
Towards a Model Driven Approach to Upgrade
Complex Software Systems?

Antonio Cicchetti1 and Davide Di Ruscio1 and Patrizio Pelliccione1

and Alfonso Pierantonio1 and Stefano Zacchiroli2

1 Dipartimento di Informatica, Università degli Studi dell’Aquila, Italy
{cicchetti|diruscio|pellicci|alfonso}@di.univaq.it

2 Université Paris Diderot, PPS, UMR 7126, France
zac@kpps.jussieu.fr

Abstract. Complex software systems are more and more based on the abstrac-
tion of package, brought to popularity by Free and Open Source Software (FOSS)
distributions. While helpful as an encapsulation layer, packages do not solve all
problems of deployment and management of large software collections. In partic-
ular upgrades, which often affect several packages at once due to inter-package
dependencies, often fail and do not hold good transactional properties.
This paper shows how to apply model driven techniques to describe and manage
software upgrades of FOSS distributions. It is discussed how to model static
and dynamic aspects of package upgrades—the latter being the most challenging
aspect to deal with—in order to be able to predict common causes of upgrade
failures and undo residual effects of failed or undesired upgrades.

1 Introduction

Increasingly, software systems are designed to routinely accommodate new features
before and after the deployment stage. The deriving evolutionary pressure requires the
system design and architecture to have enhanced quality factors: in particular, they have
to retain the (user perceived as well as system-intrinsic) dependability at a satisfactory
level and make component installation/removal operations less haphazard [1].

Free and Open Source Software (FOSS) distributions are among the most com-
plex software systems known, being made of tens of thousands components evolving
rapidly without centralized coordination. Similarly to other software distribution in-
frastructures, FOSS components are provided in “packaged” form by distribution edi-
tors. Packages define the granularity at which components are managed (installed, re-
moved, upgraded to newer version, etc.) using package manager applications, APT [2],
Smart [3], Apache Maven [4]. Furthermore, the system openness affords an (appar-
ently) anarchic array of dependency modalities among the adopted packages. These
usually contain maintainer scripts, which are executed during the upgrade process to
finalize component configuration. The adopted scripting languages have rarely been for-
mally investigated, thus posing additional difficulties in understanding their side-effects
which can spread throughout the system.
? Partially supported by they European Community’s 7th Framework Programme (FP7/2007–

2013), MANCOOSI project, grant agreement n◦214898.

http://www.mancoosi.org

In other words, even though a package might be viewed as a software unit, it lives
without a proper component model which usually defines standards (e.g., how a compo-
nent interface has to be specified and how components communicate) [5,6] that facilitate
integration assuring that components can be upgraded in isolation.

The problem of maintaining FOSS installations, or similarly structured software
distributions, is intrinsecally difficult and a satisfactory solution is missing. State of
the art package managers lack several important features such as complete dependency
resolution and roll-back of failed upgrades [7]. Moreover, there is no support to simulate
upgrades taking the behavior of maintainer scripts into account. In fact, current tools
consider only inter-package relationships which are not enough to predict side-effects
and system inconsistencies which can be encountered during upgrades.

This work is part of the MANCOOSI3 project which aims at improving the man-
agement of complex software systems built of composable units which evolve inde-
pendently. In particular, the paper describes a model-driven approach to specify system
configurations and available FOSS packages.4 Maintainer scripts are described in terms
of models which abstract from the real system, but are expressive enough to predict
several of their effects on package upgrades. Intuitively, we provide a more abstract
interpretation of scripts, in the spirit of [8], which focuses on the relevant aspects to
predict the operation effects on the software distribution. To this end, models can be
used to drive roll-back operations to recover previous configurations according to user
decisions or after upgrade failures.
Paper structure: Section 2 describes the upgrade process of FOSS packages and sum-
marizes the MANCOOSI project. Section 3 describes a model driven approach to (i)
specify system configurations and packages, (ii) simulate the installation of software
packages, and (iii) assist roll-backs. Section 4 analyzes the FOSS domain and intro-
duces the required modeling constructs which are captured in different metamodels.
Finally, Section 5 and 6 present related and future work, respectively.

