
Solving Package Dependencies:
from EDOS to Mancoosi

Ralf Treinen Stefano Zacchiroli
{treinen,zack}@{pps.jussieu.fr,debian.org}

Laboratoire PPS, Université Paris Diderot / The Debian Project

10 August 2008
DebConf8 — Mar Del Plata, Argentina

Stefano Zacchiroli (Univ.Paris 7/Debian) Mancoosi 10 Ago 2008 / DebConf8 1 / 35

The Challenge of Distributions

Debian, as other vendors, is meant to carry the burden of maintaining a
free software distribution. It is a challenging task! (smooth upgrades,
automatic dependency solving, up to date software . . .)

Help from: better infrastructure for package maintainers and better
package managers for final users.

Two projects to the rescue:

EDOS [2004–2007] aim: provide FOSS distribution editors with
better QA tools

Mancoosi [2008–2011] aim: provide better package managers to
improve “upgrade” experiences

This talk gives an overview of the EDOS and Mancoosi projects and their
relationships with Debian.

Stefano Zacchiroli (Univ.Paris 7/Debian) Mancoosi 10 Ago 2008 / DebConf8 2 / 35

Outline

1 EDOS
Formalizing inter-package relationships for fun and profit
. . . profiting: the EDOS tools and QA

2 Mancoosi

Stefano Zacchiroli (Univ.Paris 7/Debian) Mancoosi 10 Ago 2008 / DebConf8 3 / 35

Intermezzo: EDOS/Mancoosi terminology

installer file-level package manager, e.g. dpkg

meta-installer repository-level package manager, e.g. apt-get, aptitude,
. . .

package metadata static information about a package, e.g. inter-package
relationships declared in debian/control

Stefano Zacchiroli (Univ.Paris 7/Debian) Mancoosi 10 Ago 2008 / DebConf8 4 / 35

Outline

1 EDOS
Formalizing inter-package relationships for fun and profit
. . . profiting: the EDOS tools and QA

2 Mancoosi

Stefano Zacchiroli (Univ.Paris 7/Debian) Mancoosi 10 Ago 2008 / DebConf8 5 / 35

The EDOS project [http://www.edos-project.org]

name Environment for the development and Distribution of Open
Source software

funding European Commission, IST activities 6th framework
programme

timeframe October 2004 – June 2007

consortium universities (Paris 7, Tel Aviv, Zurich, Geneva), research
institutions (INRIA), companies (Caixa Magica, Nexedi,
Edge-IT (i.e. Mandriva), CSP Torino)

objective study and solve problems associated with the production,
management and distribution of open source software
packages

Debian was not officially involved, even though 1 DD was enrolled as a researcher

among the ranks of Paris 7. A lot of code has been integrated into Debian and is

being used daily for QA purposes.

Stefano Zacchiroli (Univ.Paris 7/Debian) Mancoosi 10 Ago 2008 / DebConf8 6 / 35

http://www.edos-project.org

EDOS Workpackages

EDOS was relatively broad in scope and was split in several workpackages
about the following subjects:

1 formal management of software dependencies

2 flexible testing framework

3 peer-to-peer content dissemination system

4 metrics and evaluation

We will focus on (1): we were mostly involved in it, and it was the origin of most

Debian-related results.

Focus: distribution coherence from release manager’s point of view

Main question

Is it possible, for a given user selection of packages, to install
them when only the packages from a given repository are
available?

Stefano Zacchiroli (Univ.Paris 7/Debian) Mancoosi 10 Ago 2008 / DebConf8 7 / 35

EDOS Workpackages

EDOS was relatively broad in scope and was split in several workpackages
about the following subjects:

1 formal management of software dependencies

2 flexible testing framework

3 peer-to-peer content dissemination system

4 metrics and evaluation

We will focus on (1): we were mostly involved in it, and it was the origin of most

Debian-related results.

Focus: distribution coherence from release manager’s point of view

Main question

Is it possible, for a given user selection of packages, to install
them when only the packages from a given repository are
available?

Stefano Zacchiroli (Univ.Paris 7/Debian) Mancoosi 10 Ago 2008 / DebConf8 7 / 35

Outline

1 EDOS
Formalizing inter-package relationships for fun and profit
. . . profiting: the EDOS tools and QA

2 Mancoosi

Stefano Zacchiroli (Univ.Paris 7/Debian) Mancoosi 10 Ago 2008 / DebConf8 8 / 35

Which inter-package relationships?

First EDOS objective: establish a simple mathematical model of a
distribution.
Design decision: do so by looking at inter-package relationships as seen by
meta-installers.

Inter-package relationships (policy) and which concern EDOS:

Depends

Recommends user-overridable

Suggests ignored by default

Pre-Depends ≈ Depends, different only for installer

Enhances ignored by default

Conflicts

Breaks not available back then, installer-specific

Replaces installer-specific

Stefano Zacchiroli (Univ.Paris 7/Debian) Mancoosi 10 Ago 2008 / DebConf8 9 / 35

What is an inter-package relationship?

Each relationship among packages is something like:

Package: aterm
Depends: libc6 (>= 2.3.2.ds1-4), libice6 | xlibs (>> 4.1.0), ...

to be interpreted as a propositional logic formula in Conjunctive Normal
Form having (versioned) package names as literals, i.e.

libc6 ∧ (libice6 ∨ xlibs) ∧ . . .

