
Bits for the Mancoosi project
yeah, including “visualizing package clusters” :-)

Stefano Zacchiroli
zack@{pps.jussieu.fr,debian.org}

Laboratoire PPS, Université Paris Diderot / The Debian Project

28 July 2009
DebConf9 — Cáceres, Spain

Stefano Zacchiroli (Univ.Paris 7/Debian) Bit from Mancoosi 28 Jul 2009 / DebConf9 1 / 38

Outline

1 Past
The EDOS project
Package dependencies: the formal way

2 Present
QA tools
The Mancoosi project
Fun with the Debian dependency graph

3 Future

Stefano Zacchiroli (Univ.Paris 7/Debian) Bit from Mancoosi 28 Jul 2009 / DebConf9 2 / 38

Outline

1 Past
The EDOS project
Package dependencies: the formal way

2 Present
QA tools
The Mancoosi project
Fun with the Debian dependency graph

3 Future

Stefano Zacchiroli (Univ.Paris 7/Debian) Bit from Mancoosi 28 Jul 2009 / DebConf9 3 / 38

Outline

1 Past
The EDOS project
Package dependencies: the formal way

2 Present
QA tools
The Mancoosi project
Fun with the Debian dependency graph

3 Future

Stefano Zacchiroli (Univ.Paris 7/Debian) Bit from Mancoosi 28 Jul 2009 / DebConf9 4 / 38

The EDOS project [http://www.edos-project.org]

name Environment for the development and Distribution of
Open Source software

funding European Commission, IST activities 6th framework
programme

timeframe October 2004 – June 2007

consortium universities (Paris 7, Tel Aviv, Zurich, Geneva), research
institutions (INRIA), companies (Caixa Magica, Nexedi,
Edge-IT (i.e. Mandriva), CSP Torino)

objective study and solve problems associated with the
production, management and distribution of open
source software packages

Debian: not officially involved, but 1 DD (Ralf Treinen) was involved. A lot
of code has been integrated into Debian and is being used daily for QA
purposes.

Stefano Zacchiroli (Univ.Paris 7/Debian) Bit from Mancoosi 28 Jul 2009 / DebConf9 5 / 38

http://www.edos-project.org

EDOS Workpackages

EDOS was relatively broad in scope, split into several workpackages:
1 formal management of software dependencies

2 flexible testing framework

3 peer-to-peer content dissemination system
4 metrics and evaluation

Focus: distribution coherence from release manager’s point of view

Main question

Is it possible, for a given user selection of packages, to
install them when only the packages from a given
repository are available?

Stefano Zacchiroli (Univ.Paris 7/Debian) Bit from Mancoosi 28 Jul 2009 / DebConf9 6 / 38

EDOS Workpackages

EDOS was relatively broad in scope, split into several workpackages:
1 formal management of software dependencies

2 flexible testing framework

3 peer-to-peer content dissemination system
4 metrics and evaluation

Focus: distribution coherence from release manager’s point of view

Main question

Is it possible, for a given user selection of packages, to
install them when only the packages from a given
repository are available?

Stefano Zacchiroli (Univ.Paris 7/Debian) Bit from Mancoosi 28 Jul 2009 / DebConf9 6 / 38

Outline

1 Past
The EDOS project
Package dependencies: the formal way

2 Present
QA tools
The Mancoosi project
Fun with the Debian dependency graph

3 Future

Stefano Zacchiroli (Univ.Paris 7/Debian) Bit from Mancoosi 28 Jul 2009 / DebConf9 7 / 38

What is an inter-package relationships?

First EDOS objective: establish a simple mathematical model of a
distribution. Design decision: do so by looking at inter-package
relationships.

Package: aterm
Depends: libc6 (>= 2.3.2.ds1-4), libice6 | xlibs (» 4.1.0), ...

to be interpreted as a propositional logic formula in CNF having
(versioned) package names as literals, i.e.

libc6∧ (libice6∨ xlibs)∧ . . .

. . . some care is required though:

multiple versions: foo becomes foo1.0 | foo1.1 | . . .
virtual packages: m-t-a becomes
postfix | exim | sendmail | . . .

Stefano Zacchiroli (Univ.Paris 7/Debian) Bit from Mancoosi 28 Jul 2009 / DebConf9 8 / 38

What is a repository then?