2 Packages, upgrades, and failures

Overall, the architectures of FOSS distributions are similar. Each installation has a local
package status recording which packages are currently installed and which are available
from remote repositories. Package managers are used to manipulate the package status
and can be classified in two categories [10]: installers, which deploy individual pack-
ages on the filesystem (possibly aborting the operation if problems are encountered) and
meta-installers, which act at the inter-package level, solving dependencies and conflicts,
and retrieving packages from remote repositories as needed.

The term upgrade problem is used to refer generically to any request (install, re-
move, upgrade to a newer version, etc.) to change the system configuration status. Such

3 http://www.mancoosi.org
4 While FOSS is the motivating scenario for this work, the presented model-driven techniques

are not FOSS-specific. In fact, previous work on FOSS package management [9] has been
easily ported to non-FOSS packages (e.g., in Apache Maven). The same can be done with the
presented approach which—given the addressed upgradeability concerns—has been designed
for the general case of installation side-effects embodied by maintainer scripts.

http://www.mancoosi.org

problems are usually solved by meta-installers whose aim is to find a suitable upgrade
plan, where one exists. This section gives an overview of packages as they can be found
in current distributions, their role in the upgrade process, and the failures that can impact
on upgrade deployment.
Packages. Abstracting over format-specific details, a package is a bundle of three main
parts: (1) set of files, (2) meta-information, (3) maintainer scripts.

The core of a package is the set of files (1) that it ships: executable binaries, data,
documentation, etc. Configuration files are a distinguished subset of shipped files, which
are tagged as affecting the runtime behavior of the package and meant to be customized
by local administrators. Configuration files need to be present in the bundle (e.g., to
provide sane defaults or documentation), but also need special treatment: during up-
grades they cannot be simply overwritten by newer versions, as they may contain local
changes which should not be thrown away.

Package meta-information (2) is used by meta-installers to design upgrade plans.
Details change from distribution to distribution, but a common core of meta-information
consists of: a unique identifier (the package name), software version, maintainer and
package description, inter-package relationships. These relationships represent the most
valuable information for dependency resolution and usually include: dependencies (the
need of other packages to work properly), conflicts (the inability of being co-installed
with other packages), feature provisions (the ability to declare named features as pro-
vided by a given package, so that other packages can depend on them), and boolean
combinations of them [10].

Packages come with a set of executable maintainer scripts (also known as “config-
uration scripts”) (3). Their purpose is to attach actions to hooks invoked by the installer.
The most common use case for maintainer scripts is to update some cache, blending
together data shipped by the package, with data installed on the system, possibly by
other packages. Three facets of maintainer scripts are noteworthy:
(a) maintainer scripts are full-fledged programs, written in Turing-complete program-
ming languages. They can do anything permitted to the installer, which is usually run
with system administrator rights;
(b) the functionality of maintainer scripts can not be substituted by just shipping extra
files: the scripts often rely on data which is available only in the target installation ma-
chine, and not in the package itself;
(c) maintainer scripts are required to work “properly”: upgrade runs, in which they fail,
trigger upgrade failures and are usually detected via inspection of script exit code.
Upgrades. Table 1 summarizes the different phases of the so called upgrade process,
using as an example the popular APTmeta-installer. The process starts in phase (1) with
the user requesting to alter the local package status. The expressiveness of the requests
varies with the meta-installer, but the aforementioned actions (install, remove, etc.) are
ubiquitously supported, possibly with different semantics [11].
Phase (2) checks whether a package satisfying dependencies and conflicts exists (the
problem is at least NP-complete [10]). If this is the case one is chosen in this phase.
Deploying the new status consists of package retrieval, phase (3), and unpacking, phase
(4). Unpacking is the first phase actually changing both the package status (to keep
track of installed packages) and the filesystem (to add or remove the involved files).

Table 1. The package upgrade process

Intertwined with package retrieval and unpacking, there can be several configuration
phases, (exemplified by phases (5a) and (5b) in Table 1), where maintainer scripts get
executed. The details depend on the available hooks; dpkg offers: pre/post-installation,
pre/post-removal, and upgrade to some version [12].

