
Automating Co-evolution in Model-Driven Engineering∗

Antonio Cicchetti, Davide Di Ruscio, Romina Eramo, Alfonso Pierantonio
Dipartimento di Informatica
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Abstract

Software development is witnessing the increasing need
of version management techniques for supporting the evo-
lution of model-based artefacts. In this respect, metamod-
els can be considered one of the basic concepts of Model-
Driven Engineering and are expected to evolve during their
life-cycle. As a consequence, models conforming to changed
metamodels have to be updated for preserving their well-
formedness.

This paper deals with the co-adaptation problems by
proposing higher-order model transformations which take
a difference model recording the metamodel evolution and
produce a model transformation able to co-evolve the in-
volved models.

1 Introduction

Model-Driven Engineering (MDE) [19] aims at rendering
business logic and intellectual property resilient to techno-
logical changes by shifting the focus of software develop-
ment from coding to modeling. In general, domains are
analysed and engineered by means of a metamodel, i.e. a
coherent set of interrelated concepts. A model is said to con-
form to a metamodel, or in other words it is expressed by
the concepts encoded in the metamodel, constraints are ex-
pressed at the metalevel, and model transformation occurs
when a source model is modified to produce a target model.

Evolution is an inevitable aspect which affects the whole
life-cycle of software systems [12]. In general, artefacts can
be subject to many kinds of changes, which range from re-
quirements through architecture and design, to source code,
documentation and test suites. Moreover, taxonomies of
software evolution distinguish maintenance activities on the
basis of their purpose (i.e. updative, adaptive, performance,
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corrective or reductive) or technical aspects (i.e., the when,
where, what and how of software changes) [14, 5]. There-
fore, evolution management is a complex task which re-
quires specialized discipline and tool support.

Similarly to other software artefacts, metamodels can
evolve over time too [9]. Accordingly, models need to be
co-adapted1 in order to remain compliant to the metamodel
and not become eventually invalid. When manually oper-
ated the adaptation is error-prone and can give place to in-
consistencies between the metamodel and the related arte-
facts. Such issue becomes very relevant when dealing with
enterprise applications, since in general system models en-
compass a large population of instances which need to be
appropriately adapted, hence inconsistencies can possibly
lead to irremediable information erosion [23].

This work proposes a transformational approach to
model co-evolution, i.e. how to automatically generate well-
defined adaptation steps directly from the modifications the
metamodel underwent. In particular, the approach is based
on a model difference representation [7] which is used to
specify in a difference model the metamodel changes. Thus,
the co-adaptation is given as a higher-order model trans-
formation which takes the difference model recording the
metamodel evolution and generates a model transformation
able to produce the co-evolution of models. Especially, the
proposal shows how the breaking resolvable and unresolv-
able changes (see Sect. 2) require a specific management
whenever interdependencies among them occur.

The structure of the paper is as follows. In Sect. 2 the dif-
ferent kinds of modifications a metamodel can be subject to
are illustrated and categorized in accordance with the avail-
able literature. Moreover, it presents the typologies of co-
adaptation steps a metamodel evolution induces. Then, the
proposed approach is described: Sect. 3 introduces a model-
based representation of the metamodel evolution, whereas
Sect. 4 describes the automated co-adaptation. Finally, in
Sect. 5 and Sect. 6 related works and some conclusions are

1The terms (co-)adaptation and (co-)evolution will be used as syn-
onyms throughout the paper.



discussed, respectively.

2 Metamodel evolution and model co-
evolution

Metamodels can be considered one of the constituting con-
cepts of MDE, since they are the formal definition of well-
formed models, or in other words they constitute the lan-
guages by which a given reality can be described in some
abstract sense [2]. Metamodels are expected to evolve dur-
ing their life-cycle, thus causing possible problems to exist-
ing models which conform to the old version of the meta-
model and do not conform to the new version anymore. The
problem is due to the incompatibility between the meta-
model revisions and a possible solution is the adoption of
mechanisms of model co-evolution, i.e. models need to be
migrated in new instances according to the changes of the
corresponding metamodel.

Unfortunately, model co-evolution is not always simple
and presents intrinsic difficulties which are related to the
kind of evolution the metamodel has been subject to. Go-
ing into more details, metamodels may evolve in different
ways: some changes may be additive and independent from
the other elements, thus requiring no or little instance re-
vision. In other cases metamodel manipulations introduce
incompatibilities and inconsistencies which can not be eas-
ily (and automatically) resolved.