Putting it all together, a distribution repository is modeled as:
1 a set of (versioned) packages P

2 a function D associating packages to dependencies (formulae)

3 a set of conflicts C, i.e. pairs of non co-installable packages

Example (modeling of the previously shown Packages)

P = {(a,1), (b,2), (b,3), (c,3), (d,1), (d,2), (d,3)}
D(a,1) = {{(b,2), (b,3)}, {(c,3), (d,2), (d,3)}}
D(b,2) = ∅

· · ·
C = {((b,2), (b,3)), ((b,3), (b,2)), ((c,3), (b,2)), . . .}

Stefano Zacchiroli (Univ.Paris 7/Debian) Bit from Mancoosi 28 Jul 2009 / DebConf9 9 / 38

Package installability as SAT

The problem of whether a package is installable in a given
repository is equivalent to SAT:1

each package p with version v is a boolean variable pv
ñ if pv then the package should be installed else it should not

each dependency is a logical implication, e.g.:
aterm→ libc6∧ (libice6∨ xlibs)∧ . . .
each conflict between a and b is a formula ¬(a∧ b)

Theorem

A package p (with version v) is installable iff there exist a boolean
assignment that makes pv true, and satisfies the encoding of the
repository.

(Not so) nice consequence: package installability is a hard problem.

1deciding whether a formula in propositional logic is satisfiable or not
Stefano Zacchiroli (Univ.Paris 7/Debian) Bit from Mancoosi 28 Jul 2009 / DebConf9 10 / 38

Package installability as SAT — example

apt-get install

libc6=2.3.2.ds1-22

in

Package: libc6
Version: 2.2.5-11.8

Package: libc6
Version: 2.3.5-3

Package: libc6
Version: 2.3.2.ds1-22
Depends: libdb1-compat

Package: libdb1-compat
Version: 2.1.3-8
Depends: libc6 (>= 2.3.5-1)

Package: libdb1-compat
Version: 2.1.3-7
Depends: libc6 (>= 2.2.5-13)

becomes

I2.3.2.ds1−22
libc6
∧
¬(I2.3.2.ds1−22

libc6 ∧ I2.2.5−11.8
libc6)

∧
¬(I2.3.2.ds1−22

libc6 ∧ I2.3.5−3
libc6)

∧
¬(I2.3.5−3

libc6 ∧ I2.2.5−11.8
libc6)

∧
¬(I2.1.3−7

libdb1-compat ∧ I2.1.3−8
libdb1-compat)

∧
I2.3.2.ds1−22
libc6 →
(I2.1.3−7
libdb1-compat ∨ I2.1.3−8

libdb1-compat)
∧
I2.1.3−7
libdb1-compat →
(I2.3.2.ds1−22
libc6 ∨ I2.3.5−3

libc6)
∧
I2.1.3−8
libdb1-compat → I2.3.5−3

libc6

. . . average formula has 400 literals, KDE installation 32’000

Stefano Zacchiroli (Univ.Paris 7/Debian) Bit from Mancoosi 28 Jul 2009 / DebConf9 11 / 38

Good qualities for a repository

An installation is a repository subset.
In a healthy installation: all dependencies are satisfied (abundance)
and no pairs of conflicting packages are co-installed (peace)

i.e. what our package managers are meant to enforce!

A package in a repository is installable if there exists at least one
healthy installation which contains it

i.e. there is at least one way for our users to install it

A package repository is trimmed if every package it contains is
installable wrt the repository itself

i.e. there are no “broken” packages

Shipping non-trimmed repositories = shipping packages that users
will not be able to install

Stefano Zacchiroli (Univ.Paris 7/Debian) Bit from Mancoosi 28 Jul 2009 / DebConf9 12 / 38

Outline

1 Past
The EDOS project
Package dependencies: the formal way

2 Present
QA tools
The Mancoosi project
Fun with the Debian dependency graph

3 Future

Stefano Zacchiroli (Univ.Paris 7/Debian) Bit from Mancoosi 28 Jul 2009 / DebConf9 13 / 38

