lin, J. Zhang, and J. Gray. Model Comparison: A Key

Challenge for Transformation Testing and Version Control

in Model Driven Software Development. In OOPSLA, 2004.
[13] D. Matheson, R. France, J. Bieman, R. Alexander, J. DeWitt,

and N. McEachen. Managed Evolution of a Model Driven

Development Approach to Software-based Solutions. In

OOPSLA, 2004.
[14] T. Mens, G. Taentzer, and O. Runge. Detecting struc-

tural refactoring conflicts using critical pair analysis. Electr.
Notes Theor. Comput. Sci, 127(3):113–128, 2005.

[15] Object Management Group. UML 2.0 Infrastructure Final

Adopted Specification, 2003. OMG document ptc/03-09-15.
[16] Object Management Group. XMI 2.0 XML Metadata Inter-

change, 2003. OMG document formal/2003-05-02.
[17] R. Paige, P. Brooke, and J. Ostroff. Metamodel-based model

conformance and multiview consistency checking. ACM
Trans. Softw. Eng. Methodol., 2007.

[18] D. C. Schmidt. Guest editor’s introduction: Model-driven

engineering. Computer, 39(2):25–31, 2006.

154

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on March 27,2010 at 17:39:35 EDT from IEEE Xplore. Restrictions apply.