Figure 1. Petri Net metamodel evolution

In Fig. 1 it is depicted an example of the evolution of a
(simplified) Petri Net metamodel, which takes inspiration
from the work in [23]. The initial Petri Net (MM0) con-
sists of Places and Transitions; moreover, places can
have source and/or destination transitions, whereas transi-
tions must link source and destination places (src and dst

association roles, respectively). In the new metamodel MM1,
each Net has at least one Place and one Transition. Be-
sides, arcs between places and transitions are made explicit
by extracting PTArc and TPArc metaclasses. This refine-
ment permits to add further properties to relationships be-
tween places and transitions. For example, the Petri Net for-
malism can be extended by annotating arcs with weights. As
PTArc and TPArc both represent arcs, they can be general-
ized by a superclass, and a new integer metaproperty can be
added in it. Therefore, an abstract class Arc encompassing
the integer metaproperty weight has been added in MM2 re-
vision of the metamodel. Finally, Net has been renamed
into PetriNet. The metamodels in Fig. 1 will be exploited
as the running example throughout the paper. They have
been kept deliberately simple because of space limitations,
even though they are suitable to present all the insights
of the co-adaptation mechanisms as already demonstrated
in [23].

The revisions illustrated so far can invalidate existing
instances; therefore, each version needs to be analysed to
comprehend the various kind of updates it has been sub-
ject to and, eventually, to elicit the necessary adaptations
of corresponding models. Metamodel manipulations can be
classified by their corrupting or non-corrupting effects on
existing instances [11]:

- non-breaking changes: changes which do not break
the conformance of models to the corresponding meta-
model;

- breaking and resolvable changes: changes which
break the conformance of models even though they can
be automatically co-adapted;

- breaking and unresolvable changes: changes which
break the conformance of models which can not auto-
matically co-evolved and user intervention is required.

In other words, non-breaking changes consist of additions
of new elements in a metamodel MM leading to MM′ with-
out compromising models which conform to MM and thus,
in turn, conform to MM′. For instance, in the metamodel
MM2 illustrated in Fig. 1 the abstract metaclass Arc has been
added as a generalization of the PTArc and TPArc meta-
classes (without considering the new attribute weight). Af-
ter such a modification, models conforming to MM1 still con-
form to MM2 and co-evolution is not necessary. Unfortu-
nately, this is not always the case since in general changes
may break models even though sometimes automatic res-
olution can be performed, i.e. when facing breaking and



resolvable changes. For instance, the Petri Net metamodel
MM1 in Fig. 1 is enriched with the new PTArc and TPArc

metaclasses. Such a modification breaks the models that
conform to MM0 since according to the new metamodel MM1,
Place and Transition instances can not be directly re-
lated, but PTArc and TPArc elements are required. How-
ever, models can be automatically migrated by adding for
each couple of Place and Transition entities two addi-
tional PTArc and TPArc instances between them.

Often manual interventions are needed to solve breaking
changes like, for instance, the addition of the new attribute
weight to the class Arc of MM2 in Fig. 1 which were not
specified in MM1. The models conforming to MM1 can not be
automatically co-evolved since only a human intervention
can introduce the missing information related to the weight
of the arc being specified, or otherwise default values have
to be considered. We refer to such situations as breaking
and unresolvable changes.

All the scenarios of model co-adaptations can be man-
aged with respect to the possible metamodel modifications
which can be distinguished into additive, subtractive, and
updative. In particular, with additive changes we refer to
metamodel element additions which in turn can be further
distinguished as follows:

– Add metaclass: introducing new metaclasses is a com-
mon practice in metamodel evolution which gives place
to metamodel extensions. Adding new metaclasses raises
co-evolution issues only if the new elements are manda-
tory with respect to the specified cardinality. In this case,
new instances of the added metaclass have to be accord-
ingly introduced in the existing models;

– Add metaproperty: this is similar to the previous case
since a new metaproperty may be or not obligatory with
respect to the specified cardinality. The existing models
maintain the conformance to the considered metamodel if
the addition occurs in abstract metaclasses without sub-
classes; in other cases, human intervention is required to
specify the value of the added property in all the involved
model elements;

– Generalize metaproperty: a metaproperty is generalized
when its multiplicity or type are relaxed. For instance, if
the cardinality 3..n of a sample metaclass MC is modi-
fied in 0..n, no co-evolution actions are required on the
corresponding models since the existing instances of MC
still conform to the new version of the metaclass;

– Pull metaproperty: a metaproperty p is pulled in a super-
class A and the old one is removed from a subclass B. As a
consequence, the instances of the metaclass A have to be
modified by inheriting the value of p from the instances
of the metaclass B;