Outline

1 Past
The EDOS project
Package dependencies: the formal way

2 Present
QA tools
The Mancoosi project
Fun with the Debian dependency graph

3 Future

Stefano Zacchiroli (Univ.Paris 7/Debian) Bit from Mancoosi 28 Jul 2009 / DebConf9 14 / 38

Quality Assurance

On the basis of the presented formalization, several QA tools for
distro have been developed:

edos-debcheck command line checker for package installability

pkglab interactive, console-based environment for repository
inspection

ceve parser/converter between package list formats

tart slice a repository (e.g. media), so that packages
available on the i-th slice are installable using only
slices up to i

Stefano Zacchiroli (Univ.Paris 7/Debian) Bit from Mancoosi 28 Jul 2009 / DebConf9 15 / 38

edos-debcheck

edos-debcheck takes as input APT package list(s) and checks
whether one, several, or all packages in it are installable

Customized SAT solver, very fast: checking installability of all
package in main testing/amd64 takes 5 seconds on an entry-level
machine.

Example
edos-debcheck </var/lib/apt/lists/..._main_binary-amd64_Packages
Parsing package file... 1.2 seconds 21617 packages
Generating constraints... 2.3 seconds
Checking packages... 1.5 seconds
acx100-source (= 20070101-3): FAILED
alien-arena (= 7.0-1): FAILED
alien-arena-browser (= 7.0-1): FAILED
alien-arena-server (= 7.0-1): FAILED
alsa-firmware-loaders (= 1.0.16-1): FAILED
amoeba (= 1.1-19): FAILED
...
explanation can be required as well

Debian package: edos-debcheck
main author: Jérôme Vouillon

Stefano Zacchiroli (Univ.Paris 7/Debian) Bit from Mancoosi 28 Jul 2009 / DebConf9 16 / 38

edos-debcheck noteworthy applications

EmDebian: upload time check to avoid uninstallability
ñ harder in Debian: long path between upload and archive
ñ how about an advisory dput hook?

edos-builddebcheck: wrapper around edos-buildcheck to
check satisfiability of build-dependencies (by zack and treinen)

ñ used pre-release to check buildability in the new release
ñ soon(?) in wanna-build to avoid spurious errors (by nomeata)

uninstallable packages, daily monitor
http://edos.debian.net/edos-debcheck

undeclared Conflicts, periodic monitor (by treinen)
http://edos.debian.net/missing-conflicts/
dpkg: error processing
/var/cache/apt/archives/gcc-avr_1%3a4.3.0-1_amd64.deb (-unpack):
trying to overwrite ‘/usr/lib64/libiberty.a’, which is also in package binutils

Stefano Zacchiroli (Univ.Paris 7/Debian) Bit from Mancoosi 28 Jul 2009 / DebConf9 17 / 38

http://edos.debian.net/edos-debcheck
http://edos.debian.net/missing-conflicts/

Debian weather!

Just for fun, Debian weather (http://edos.debian.net/weather/)
gives a weather-like representation of uninstallable packages
statistics

The “Debian weather”
for today: mostly
sunny in stable and
testing, at places
overcast and rainy in
unstable.

clear < 1%
few clouds 1% . . .2%
clouds 2% . . .3%
showers 3% . . .4%
storm > 4%

Stable:

Testing:

Unstable:

alpha amd64 arm hppa i386 ia64 mips mipsel powerpc

Stefano Zacchiroli (Univ.Paris 7/Debian) Bit from Mancoosi 28 Jul 2009 / DebConf9 18 / 38

http://edos.debian.net/weather/

pkglab

pkglab is an interactive, console-based environment to explore
package repositories of package-based software distributions.

Features:

load current and past package lists

package installability checks (a-la edos-debcheck)

functional query language (map, filter, fold, . . .)

inspect historical evolution of repositories

Debian package: pkglab

Stefano Zacchiroli (Univ.Paris 7/Debian) Bit from Mancoosi 28 Jul 2009 / DebConf9 19 / 38

pkglab — examples

(* interactive equivalent of edos-debcheck *)

