
Mancoosi tools for the analysis and quality
assurance of FOSS distributions

Ralf Treinen

UFR Informatique
Université Paris Diderot

treinen@pps.jussieu.fr

February 5, 2011

treinen@pps.jussieu.fr


Joint work with the Mancoosi team at Paris-Diderot

Roberto Di Cosmo Pietro Abate Jaap Boender

Yacine Boufkhad Jérôme Vouillon Zack



Our (Paris-Diderot) focus in EDOS and Mancoosi

Meta-data of packages

Core inter-package relationships :

Dependencies
Conflicts
Provides

Optionally, less central relationships (recommends, etc.)

Global analysis

Looking at a complete distribution

E.g.: take into account dependency chains

In contrast to looking checks (existence of mentioned
packages)



Why is this interesting for FOSS distributions?

Dependency solving

Which packages do I have to install/deinstall/upgrade in order
to satisfy an installation request ?

Important task of package managers

One focus of the Mancoosi project (2008 – 2011)

Quality assurance

Which packages in a distribution need care?

Only judging from meta-data, but analysis all over the
distribution

One focus of the EDOS project (2004 – 2007)



Why is this interesting for scientists?

Software Engineering

Component-Based Software Engineering

FOSS distributions are (afaik) the largest existing
component-based systems

FOSS systems are available for everybody to scrutinize

Combinatorial Problem Solving

These are very challenging problems:

Even basic problems are NP-complete (in theory
computationally unfeasible)

Due to logical relations between packages:
conjunctions, disjunctions, and conflicts (explicit or implicit).



Just one word about dependency solving

We need dependency solvers for many different component
models.

There are many different promising techniques for
combinatorial problem solving.

We advocate a modular approach, using CUDF as an interface
language

MISC international competition for dependency solvers: talk
to us when you are interested!!



At the beginning: a quite basic problem

Given a repository R of packages and a package p ∈ R, is p
installable w.r.t. R?

That is: Does there exist I ⊆ R such that

does the job: p ∈ I ;
is in peace: no conflicts inside R;
is abundant: all dependencies in R satisfied.

That means: installable in a completely empty environment.

2005: Tools edos-debcheck and edos-rpmcheck

Very efficient, using SAT-solver technology, and caching of
results obtained for various packages in the distribution.

Time for a demonstration . . .



Debian weather

Running on edos.debian.net (today hosted by Mancoosi)

Daily summary of uninstallable packages

Differences between successive days

Distinction between arch=all and arch-specific

Date since when package uninstallable

Explanation of uninstallability

Demo . . .



Usage of the Debian Weather in Debian

Since Debconf 2010 (august 2010): bugs are filed against
packages that are not installable, however only when

package reported as non-installable everywhere
uninstallable since some time (∼ 1 month)

List of reported bugs: See edos.debian.net

edos.debian.net


More uses of distcheck in debian

emdebian: check installability of package before uploading
new (versions of) packages to the archive

Build-dependencies:

turn a build-dependency (conflict) into a normal dependency
(conflict) of a dummy package
edos-builddepcheck: (currently) a wrapper that generates a
new repository, then runs edos-debcheck on it
Used by debian autobuilders to avoid useless attempts to
create build environments.



Detecting file conflicts

Goal: detect cases where two packages can be installed at the
same time, but doing so causes an error since one package
tries to highjack a file owned by another package.

Algorithm:

Look at the debian Contents file, compute all pairs of
packages that contain a common file (debian sid: ∼ 1000
pairs)
Use edos-debcheck to select pairs that are installable
together (debian sid: ∼ 170 pairs)
Test in a chroot



Statistics about detecting file conflicts

Analysis done since april 2008, several times per week, on sid
main+contrib+nonfree

Bugs are reported with severity serious, against both
packages (the debian BTS allows to file one bug against two
packages)

290 Bugs found and reported (or simply reproduced)

286 of them are resolved. In most cases these bugs are closed
very rapidly, however there are some hairy cases.

See the list of bugs on edos.debian.net

edos.debian.net


From dose2 to dose3

dose2: library that contains the basic building blocks of
edos-debcheck

Problems with dose2:

Debian and rpm package formats hard-wired: not very easy to
add new package formats
Preprocessing (like for build-dependencies) requires ugly and
inefficient wrappers
Output format not easily parsable



New in dose3

CUDF as an intermediate format: new component models can
easily by added, by writing a translator to CUDF.

The new design of the library makes it much easier to
integrate various preprocessing tasks.

New output format based on YAML: human readable and
machine parsable.



Coming soon: weather.mancoosi.org

Graphical representation of dependency problems:



Predicting the future of a distribution (?)

Two different questions that we have worked on:

If we upgrade a particular package p, what are the other
packages that (in their current version) become uninstallable?
These are the packages that will have to upgraded together
with p

If the current version of a package p is found uninstallable
w.r.t. the current repository: can this be solved by upgrading
other packages in the distribution? If not, that means that p
has to upgraded!

And this is done with distcheck too!



What’s the future of a distribution?

New packages may be created

Packages may be removed

Infinitely many possible future versions of packages

Future versions of packages may change their
dependencies/conflicts in an arbitrary way



Relations of future versions of packages

It is sufficient to consider futures where all new versions of
packages have no dependencies.

Justification : If I is an R-installation, and R ′ is obtained from
R by removing dependency or conflict relations, then I is also
an R ′-installation.



A further problem: clustering

In a distribution, binary packages do not evolve in isolation.

They a updated in clusters that are identified by source
packages.

Consider only futures where all binary packages from the same
source have moved together

That deliberately ignores: auto-build failures, packages that
change source

Version numbers of packages with the same source may still
have different version numbers: can be handled in restricted
cases (binNMU, difference in epoch only)



Predicting the future

Computing the consequences of updating on package: we
have, for every relevant future of the package, run distcheck

on that repository (takes around 10 hours)

Analyzing which packages must be upgraded in order to
become installable: we can just fold all relevant future
versions of all package into one repository (sid: ∼ 70.000
packages), plus conflicts between packages of different version
and the same source (takes about 1 minute)



Results: upgrading by cluster



The Mancoosi Project

Mancoosi: Managing the Complexity of the Open Source
Infrastructure

European Research Project in the 7th Framework

Duration: Feb 2008 −→ Jan 2011

Successor of the EDOS European project
(Jan 2004 −→ Jun 2007)



Mancoosi Project Partners