– Extract superclass: a superclass is extracted in a hierar-
chy and a set of properties is pulled on. If the superclass

Change type Change
Non-breaking changes Generalize metaproperty

Add (non-obligatory) metaclass
Add (non-obligatory) metaproperty

Breaking and Extract (abstract) superclass
resolvable changes Eliminate metaclass

Eliminate metaproperty
Push metaproperty
Flatten hierarchy
Rename metaelement
Move metaproperty
Extract/inline metaclass

Breaking and Add obligatory metaclass
unresolvable changes Add obligatory metaproperty

Pull metaproperty
Restrict metaproperty
Extract (non-abstract) superclass

Table 1. Changes classification

is abstract model instances are preserved, otherwise the
effects are referable to metaproperty pulls.

Subtractive changes consist of the deletion of some of the
existing metamodel elements as described in the following:

– Eliminate metaclass: a metaclass is deleted by giving
place to a sub metamodel of the initial one. In general,
such a change induces in the corresponding models the
deletions of all the metaclass instances. Moreover, if
the involved metaclass has subclasses or it is referred by
other metaclasses, the elimitation causes side effects also
to the related entities;

– Eliminate metaproperty: a property is eliminated from a
metaclass, it has the same effect of the previous modifi-
cation;

– Push metaproperty: pushing a property in subclasses
means that it is deleted from an initial superclass A and
then cloned in all the subclasses C of A. If A is abstract
then such a metamodel modification does not require any
model co-adaptation, otherwise all the instances of A and
its subclasses need to be accordingly modified;

– Flatten hierarchy: to flatten a hierarchy means eliminat-
ing a superclass and introducing all its properties into the
subclasses. This scenario can be referred to metaproperty
pushes;

– Restrict metaproperty: a metaproperty is restricted when
its multiplicity or type are enforced. It is a complex case
where instances need to be co-adapted or restricted. Re-
stricting the upper bound of the multiplicity requires a
selection of certain values to be deleted. Increasing the
lower bound requires new values to be added for the
involved element which usually are manually provided.
Restricting the type of a property requires type conver-
sion for each value.



Finally, a new version of the model can consist of some up-
dates of already existing elements leading to updative mod-
ifications which can be grouped as follows:
– Rename metaelement: renaming is a simple case in

which the change needs to be propagated to existing in-
stances and can be performed in an automatic way;

– Move metaproperty: it consists of moving a property p

from a metaclass A to a metaclass B. This is a resolvable
change and the existing models can be easily co-evolved
by moving the property p from all the instances of the
metaclass A to the instances of B;

– Extract/inline metaclass: extracting a metaclass means
to create a new class and move the relevant fields from the
old class into the new one. Vice versa, to inline a meta-
class means to move all its features into another class and
delete the former. Both metamodel refactorings induce
automated model co-evolutions.

The classification illustrated so far is summarized in Tab. 1
and makes evident the fundamental role of evolution rep-
resentation. At a first glance it seems that the classifica-
tion does not encompass references that are associations
amongst metaclasses. However, references can be consid-
ered properties of metaclasses at the same level of attributes.

Metamodel evolutions can be precisely categorized by
understanding the kind of modifications a metamodel un-
dergone. Moreover, starting from the classification it is pos-
sible to adopt adequate countermeasures to co-evolve ex-
isting instances. Nonetheless, it is worth noting that the
classification summarized in Tab. 1 is based on a clear dis-
tinction between the metamodel evolution categories. Un-
fortunately, in real world experiences the evolution of a
metamodel can not be reduced to a sequence of atomic
changes, generally several types of changes are operated as
affecting multiple elements with different impacts on the
co-adaptation. Furthermore, the entities involved in the
evolution can be related one another. Therefore, since co-
adaptation mechanisms are based on the described change
classification, a metamodel adaptation will need to be
decomposed in terms of the induced co-evolution cate-
gories. The possibility to have a set of dependences among
the several parts of the evolution makes the updates not
always distinguishable as single atomic steps of the meta-
model revision, but requires a further refinement of the clas-
sification as introduced in the next section and discussed in
details in Sect. 4.

3 Formalizing metamodel differences
The problem of model differences is intrinsically complex
and requires specialized algorithms and notations to match
the abstraction level of models [13]. Recently, in [7, 18] two
similar techniques have been introduced to represent differ-
ences as models, hereafter called difference models; inter-

Figure 2. KM3 metamodel

estingly these proposals combine the advantages of declar-
ative difference representations and enable the reconstruc-
tion of the final model by means of automated transforma-
tions which are inherently defined in the approaches. In the
rest of the section, we recall the difference representation
approach defined in [7] in order to provide the reader with
the technical details which underpin the solution proposed
in Sect. 4.