> $diag <- check($unstable,$unstable)
Solver: Computing closure
Solver: Done, 22156 packages in closure
Solver: Numbering
Solver: Converting to boolean problem
Solver: Done, formula of size 200184
<diagnosis:closure size 22156, 141 failures>
> #show $diag
Diagnosis:
Conflicts: 13997
Disjunctions: 155280
Dependencies: 164279
Failures (total 141):
Package acidlab’0.9.6b20-22@all
cannot be installed:
acidlab’0.9.6b20-22@all depends on one of:
- libphp-phplot’4.4.6+5.0rc1.dfsg-0.1@all

libphp-phplot’4.4.6+5.0rc1.dfsg-0.1@all
depends on missing:
- php3
- php3-cgi
- php4
- php4-cli

(* same check in stable of a few months ago *)

check(acidlab’0.9.6b20-22@all,
contents(%debian/stable/main/i386,

2008-03-20))
(...)
<diagnosis:closure size 557, 0 failures>

Stefano Zacchiroli (Univ.Paris 7/Debian) Bit from Mancoosi 28 Jul 2009 / DebConf9 20 / 38

pkglab — examples (cont.)

(* check co-installability of php{4,5} *)

> $d<-check_together(
php4’6:4.4.4-8+etch4@all,

php5’5.2.5-3@all, $a)
(...)
Solver: Not successful, 1 failures
> #show $d
Diagnosis:
(...)
Failures (total 1):
Packages php5’5.2.5-3@all

and php4’6:4.4.4-8+etch4@all
cannot be installed together:
php4’6:4.4.4-8+etch4@all
depends on missing
- libapache-mod-php4(>=’6:4.4.4-8+etch4)
- libapache2-mod-php4(>=’6:4.4.4-8+etch4)
- php4-cgi(>=’6:4.4.4-8+etch4)

(* works in the union of stable and unstable *)

> check_together(php4’6:4.4.4-8+etch4@all,
php5’5.2.5-3@all,

$a|contents(%debian/stable/main/i386,
2008-03-20))

(...)
<diagnosis_list:closure size 857,
0 failures>

Stefano Zacchiroli (Univ.Paris 7/Debian) Bit from Mancoosi 28 Jul 2009 / DebConf9 21 / 38

Outline

1 Past
The EDOS project
Package dependencies: the formal way

2 Present
QA tools
The Mancoosi project
Fun with the Debian dependency graph

3 Future

Stefano Zacchiroli (Univ.Paris 7/Debian) Bit from Mancoosi 28 Jul 2009 / DebConf9 22 / 38

The Mancoosi project [http://www.mancoosi.org]

Mancoosi picks up the baton from where EDOS left: the focus is now
the sysadm (our user and her interaction with package management.

name MANaging the COmplexity of the Open Source
Infrastructure

funding European Commission, IST activities 7th framework
programme

timeframe February 2008 – January 2011

consortium universities (Paris 7, L’Aquila, Sophia Antipolis, Tel Aviv,
Louvain), research institutions (INESC-ID), companies
(Caixa Magica, Pixart, Edge-IT (i.e. Mandriva), ILOG)

objective develop rollback mechanisms for package upgrades
and better algorithms to plan package upgrade paths

Debian is not officially involved, but 2 DDs (treinen and zack) are
enrolled as researchers among the ranks of Paris 7

Stefano Zacchiroli (Univ.Paris 7/Debian) Bit from Mancoosi 28 Jul 2009 / DebConf9 23 / 38

http://www.mancoosi.org

The upgrade problem

Upgrade problem = the “problem” posed by a user request to
change the local status of installed packages
Solving an upgrade problem can fail for several reasons:

invocation error, dependency solving, package retrieval, package
unpacking, maintainer script execution, . . .

Mancoosi will try to attack the upgrade problem from two sides:

rollback support there are impredictable failures (e.g. maintscripts),
a posteriori recovery techniques are the only way out

dependency solving not satisfying meta-installer state of the art
(e.g. incompleteness: the inability to find a solution
when there is one): we should to better!

while studying this ... we’ve met the Debian dependency graph

Stefano Zacchiroli (Univ.Paris 7/Debian) Bit from Mancoosi 28 Jul 2009 / DebConf9 24 / 38

The upgrade problem

Upgrade problem = the “problem” posed by a user request to
change the local status of installed packages
Solving an upgrade problem can fail for several reasons:

invocation error, dependency solving, package retrieval, package
unpacking, maintainer script execution, . . .