Example 1. PHP5 (a scripting language integrated with the Apache web server) exe-
cutes as its postinst (post-installation) script the following snippet, on the left hand-
side:

1 #!/bin/sh
2 i f [−e /etc /apache2 /apache2 .conf] ; then
3 a2enmod php5 >/dev /null | | t rue
4 reload_apache
5 f i

1#!/bin/sh
2i f [−e /etc /apache2 /apache2 .conf] ; then
3a2dismod php5 | | t rue
4f i

The Apache module php5, installed during the unpacking phase, gets enabled invoking
the a2enmod command on line 3; the Apache service is then reloaded (line 4) to make
the change effective. Upon PHP5 removal the reverse will happen, as implemented by
PHP5 prerm (pre-removal) script snippet above, on the right hand-side.

Note that prerm is executed before removing files from disk, which is necessary to
avoid reaching an inconsistent configuration where the Apache server is configured to
rely on no longer existing files. The expressiveness of inter-package dependencies is not
enough to encode this kind of dependencies: Apache does not depend on php5 (and
should not, because it is useful also without it), but while php5 is installed, Apache
needs specific configuration to work in harmony with it; at the same time, such con-
figuration would inhibit Apache to work properly once php5 gets removed. The book-
keeping of such configuration intricacies is delegated to maintainer scripts.
Failures. Each phase of the upgrade process can fail. Dependency resolution can fail
either because the user request is unsatisfiable (e.g., user error or inconsistent distri-
butions [9]) or because the meta-installer is unable to find a solution. Completeness—
the guarantee that a solution will be found whenever one exists—is a desirable meta-
installer property unfortunately missing in most meta-installers, with too few claimed
exceptions [13]. Package deployment can fail as well. Trivial failures, e.g., network

Fig. 1. Overall approach

or disk failures, can be easily dealt with when considered in isolation from the other
upgrade phases: the whole upgrade process can be aborted and unpack undone, since
all the involved files are known. Maintainer script failures can not be as easily undone
or prevented, since all non-trivial properties about scripts are undecidable, including
determining a priori which parts of file-system they affect to revert them a posteriori.
The MANCOOSI project. MANCOOSI is working to improve upgrade support in com-
plex software systems such as FOSS distributions. On one hand the project is working
on algorithms for finding optimal upgrade paths addressing complex preferences, on the
other is working on models and tools to (i) simulate the execution of maintainer scripts,
(ii) predict side-effects and system inconsistences which might be raised by package
upgrades, and (iii) instruct roll-back operations to recover previous configurations ac-
cording to user decisions or after upgrade failures. In the rest of this paper we introduce
the approach we are using, in the context of MANCOOSI, to attack the problems of
package upgrades, namely: modeling of the involved entities and upgrade simulation.

3 Proposed approach

As discussed, the problem of maintaining FOSS installations is far from trivial and has
not yet been addressed properly [7]. In particular, current package managers are neither
able to predict nor to counter vast classes of upgrade failures. The reason is that package
managers rely on package meta-information only (in particular on inter-package rela-
tionships), which are not expressive enough to detect upgrade failures. Our proposal
consists in maintaining a model-based description of the system and simulate upgrades
in advance on top of it, to detect predictable upgrade failures and notify the user before
the system is affected. More generally, the models are expressive enough to isolate in-
consistent configurations (as in the case of Example 1, where installed components rely
on the presence of disappearing sub-components), which are currently not expressible
as inter-package relationships.

The adoption of model-driven techniques presents several advantages: (a) models
can be given at any level of abstraction depending on the analysis and operations one
would like to perform as opposed to package dependency information whose granu-
larity is fixed and currently too coarse; (b) complex and powerful analysis techniques
are already available to detect model conflicts and inconsistencies [14,15]. In particular,
contradictory patterns can be specified in a structural way by referring to the underlying
domain semantics in contrast with text-based tools like version control systems where

Fig. 2. Metamodels and their inter-dependencies

conflicts are defined at a much lower level of abstraction as diverging modifications of
the same lexical element.