Despite the work in [7] has been introduced to deal with
model revisions, it is easily adaptable to metamodel evo-
lutions too. In fact, a metamodel is a model itself, which
conforms to a metamodel referred to as the meta meta-
model [2]. For presentation purposes, the KM3 language in
Fig. 2 is considered throughout the paper, even though the
solution can be generalized to any metamodeling language
like OMG/MOF [15] or EMF/Ecore [4].

The overall structure of the change representation mech-
anism is depicted in Fig. 3: given two base metamodels MM1

and MM2 which conform to an arbitrary base meta meta-
model (KM3 in our case), their difference conforms to a
difference metamodel MMD derived from KM3 by means of
an automated transformation MM2MMD. The base meta meta-
model, extended as prescribed by such a transformation,
consists of new constructs able to represent the possible
modifications that can occur on metamodels and which can
be grouped as follows:

– additions: new elements are added in the initial meta-
model; with respect to the classification given in Sect. 2,
Add metaclass and Extract superclass involve this kind
of change;

– deletions: some of the existing elements are deleted as a
whole. Eliminate metaclass and Flatten hierarchy fall in
this category of manipulations;

– changes: a new version of the metamodel being con-
sidered can consist of updates of already existing ele-
ments. For instance, Rename metaelement and Restrict
metaproperty require this type of modification. Also
the addition and deletion of metaproperty (i.e. Add



Figure 3. Overall structure of the model dif-
ference representation approach

metaproperty and Eliminate metaproperty, respectively)
are modelled through this construct. In fact, when a
metaelement is included in a container the manipulation
is represented as a change of the container itself.

In order to represent the differences between the Petri
Net metamodel revisions, the extended KM3 meta meta-
model depicted in Fig. 4 is generated by applying
the MM2MMD transformation in Fig. 3 previously men-
tioned. For each metaclass MC of the KM3 metamodel,
the additional metaclasses AddedMC, DeletedMC, and
ChangedMC are generated. For instance, the metaclass
Class in Fig. 2 induces the generation of the metaclasses
AddedClass, DeletedClass, and ChangedClass as de-
picted in Fig. 4. In the same way, Reference meta-
class induces AddedReference, DeletedReference,
and ChangedReference.

The generated difference metamodel is able to represent
all the differences amongst metamodels which conform to
KM3. For instance, the model in Fig. 5 conforms to the gen-
erated metamodel in Fig. 4 and represents the differences
between the Petri Net metamodels specified in Fig. 1. The
differences depicted in such a model can be summarized as
follows:

1) the addition of the new class PTArc in the MM1 revision
of the Petri Net metamodel is represented by means of an
AddedClass instance, as illustrated by model difference
∆0,1 in Fig. 5. Moreover, the reference between Place

and Transition named dst has been updated to link
PTArc with name out. Analogously, the reverse refer-
ence named src has been manipulated to point PTArc
and named as in. Two new references have been added
through the corresponding AddedReference instances
to realize the reverse links from PTArc to Place and
Transition, respectively. Finally, the composition re-
lationship between Net and Place has been updated by
prescribing the existence of at least one Place through
the lower property which has been updated from 0 to 1.
The same enforcement has been done to the composition

Figure 4. Generated difference KM3 meta-
model

between Net and Transition;

2) the addition of the new abstract class Arc in MM2 together
with its attribute weight is represented through an in-
stance of the AddedClass and the AddedAttribute

metaclasses in the ∆1,2 delta of Fig. 5. In the mean-
while, PTArc and TPArc classes are made specializations
of Arc. Finally, Net entity is renamed as PetriNet.

Difference models like the one in Fig. 5 can be obtained
by using today’s available tools like EMFCompare [21] and
SiDiff [22], which are not discussed here due to space limi-
tation.