Mancoosi will try to attack the upgrade problem from two sides:

rollback support there are impredictable failures (e.g. maintscripts),
a posteriori recovery techniques are the only way out

dependency solving not satisfying meta-installer state of the art
(e.g. incompleteness: the inability to find a solution
when there is one): we should to better!

while studying this ... we’ve met the Debian dependency graph

Stefano Zacchiroli (Univ.Paris 7/Debian) Bit from Mancoosi 28 Jul 2009 / DebConf9 24 / 38

Outline

1 Past
The EDOS project
Package dependencies: the formal way

2 Present
QA tools
The Mancoosi project
Fun with the Debian dependency graph

3 Future

Stefano Zacchiroli (Univ.Paris 7/Debian) Bit from Mancoosi 28 Jul 2009 / DebConf9 25 / 38

Debian dependency graph
a node for each (binary) package
an edge from p to q each time q appears somewhere in the
(Pre)-Depends field ofr p

Debian is huge, its dependency graph is huge as well: about 25’000
nodes, 400’000 edges.
It used to grow exponentially, it is stabilizing.

Stefano Zacchiroli (Univ.Paris 7/Debian) Bit from Mancoosi 28 Jul 2009 / DebConf9 26 / 38

All dependencies are equal but . . .

The explicit, syntactic dependency relation p → q is too coarse
grained to answer natural questions like:

can I remove package p without affecting package q ?

Answer may not be dependent on packages p and q only!
e.g.: alternative (OR-ed) dependencies, virtual packages

let’s try again

Strong dependencies

p strongly depends on q with respect to repository R (p ⇒R q) if it is
not possible to install p without also installing q

Stefano Zacchiroli (Univ.Paris 7/Debian) Bit from Mancoosi 28 Jul 2009 / DebConf9 27 / 38

Strong vs “normal” dependencies
Example

Package: p
Depends: q, r
Package: a
Depends: b | c

p

��

��333333

q r

a∨
��

��4444444

b c

Strong deps: p ⇒ q,p ⇒ r

Example

. . . but in general things get more complicated:

Package: p
Depends: q | r
Package: r
Conflicts: p
Package: q

p∨
��

��333333

q r

#
the conflict can come
from a galaxy far, far
away . . .

Strong deps: p ⇒ q

Stefano Zacchiroli (Univ.Paris 7/Debian) Bit from Mancoosi 28 Jul 2009 / DebConf9 28 / 38

Correlation between strong and normal dependencies

(data from Lenny)

Stefano Zacchiroli (Univ.Paris 7/Debian) Bit from Mancoosi 28 Jul 2009 / DebConf9 29 / 38

Impact Set and Package Sensitivity

Impact set: the set of packages potentially affected by changes in a
given package.

Definition (Impact set of a component)

Given a repository R and a package p in R, the impact set of p in R is
the set Is(p,R) = {q ∈ R | q ⇒ p}.
Similarly, the direct impact set of p is the set
DirIs(p,R) = {q ∈ R | q → p}.

Definition (Sensitivity)

The strong sensitivity, or simply sensitivity, of a package p ∈ R is
|Is(p,R)|−1, i.e., the cardinality of the impact set minus 1. Similarly,
the direct sensitivity is the cardinality of the direct impact set.

Idea: sensitivity asses how “delicate” is a package.
How many packages can I break uploading/installing p ?

Stefano Zacchiroli (Univ.Paris 7/Debian) Bit from Mancoosi 28 Jul 2009 / DebConf9 30 / 38

Top 15 of sensitive packages in Lenny

What’s the most sensitive package in Lenny?

Stefano Zacchiroli (Univ.Paris 7/Debian) Bit from Mancoosi 28 Jul 2009 / DebConf9 31 / 38

Top 15 of sensitive packages in Lenny
Package |p| ||p|| ||p|| − |p|
1 gcc-4.3-base 43 20128 20085
2 libgcc1 3011 20126 17115
3 libselinux1 50 14121 14071
4 lzma 4 13534 13530
5 coreutils 17 13454 13437
6 dpkg 55 13450 13395
7 libattr1 110 13489 13379
8 libacl1 113 13467 13354
9 perl-base 299 13310 13011

10 libstdc++6 2786 14964 12178
11 libncurses5 572 11017 10445
12 debconf 1512 11387 9875
13 libc6 10442 20126 9684
14 libdb4.6 103 9640 9537
15 zlib1g 1640 10945 9305

. . .