Figure 1 depicts the proposed approach. Basically, to simulate an upgrade run, two
models are taken into account: the System Model and the Package Model (see the ar-
row a©). The former describes the state of a given system in terms of installed pack-
ages, running services, configuration files, etc. The latter provides information about the
packages involved in the upgrade, in terms of inter-package relationships. Moreover,
since a trustworthy simulation has to consider the behavior of the maintainer scripts
which are executed during the package upgrades, the package model specifies also an
abstraction of the behaviors of such scripts. There are two possible simulation out-
comes: not valid and valid (see the arrows c© and d©, respectively). In the former case
it is granted that the upgrade on the real system will fail. Thus, before proceeding with
it the problem spotted by the simulation should be fixed. In the latter case—valid—
the upgrade on the real system can be operated (see the arrow i©). However, since the
models are an abstraction of the reality, upgrades failures might still occur.

During package upgrades Log models are produced to store all the transitions be-
tween configurations (see arrow b©). The information contained in the system, package,
and log models (arrows e© and f©) are used in case of failures (arrow l©) when the
performed changes have to be undone to bring the system back to the previous valid
configuration (arrow g©). Since it is not possible to specify in detail every single part
of systems and packages, trade-offs between model completeness and usefulness have
been evaluated; the result of such a study has been formalized in terms of metamodels
(see next section) which can be considered one of the constituting concepts of Model
Driven Engineering (MDE) [16]. They are the formal definition of well-formed models,
constituting the languages by which a given reality can be described in some abstract
sense [17] defining an abstract interpretation of the system.

Even though the proposed approach is expressed in terms of simulations, the en-
tailed metamodels do not mandate a simulator. Hybrid architectures composed by a
package manager and metamodel implementations can be more lightweight than the
simulator, yet being helpful to spot inconsistent configurations not detectable without
metamodel guidance.

4 Modeling system and packages

The simulation approach outlined in the previous section is based on a set of coordinated
metamodels which have been defined by analyzing the domain of package-based FOSS
distributions. In general, a metamodel specifies the modeling constructs that can be
used to define models which are said to conform to a given metamodel like a program
conforms to the grammar of the programming language in which it is written [17].

In this work, we have considered two complex FOSS distributions (the Debian and
RPM-based distributions, such as Mandriva. Their analysis has induced the definition
of three metamodels (see Figure 2) which describe the concepts making up a system
configuration and a software package, and how to maintain the log of all upgrades. The
metamodels have been defined according to an iterative process concisting of two main
steps (1) elicitation of new concepts from the domain to the metamodel (2) validation
of the formalization of the concepts by describing part of the real systems. In particu-
lar, the analysis has been performed considering the official packages released by the
distributions with the aim of identifying elements that must be considered as part of the
metamodels. The defined and used analysis strategy, due to the large amount of scripts,
in general tries to collect scripts in clusters with the aim to concentrate the analysis only
on representative scripts of the equivalence classes identified. Due to space constraints
we cannot report the detailed analysis, but the interested reader can refer to [18]. We
report here only the results of the analysis, i.e., the metamodels themselves:
- the System Configuration metamodel contains the modeling constructs to specify the
configuration of a given FOSS system in terms of installed packages, configuration
files, services, filesystem state, etc.;
- the Package metamodel describes the relevant elements making up a package. The
metamodel gives also the possibility to specify the maintainer script behaviors which
are currently ignored—beside mere execution—by existing package managers;
- the Log metamodel is based on the notion of transaction which represents a set of
statements which change the system configuration. Transitions can be viewed as model
transformations [17] which let a configuration C1 evolve into a configuration C2.
As depicted in Figure 2, System Configuration and Package metamodels have mutual
dependencies, whereas the Log metamodel has only direct relations with both the Sys-
tem and Package metamodels. In the rest of the section, such metamodels are described
in more details and some explanatory models conforming to them are also provided.

4.1 Configuration metamodel

A system configuration is the composition of artifacts necessary to make computer
systems perform their intended functions [19]. In this respect, the metamodel depicted
in Figure 3.a specifies the main concepts which make up the configuration of a FOSS
system. In particular, the Environment metaclass enables the specification of loaded
modules, shared libraries, and running process as in the sample configuration reported
in Figure 3.b. In such a model the reported environment is composed of the services
www, and sendmail (see the instances s1 and s2) corresponding to the running web
and mail servers, respectively.