The representation mechanism used so far allows to
identify changes which occurred in a metamodel revi-
sion and satisfies a number of properties, as illustrated
in [7]. One of them is the compositionality, i.e. the pos-
sibility to combine difference models in interesting con-
structions like the sequential and the parallel compositions,
which in turn result in valid difference models themselves.
For the sake of simplicity, let us consider only two modi-
fications over the initial model: the sequential composition
of such manipulations corresponds to merging the modifi-
cations conveyed by the first document and then, in turn,
by the second one in a resulting difference model contain-
ing a minimal difference set, i.e., only those modifications
which have not been overridden by subsequent manipula-
tions. Whereas, parallel compositions are exploited to com-
bine modifications operated from the same ancestor in a
concurrent way. In case both manipulations are not affect-
ing the same elements they are said parallel independent
and their composition is obtained by merging the difference
models by interleaving the single changes and assimilating



Figure 5. Subsequent Petri Net metamodel
adaptations

it to the sequential composition. Otherwise, they are re-
ferred to as parallel dependent and conflict issues can arise
which need to be detected and resolved [5].

Finally, difference documentation can be exploited to re-
apply changes to arbitrary input models (see [7] for further
details) and for managing model co-evolution induced by
metamodel manipulations. In the latter case, once differ-
ences between metamodel versions have been detected and
represented, they have to be partitioned in resolvable and
non resolvable scenarios in order to adopt the correspond-
ing resolution strategy. However, this distinction is not al-
ways feasible because of parallel dependent changes, i.e.
situations where multiple changes are mixed and interde-
pendent one another, like when a resolvable change is in
some way related with a non-resolvable one, for instance.

In those cases, deltas have to be decomposed in order to
isolate the non-resolvable portion from the resolvable one,
as illustrated in the next section.

4 Transformational adaptation of models

This section proposes a transformational approach able
to consistently adapt existing models with respect to the
modifications occurred in the corresponding metamod-
els. The proposal is based on model transformation and the
difference representation techniques presented in the previ-
ous section. In particular, given two versions MM1 and MM2

of the same metamodel (see Fig. 6.a), their differences
are recorded in a difference model ∆, whose metamodel
KM3Diff is automatically derived from KM3 as described
in Sect. 3. In realistic cases, the modifications consist of an
arbitrary combination of the atomic changes summarized
in Tab. 1. Hence, a difference model formalizes all kind of
modifications, i.e. non-breaking, breaking resolvable and
unresolvable ones. This poses additional difficulties since
current approaches (e.g. [23, 11]) do not provide any sup-
port to co-adaptation when the modifications are given with-
out explicitly distinguishing among breaking resolvable and
unresolvable changes. Our approach consists of the follow-
ing steps:

i) automatic decomposition of ∆ in two disjoint (sub)
models, ∆R and ∆¬R, which denote breaking resolv-
able and unresolvable changes;

ii) if ∆R and ∆¬R are parallel independent (see previous
section) then we separately generate the corresponding
co-evolutions;

iii) if ∆R and ∆¬R are parallel dependent, they are fur-
ther refined to identify and isolate the interdependen-
cies causing the interferences.

The distinction between ii) and iii) is due to fact that when
two modifications are not independent their effects depend
on the order the changes occur leading to non confluent sit-
uations. The confluence can still be obtained by removing
those modifications which caused the conflicts as described
in Sect. 4.2.

The general approach is outlined in Fig. 6 where dotted
and solid arrows represent conformance and transformation
relations, respectively, and square boxes are any kind of
models, i.e. models, difference models, metamodels, and
even transformations. In particular, the decomposition of ∆
is given by two model transformations, TR and T¬R (right-
hand side of Fig. 6.a). Co-evolution actions are directly ob-
tained as model transformations from metamodel changes
by means of higher-order transformations, i.e. transforma-
tions which produce other transformations [2]. More specif-
ically, the higher-order transformations HR and H¬R (see



Figure 6. Overall approach

Fig. 6.b and 6.c) take ∆R and ∆¬R and produce the (co-
evolving) model transformations CTR and CT¬R, respec-
tively. Since ∆R and ∆¬R are parallel independent CTR

and CT¬R can be applied in any order because they operate
to disjoint sets of model elements, or in other words

(CT¬R · CTR)(M1) = (CTR · CT¬R)(M1) = M2

with M1 and M2 models conforming to the metamodel MM1

and MM2, respectively (see Fig. 6.d).
The next sections illustrate the approach and its im-

plementation. In particular, we describe the decom-
position of ∆ and the generation of the co-evolving
model-transformations for the case of parallel independent
breaking resolvable and unresolvable changes. Finally, in
Sect. 4.2 we outline how to remove interdependencies from
parallel dependent changes in order to generalize the solu-
tion provided in Sect. 4.1. The overall approach has been
implemented and the interested reader can download it
at [6].