Stefano Zacchiroli (Univ.Paris 7/Debian) Bit from Mancoosi 28 Jul 2009 / DebConf9 31 / 38

Dominators

Intuition

p dominates q if the strong dependency of p on q “explains” the
impact set of q, i.e., q is “important” due to a lot of other packages
which requires p (it is the case for gcc-4.3-base)

Definition
Strong dominance Given two packages p and q in a repository R, we
say that p strongly dominates q (p åIs q) iff

Is(p,R) ⊇ (Is(q,R) \ Scons(p)), and

p strongly depends on q

The dominance relation gives a good device to highlight complex
structure in the Debian dependency graph.

Stefano Zacchiroli (Univ.Paris 7/Debian) Bit from Mancoosi 28 Jul 2009 / DebConf9 32 / 38

Strong dominance graphs in Debian

let’s showcase some examples ...

Live data (all Debian releases + daily snapshots) available at
http://www.mancoosi.org/measures/

Stefano Zacchiroli (Univ.Paris 7/Debian) Bit from Mancoosi 28 Jul 2009 / DebConf9 33 / 38

http://www.mancoosi.org/measures/

Outline

1 Past
The EDOS project
Package dependencies: the formal way

2 Present
QA tools
The Mancoosi project
Fun with the Debian dependency graph

3 Future

Stefano Zacchiroli (Univ.Paris 7/Debian) Bit from Mancoosi 28 Jul 2009 / DebConf9 34 / 38

Strong conflicts

Like strong dependencies, but with conflicts!

a and b conflict strongly iff they cannot be installed together

1591 ppmtofb-0.32 :
1591 (python-2.4.4-2 <-> ppmtofb-0.32)

* python-osd-0.2.12-1.2 (conjunctive)
- dependency: python-osd-0.2.12-1.2 -> python-2.4.4-2
- conflict: python-2.4.4-2 - ppmtofb-0.32

* python-oss-0.0.0.20010624-3.3 (conjunctive)
- dependency: python-oss-0.0.0.20010624-3.3 -> python-2.4.4-2
- conflict: python-2.4.4-2 - ppmtofb-0.32
...

ppmtofb-0.32 has had 1591 strong conflicts, why?

All caused by one explicit conflict

In the metadata: conflict with python > 2.4

Stefano Zacchiroli (Univ.Paris 7/Debian) Bit from Mancoosi 28 Jul 2009 / DebConf9 35 / 38

Better dependency solving

completeness each time a solution to an upgrade problem does
exists, a meta-installer should be able to find it

optimality it should be possible to specify optimization criteria to
discriminate among otherwise equivalent solutions,
e.g.:

minimize download size
minimize used disk space
minimize the number of sensitive package touched
blacklist packages maintained by J. Random DD
. . .

efficiency dependency resolution should be as fast as possible

Stefano Zacchiroli (Univ.Paris 7/Debian) Bit from Mancoosi 28 Jul 2009 / DebConf9 36 / 38

A dependency solver competition

We surely do not hope to find magically the silver bullet algorithm
for dependency solving, but we can help the fate organizing a
dependency solving competition

real-life upgrade problem collected a-la popcon

various tracks: plain resolution (speed), optimizing resolution
(better solution), . . .

developers and researchers can submit their implementations
of their algorithms

the winner gains fortune and glory

A distro-independent format to describe upgrade scenario has been
developed: CUDF (Common Upgradeability Description Format)

it can also be used to share dependency solver between
package managers

currently implemented in CUPT

Stefano Zacchiroli (Univ.Paris 7/Debian) Bit from Mancoosi 28 Jul 2009 / DebConf9 37 / 38

Questions?

looking for something else than Q & A time?
. . . ok, here is some SPAM a friendly reminder: http://www.mancoosi.org

Stefano Zacchiroli (Univ.Paris 7/Debian) Bit from Mancoosi 28 Jul 2009 / DebConf9 38 / 38

http://www.mancoosi.org

	Past
	The EDOS project
	Package dependencies: the formal way

	Present
	QA tools
	The Mancoosi project
	Fun with the Debian dependency graph

	Future