All the services provided by a system can be used once the corresponding packages
have been installed (see the association between the Configuration and Package
metaclasses in Figure 3.a) and properly configured (PackageSetting). Moreover,
the configuration of an installed package might depend on other package configurations.
Example 2. Considering the PHP5 upgrade described in Example 1, the instances ps1
and ps2 of the PackageSetting metaclass in Figure 3.b represents the settings
of the installed packages apache2, and libapache-mod-php5, respectively. The

(a) (b)

Fig. 3. a) (part of) configuration metamodel, and b) sample configuration model

former depends on the latter (see the value of the attribute depends of ps1 in Fig-
ure 3.b) and both are also associated with the corresponding files which store their
configurations.

Note that at the level of inter-package relationships such a dependency should not
be expressed, in spite of actually occurring on real systems. The ability to express such
fine-grained and installation-specific dependencies is a significant advantage offered by
the proposed metamodels which embody domain concepts which are not taken into
account by current package manager tools.

The configuration metamodel gives also the possibility to specify the hardware de-
vices of a system by means of the HardwareDevice metaclass. Due to space con-
straint the usage of such a metaclass is omitted; for more information the interested
reader can found the complete metamodels on the Web.5

The packages which are installed on a given system are specified by means of the
modeling constructs provided by the Package metamodel described in the next section.

4.2 Package metamodel

The metamodel reported in Figure 4.a plays a key role in the overall simulation. In
fact, in addition to the information already available in current package descriptions,
the concepts captured by the metamodel enable the specification of the behavior of
maintainer scripts. In this respect, the metaclass Statement in Figure 4.a repre-
sents an abstraction of the commands that can be executed by a given script to af-
fect the environment, the file system or the package settings of a given configuration
(EnvironmentStatement, FileSystemStatement, and PackageSetting-
Statement, respectively).
Example 3. For instance, the sample package model in Figure 4.b reports the scripts
contained in the package libapache-mod-php5 introduced in Section 2. Due to
space constraints, Figure 4.b contains only the relevant elements of the postinstand
prerm scripts which are represented by the elements pis1 and prs1, respectively.

5 http://www.di.univaq.it/diruscio/mancoosi

http://www.di.univaq.it/diruscio/mancoosi

(a) (b)
Fig. 4. a) (part of) package metamodel, and b) sample package model

According to the model in Figure 4.b the represented scripts update the configura-
tion of the package apache2 (see the element ps1) which depends on libapache-
mod-php5. In particular, the element upss2 corresponds to the statement a2dismod
which disables the PHP5 module in the Apache configuration before removing the
package libapache-mod-php5 from the filesystem. This statement is necessary,
otherwise inconsistent configurations can be reached like the one shown in Figure 5.
The figure reports the sample Configuration2 which has been reached by remov-
ing libapache-mod-php5 without changing the configuration of apache2. Such
a configuration is broken since it contains a dependency between the apache2 and
libapache-mod-php5 package settings, whereas only apache2 is installed.

Fig. 5. Incorrect package removal

Currently, the package managers are not able to predict inconsistencies like the one
in Figure 5 since they take into account only information about package dependencies
and conflicts. The metamodel reported in Figure 4 gives the possibility to specify an
abstraction of the involved maintainer scripts which are executed during the package
upgrades. This way, consistence checking possibilities are increased and trustworthy
simulations of package upgrades can be operated.

(a) (b)
Fig. 6. a) (part of) Log metamodel, and b) Sample Log model

4.3 Log metamodel

The metamodel depicted in Figure 6.a underpin the development of a transactional
model of upgradeability that will allow us to roll-back long upgrade history, restor-
ing previous configurations. In particular, the metaclass Transaction in Figure 6.a
refers to the set of statements which have been executed from a source configuration
leading to a target one. For instance, according to the sample log model in Figure 6.b,
the installation of the package libapache-mod-php5 modifies the file system (see
the statement afss1 which represents the addition of the file f1) and updates the
Apache configuration (see the element upss1).