4.1 Parallel independent changes

The generation of the co-evolving model transformations is
described in the rest of the section by means of the evo-
lutions the PetriNet metamodel has been subject to in
Fig. 1. The differences between the subsequent metamodel
versions are given in Fig. 5 and have, in turn, to be decom-

posed to distinguish breaking resolvable and unresolvable
modifications.

In particular, the difference ∆(0,1) from MM0 to MM1 con-
sists of two atomic modifications, i.e. an Extract metaclass
and a Restrict metaproperty change (according to the clas-
sification in Tab. 1), which are referring to different sets of
model elements. The approach is able to detect parallel in-
dependence by verifying that the eventual decomposed dif-
ferences have an empty intersection. Since a) the previous
atomic changes are breaking resolvable and unresolvable,
and b) they do not share any model element, then ∆(0,1)

is decomposed by TR and T¬R into the parallel indepen-
dent ∆R(0,1) and ∆¬R(0,1), respectively. In fact, the former
contains the extract metaclass action which affects the el-
ements Place and Transition, whereas the latter holds
the restrict metaproperty changes consisting of the reference
modifications in the metaclass Net. Analogously, the same
decomposition can be operated on ∆(1,2) (denoting the evo-
lution from MM1 to MM2) to obtain ∆R(1,2) and ∆¬R(1,2)

since the denoted modifications do not conflict one another.
In fact, the Rename metaelement change (represented by
cc1 and c1 in Fig. 5.b) is applied to Net, whereas the Add
obligatory metaproperty operation involves the new meta-
class Arc which is supertype of the PTArc and TPArc meta-
classes.

As previously said, once the ∆ is decomposed the
higher-order transformations HR and H¬R detect the oc-
curred metamodel changes and accordingly generate the co-
evolution to adapt the corresponding models. In the current
implementation, model transformations are given in ATL,
a QVT compliant language part of the AMMA platform [3]
which contains a mixture of declarative and imperative con-
structs. In the Listing 1 a fragment of theHR transformation
is reported: it consists of a module specification containing a
header section (lines 1-2), transformation rules (lines 4-41)
and a number of helpers which are used to navigate models
and to define complex calculations on them. In particular,
the header specifies the source models, the corresponding
metamodels, and the target ones. Since the HR transforma-
tion is higher-order, the target model conforms to the ATL
metamodel which essentially specifies the abstract syntax
of the transformation language. Moreover, HR takes as in-
put the model which represents the metamodel differences
conforming to KM3Diff.

The helpers and the rules are the constructs used to spec-
ify the transformation behaviour. The source pattern of
the rules (e.g. lines 15-20) consists of a source type and a
OCL [17] guard stating the elements to be matched. Each
rule specifies a target pattern (e.g. lines 21-25) which is
composed of a set of elements, each of them (as the one
at lines 22-25) specifies a target type from the target meta-
model (for instance, the type MatchedRule from the ATL
metamodel) and a set of bindings. A binding refers to a



feature of the type, i.e. an attribute, a reference or an asso-
ciation end, and specifies an expression whose value initial-
izes the feature. HR consists of a set of rules each of them
devoted to the management of one of the resolvable meta-
model changes reported in Tab. 1. For instance, the Listing 1
contains the rules for generating the co-evolution actions
corresponding to the Rename metaelement and the Extract
metaclass changes.

1module H_R;
2create OUT : ATL from Delta : KM3Diff;
3...
4rule atlModule {
5 from
6 s: KM3Diff!Metamodel
7 to
8 t : ATL!Module (
9 name <- ’CTR’,

10 outModels <- Sequence {tm},
11 inModels <- Sequence {sm},...
12 ),...
13}
14rule CreateRenaming {
15 from
16 input : KM3Diff!Class,
17 delta : KM3Diff!ChangedClass
18 ...
19 (not input.isAbstract
20 and input.name <> delta.updatedElement.name...)
21 to
22 matchedRule : ATL!MatchedRule (
23 name<-input.name + ’2’ + delta.updatedElement.

name,
24 ...
25 ),...
26}
27rule CreateExtractMetaClass {
28 from
29 cr1: KM3Diff!ChangedReference, cr2: KM3Diff!

ChangedReference, r1 : KM3Diff!Reference, r2 :
KM3Diff!Reference, c1 : KM3Diff!Class,

30 c2 : KM3Diff!Class,...
31 ( cr1.updatedElement = r2 and cr1.owner = c2
32 and cr1.type = c1 and ...)
33 to
34 -- MatchedRule generation
35 matchedRule_i_c2 : ATL!MatchedRule (
36 name<-i_c2.name + ’2’ + i_c2.name,
37 inPattern <- ip_i_c2,
38 outPattern <- op_i_c2,
39 ...
40 ),...
41}
42...

Listing 1. Fragment of the HOTR

transformation

The application of HR to the metamodel MM0 in Fig. 1
and the difference model ∆R(0,1) in Fig. 5 generates the
model transformation reported in the Listing 2. In fact,
the source pattern of the CreateExtractMetaClass rule
(lines 28-32 in the Listing 1) matches with the two Ex-
tract metaclass changes represented in ∆R(0,1). They con-
sist of the additions of the PTArc and TPArc metaclasses
instead of the direct references between the existing el-
ements Place and Transition. Consequently, accord-
ing to the structural features of the involved elements, the

CreateExtractMetaClass rule generates the transfor-
mation CTR(0,1) which is able to co-evolve all the models
conforming to MM0 by adapting them with respect to the new
metamodel MM1 (see line 1-2 of the Listing 2). In particular,
each element of type Place has to be modified by changing
all the references to elements of type Transition with ref-
erences to new elements of type PTArc (see lines 4-23 in the
Listing 2). The same modification has to be performed for
all the elements of type Transition by creating new ele-
ments of type TPArc which have to be added instead of di-
rect references between Transition and Place instances
(see lines 24-42).

1module CTR;
2create OUT : MM1 from IN : MM0;
3...
4rule Place2Place {
5 from
6 s : MM1!Place
7 ...
8 to
9 t : MM2!Place (

10 name <- s.name,
11 net <- s.net,
12 out <- s.dst->collect(e |
13 thisModule.createPTArc(e, t)
14 )
15 )
16}
17rule createPTArc(s : OclAny, n : OclAny) {
18 to
19 t : MM2!PTArc (
20 src <- s,
21 dst <- n
22 ), ...
23}
24rule Transition2Transition {
25 from
26 s : MM1!Transition
27 ...
28 to
29 t : MM2!Transition (
30 net <- s.net,
31 in <- s.dst->collect(e |
32 thisModule.createTPArc(e, t)
33 )
34 )
35}
36rule createTPArc(s : OclAny, n : OclAny) {
37 to
38 t : MM2!PTArc (
39 dst <- s,
40 src <- n
41 ), ...
42}
43...

Listing 2. Fragment of the generated CTR(0,1)

transformation

The management of the breaking and unresolvable mod-
ifications is based on the same techniques presented so far
for the breaking resolvable case. However, as mentioned
in Sect. 2, the involved transformations can not automati-
cally co-adapt the models but are limited to default actions
which have to be refined by the designer. Due to space lim-
itation the code of the H¬R transformation is not described
here. However, the interested reader can download it at [6].



4.2 Parallel dependent changes

As mentioned above, the automatic co-adaptation of models
relies on the parallel independence of breaking resolvable
and unresolvable modifications, or more formally

∆R|∆¬R = ∆R;∆¬R + ∆¬R;∆R (1)

where + denotes the non-deterministic choice. In essence,
their application is not affected by the adopted order since
they do not present any interdependencies. In case the mod-
ifications in Tab. 1 refer to the same elements then the order
in which such modifications take place matters and does not
allow the decomposition of a difference model as, for in-
stance, when evolving MM0 directly to MM2 (although the sub
steps MM0 − MM1 and MM1 − MM2 are directly manageable as
described in the previous section).

A possible approach, which is only sketched in the fol-
lowing, consists in isolating the interdependencies when-
ever (1) does not hold. The intention is to define an iter-
ative process consisting in diminishing the modifications
between two metamodels until the corresponding breaking
resolvable and unresolvable differences are parallel inde-
pendent. In particular, let ∆ be a difference between two
metamodels, then we denote by P(∆) the difference power-
model, that is the (partially ordered) set of all possible valid
sub models of ∆ (i.e. fragments of the difference model
which are still conforming to the difference metamodel)

P(∆) = {δ0 = φ, · · · , δi, δi+1, · · · , δn = ∆}

Then, the solution is the smallest k in {0, · · · , n} such that

∆(k); δk = ∆

where ∆(k) is the difference model between ∆ and δk, and

∆(k) = ∆(k)
R |∆(k)

¬R

with ∆(k)
R and ∆(k)

¬R parallel independent. Hence, the prob-
lem of parallel dependence is reduced to the following

∆ = (∆(k)
R |∆(k)

¬R); δk

by applying the higher-order transformation introduced in
the previous section. For instance, if we consider (MM2 −
MM0) the solution consists in iteratively finding a difference
model which maps MM0 to the intermediate metamodel cor-
responding to MM2 without the attribute weight of the Arc
metaclass. Therefore, the remaining δk in this example is a
non resolvable change, while in general it may demand for
further iterations of the decomposition process.