The usefulness of log models like the one in Figure 6.b is manyfold and accounts
for several roll-back needs:
(a) Preference roll-back: the user wants to recover a previous configuration, for what-
ever reason. For instance, the user is not in need of PHP5 anymore and wants to remove
the installed package libapache-mod-php5. In this case, the configuration C1 can
be recovered by executing the dual operation of each statement in the transaction be-
tween C1 and C2. Note that the log models have all the information necessary to roll-
back to any previous valid configuration not necessary a contiguous one;
(b) Compensate model incompleteness: as already discussed, upgrade simulation is not
complete with respect to upgrades, and undetected failures can be encountered while
deploying upgrades on the real system. For instance, the addition of the file php.ini
during the installation of the package libapache-mod-php5 can raise faults be-
cause of disk errors. In this case we can exploit the information stored in the log model
to retrieve the fallacious statements and to roll-back to the configuration from which the
broken transaction has started.
(c) “Live” failures: the proposed approach does not mandate to pre-simulate upgrades.
In fact, it is possible as well to avoid simulation and have metamodeling supervise up-
grades to detect invalid configurations as soon as they are reached. At that point, if
any, log models comes into play and enable rolling back deployed changes to bring the
system back to a previous valid configuration.

The log metamodel will play a key role in the definition of tools and algorithms to
keep track of the evolution of the system and to revert the system to previous (working)
states and retrieve it in an efficient way.

5 Related works

The main difficulties related to the management of upgrades in FOSS distributions
depend on the existence of maintainer scripts which can have system-wide side-effects,
and hence can not be narrowed to the involved packages only. In this respect, proposals
like [20,21] represent a first step toward roll-back management. Both proposals exploit
re-creation of removed packages on-the-fly, so that they can be re-installed to undo
an upgrade. However, such approaches can track only files which are under package
manager control, therefore they cannot undo maintainer script side effects.

An interesting proposal to support the upgrade of a system, called NixOS, is pre-
sented in [22]. NixOS is a purely functional distribution meaning that all static parts of
a system (such as software packages, configuration files and system boot scripts) are
expressed as pure functions. Among the main limitations of NixOS there is the fact that
some actions related to upgrade deployment can not be made purely functional (e.g.,
user database management). Moreover, NixOS solution poses security concerns due to
the fact that “garbage collection” of shared library (implemented to ensure no dangling
library references can exist) makes hard ensuring that no security flawed versions of a
library which is being fixed stay around.

[23] proposes an attempt to monitor the upgrade process with the aim to discover
what is actually being touched by an upgrade. Unfortunately, it is not sufficient to know
which files have been involved in the maintainer scripts execution but we have also
to consider system configuration, running services etc., as taken into account by our
metamodels. Even focusing only on touched files, it is not always possible to undo an
upgrade by simply recopying the old file6.

Finally, this work can be related with techniques for static analysis of scripting lan-
guages. Some previous work [24] deals with SQL injection detection for PHP scripts,
but it did not consider the most dynamic parts of the PHP language, which are quite
common in shell script languages. Whereas, [25] presents a mechanism to detect argu-
ment arity bugs in shell scripts, but once more only considers a tiny fragment of the
shell language. Both works hence are far even from the minimal requirement of deter-
mining a priori the set of files touched by script execution, letting aside how restricted
were the considered shell language subsets. Given these premises, we are skeptical that
static analysis can fully solve the problems illustrated in this work.

6 Conclusion and future works

In this paper we presented a model-driven approach to manage the upgrade of FOSS
distributions. This approach represents an important advance with respect to the state

6 This argument goes far beyond the scope of this work, see [7] for a more in-depth discussion
of the topic.

of the art in the following directions: it provides the base on which developing features
to (i) support the roll-back of failed or unwanted upgrades, and (ii) simulate the execu-
tion of upgrade runs (including maintainer script behaviors) that we described in terms
of models. A running example showed how the proposed models allow a reasonable
description of the state of the system and representation of its evolution over time.

As future work we plan to implement these results and to develop a transactional
update engine in the real context of Debian and Mandriva distributions. Moreover, the
metamodels proposed in this paper will be the foundation to define a new Domain
Specific Language (DSL) for maintainer script specifications.