5 Related works

Over the last few years, the problem of metamodel evolu-
tion and model co-evolution has been investigated by sev-
eral works [23, 11]. In general, model co-evolution requires

the changes to be categorized as a) without effects on ex-
isting model instances b) with simple side effects on mod-
els c) with side effects demanding for additional manage-
ment [20]. To this end, the change classification presented in
Sect. 2 is inspired by the existing experiences on metamodel
evolution. In particular, the work in [23] distinguishes adap-
tations that ensure instance preservation from manipula-
tions which induce co-evolutions. Metamodel evolutions
are specified by QVT relations [16], while co-adaptations
are defined in terms of QVT transformations when resolv-
able changes occur. The main limitations are that co-
adapting transformations are not automatically obtained
from metamodel modifications and unresolvable changes
are not given explicit support. Moreover, using relations
instead of difference models does not allow distinguish-
ing metaelement updates from deletion/addition patterns
and causes false-positives in detecting, for instance, ex-
tract metaclass cases. In fact, the only change types which
can be precisely caught are the additive and subtractive
ones. This problem is (partly) addressed in [11], which
advocates for some metamodel difference management by
means of change traces, although no specific proposal is
adopted or given. This work has the merits of classifying
changes as breaking/non-breaking and sketching an algo-
rithmic detection of such modifications which is deferred
to future work. Similarly to [23], it does not provide any
automatic derivation of the co-evolving transformations.

A common aspect to [11, 23] is the atomicity of the
changes, i.e. the classified change types are assumed to oc-
cur individually, which is far from being a realistic scenario
since modifications tend to occur with arbitrary multiplicity
and complexity. Additionally, interdependencies may also
be present posing severe difficulties in distinguishing the
various change types described in Sect. 2.

The solution presented in this paper has a number of
similarities with the techniques illustrated in [8], where
the authors discuss the possibility to induce model trans-
formations through model weaving. In particular, weaving
links are given to establish correspondences between meta-
model elements and consequently to derive mappings be-
tween corresponding models. If the weaving is seen as a
difference representation, the induced transformation can
be considered as the automated co-adaptation of existing
instances. Nonetheless, the approach in [8] lacks of ex-
pressiveness, since only additions and deletions can be rep-
resented through the semantics provided by the proposed
weaving relationships. As a consequence, the co-adaptation
refers only to additive and subtractive cases (as for [23])
and requires the developers to provide explicit support to
updative cases.

The issues discussed in this work can be also found in the
context of database evolution and metadata handling, which
have been demonstrated to share several problems related



to model management [1]. In fact, when schemas evolve
to overcome new requirements all the interconnected arte-
facts need to be co-adapted, like queries, scripts and even
existing data. Also in this field, a common solution relies
on the separation between schema manipulations causing
no or limited updates to existing instances versus modifi-
cations requiring deep structural changes and data conver-
sions. Analogously to this paper, simple situations can be
automatically supported, while complex ones demands for
user intervention, even though the environment can be ade-
quately started-up [10].

6 Conclusions and future work
This paper presented a transformational approach to co-
evolution of models which are requested to become con-
forming to a newer version of their original metamodel. The
main points include 1) starting from metamodel differ-
ences the automated generation of co-evolving actions can
be obtained by means of higher-order transformations; the
adaptation considers both resolvable and non-resolvable
changes by providing the designer, in case of knowledge
non-determinism, with refinement mechanisms; 2) the co-
adaptation technique deals with the occurrence of multiple
change types in the metamodel in order to cope with realis-
tic scenarios; in particular, differences must be decomposed
in resolvable and non-resolvable changes.

The previous decomposition can lead to parallel depen-
dent metamodel differences which require an explicit isola-
tion of those modifications which cause the resolvable and
non-resolvable changes to be interdependent. By means of
the difference powermodel construction given in Sect. 4.2 it
is possible to arrange modifications in a lattice which guides
the resolvable and non-resolvable differences to be itera-
tively refined until they become parallel independent.

Apart from the iterative decomposition procedure,
the complete approach has been implemented on the
AMMA [3] platform and is available for download
at [6]. Future work includes the implementation of the
powermodel construction the difference refinement depends
on. Moreover, a more systematic validation of the approach
must necessarily encompass larger population of models
and metamodels.
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