References
1. Spinellis, D., Szyperski, C.: How is open source affecting software development. IEEE

Computer 21(1) (2004) 28–33
2. Noronha Silva, G.: APT howto. http://www.debian.org/doc/manuals/

apt-howto/ (2008)
3. Niemeyer, G.: Smart package manager. http://labix.org/smart (2008)
4. : Apache maven project. http://maven.apache.org/ (2008)
5. Szyperski, C.: Component Software. Beyond Object-Oriented Programming. Addison-

Wesley (1998)
6. Szyperski, C.: Component technology: what, where, and how? In: Proceedings of ICSE03,

ACM (2003)
7. Di Cosmo, R., Trezentos, P., Zacchiroli, S.: Package upgrades in FOSS distributions: Details

and challenges. In: HotSWup’08. (2008) To appear.
8. Cousot, P.: Abstract interpretation. ACM Computing Surveys 28(2) (2006)
9. Mancinelli, F., Boender, J., Cosmo, R.D., Vouillon, J., Durak, B., Leroy, X., Treinen, R.:

Managing the complexity of large free and open source package-based software distribu-
tions. In: ASE 2006, Tokyo, Japan, IEEE CS Press (September 2006) 199–208

10. EDOS Project: Report on formal management of software dependencies. EDOS Project
Deliverable D2.1 and D2.2 (March 2006)

11. Treinen, R., Zacchiroli, S.: Description of the CUDF format. Mancoosi project deliverable
D5.1 (November 2008) http://www.mancoosi.org/deliverables/d5.1.pdf.

12. Jackson, I., Schwarz, C.: Debian policy manual. http://www.debian.org/doc/
debian-policy/ (2008)

13. Tucker, C., Shuffelton, D., Jhala, R., Lerner, S.: Opium: Optimal package install/uninstall
manager. In: ICSE ’07, IEEE Computer Society (2007) 178–188

14. Mens, T., Straeten, R.V.D., D’Hondt, M.: Detecting and resolving model inconsistencies us-
ing transformation dependency analysis. In: MoDELS 2006. Volume 4199 of LNCS. (2006)

15. Cicchetti, A., Ruscio, D.D., Pierantonio, A.: Managing model conflicts in distributed devel-
opment. In: MoDELS 2008. Volume 5301 of LNCS. (2008) 311–325

16. Schmidt, D.C.: Guest Editor’s Introduction: Model-Driven Engineering. IEEE Computer
39(2) (2006) 25–31

17. Bézivin, J.: On the Unification Power of Models. SOSYM 4(2) (2005) 171–188
18. Di Ruscio, D., Pelliccione, P., Pierantonio, A., Zacchiroli, S.: Metamodel for describing

system structure and state. Mancoosi Project deliverable D2.1 (January 2009) http://
www.mancoosi.org/deliverables/d2.1.pdf.

19. Dolstra, E., Hemel, A.: Purely functional system configuration management. In:
USENIX’07, San Diego, CA (2007) 1–6

20. Olin Oden, J.: Transactions and rollback with RPM. Linux Journal 2004(121) (2004) 1
21. Trezentos, P., Di Cosmo, R., Lauriere, S., Morgado, M., Abecasis, J., Mancinelli, F., Oliveira,

A.: New Generation of Linux Meta-installers. Research Track of FOSDEM 2007 (2007)
22. Dolstra, E., Löh, A.: NixOS: A purely functional linux distribution. In: ICFP. (2008) To

appear.
23. McQueen, R.: Creating, reverting & manipulating filesystem changesets on Linux. Part II

Dissertation, Computer Laboratory, University of Cambridge (May 2005)
24. Xie, Y., Aiken, A.: Static detection of security vulnerabilities in scripting languages. In:

USENIX-SS’06. (2006) 179–192
25. Mazurak, K., Zdancewic, S.: Abash: finding bugs in bash scripts. In: PLAS ’07, ACM (2007)

105–114

http://www.debian.org/doc/manuals/apt-howto/
http://www.debian.org/doc/manuals/apt-howto/
http://labix.org/smart
http://maven.apache.org/
http://www.mancoosi.org/deliverables/d5.1.pdf
http://www.debian.org/doc/debian-policy/
http://www.debian.org/doc/debian-policy/
http://www.mancoosi.org/deliverables/d2.1.pdf
http://www.mancoosi.org/deliverables/d2.1.pdf

	Towards a Model Driven Approach to Upgrade Complex Software Systems
	Antonio Cicchetti and Davide Di Ruscio and Patrizio Pelliccione and Alfonso Pierantonio and Stefano Zacchiroli