What about version constraints?
Given a package repository:

substitute each non-versioned package name for a disjunction of its
available versions

substitute each versioned package name for a disjunctions of all of its
available versions which satisfy the version constraint

Stefano Zacchiroli (Univ.Paris 7/Debian) Mancoosi 10 Ago 2008 / DebConf8 10 / 35

What is an inter-package relationship?

Each relationship among packages is something like:

Package: aterm
Depends: libc6 (>= 2.3.2.ds1-4), libice6 | xlibs (>> 4.1.0), ...

to be interpreted as a propositional logic formula in Conjunctive Normal
Form having (versioned) package names as literals, i.e.

libc6 ∧ (libice6 ∨ xlibs) ∧ . . .

What about version constraints?
Given a package repository:

substitute each non-versioned package name for a disjunction of its
available versions

substitute each versioned package name for a disjunctions of all of its
available versions which satisfy the version constraint

Stefano Zacchiroli (Univ.Paris 7/Debian) Mancoosi 10 Ago 2008 / DebConf8 10 / 35

Repository expansion

Before reasoning about a repository, an expansion is performed

Example (Version number expansion)
Package: a Package: a

Version: 1 Version: 1

Depends: b, c|d(>=2) Depends: b(=2)|b(=3),

c(=3)|d(=2)|d(=3)

Package: b Package: b

Version: 2 Version: 2

Package: b Package: b

Version: 3 Version: 3

Package: c Package: c

Version: 3 Version: 3

Conflicts: b Conflicts: b(=2),b(=3)

Package: d Package: d

Version: 1 Version: 1

Package: d Package: d

Version: 2 Version: 2

Package: d Package: d

Version: 3 Version: 3

Stefano Zacchiroli (Univ.Paris 7/Debian) Mancoosi 10 Ago 2008 / DebConf8 11 / 35

Repository expansion (cont.)

. . . the same can be done to handle virtual packages

substitute a virtual package name for a disjunction of the (versioned)
packages providing it

Example (Virtual package expansion)
Package: a Package: a

Provides: v

Package: b

Package: b Depends: w

Provides: v

Depends: w Package: v

Depends: a|b

Package: c Package: c

Provides: w Conflicts: d

Conflicts: w

Package: d

Package: d Conflicts: c

Provides: w

Conflicts: w Package: w

Depends: c|d

[versions omitted for the sake of clarity]

Stefano Zacchiroli (Univ.Paris 7/Debian) Mancoosi 10 Ago 2008 / DebConf8 12 / 35

What is a repository then?

Putting it all together, a distribution repository is modeled as:

1 a set of packages P

2 a function D determining package dependencies

3 a set of conflicts C , i.e. pairs of non co-installable packages

Example (modeling of the previously shown Packages)

P = {(a, 1), (b, 2), (b, 3), (c , 3), (d , 1), (d , 2), (d , 3)}
D(a, 1) = {{(b, 2), (b, 3)}, {(c , 3), (d , 2), (d , 3)}}
D(b, 2) = ∅

· · ·
C = {((b, 2), (b, 3)), ((b, 3), (b, 2)), ((c , 3), (b, 2)), . . .}

Stefano Zacchiroli (Univ.Paris 7/Debian) Mancoosi 10 Ago 2008 / DebConf8 13 / 35

Package installability as SAT

Based on the given formalization it is easy to show that the problem of
whether a package is installable in a given repository is equivalent to SAT1

each package p (with version v) is interpreted as a boolean variable
pv (if pv then the package should be installed else it should not)

each dependency is interpreted as an implication, e.g.:
aterm→ libc6 ∧ (libice6 ∨ xlibs) ∧ . . .

each conflict between packages a and b is interpreted as the formula
¬(a ∧ b)

Theorem

A particular package p, version v is installable iff there exist a boolean
assignment that makes pv true, and satisfies the encoding of the
repository.

1deciding whether a formula in propositional logic is satisfiable or not
Stefano Zacchiroli (Univ.Paris 7/Debian) Mancoosi 10 Ago 2008 / DebConf8 14 / 35

Package installability as SAT — example

apt-get install

libc6=2.3.2.ds1-22 in

Package: libc6

Version: 2.2.5-11.8

Package: libc6

Version: 2.3.5-3

Package: libc6

Version: 2.3.2.ds1-22

Depends: libdb1-compat

Package: libdb1-compat

Version: 2.1.3-8

Depends: libc6 (>= 2.3.5-1)

Package: libdb1-compat

Version: 2.1.3-7

Depends: libc6 (>= 2.2.5-13)

becomes

I 2.3.2.ds1−22
libc6

∧
¬(I 2.3.2.ds1−22

libc6 ∧ I 2.2.5−11.8
libc6)

∧
¬(I 2.3.2.ds1−22

libc6 ∧ I 2.3.5−3
libc6)

∧
¬(I 2.3.5−3

libc6 ∧ I 2.2.5−11.8
libc6)

∧
¬(I 2.1.3−7

libdb1-compat ∧ I 2.1.3−8
libdb1-compat)

∧
I 2.3.2.ds1−22
libc6 →

(I 2.1.3−7
libdb1-compat ∨ I 2.1.3−8

libdb1-compat)
∧
I 2.1.3−7
libdb1-compat →

(I 2.3.2.ds1−22
libc6 ∨ I 2.3.5−3

libc6)
∧
I 2.1.3−8
libdb1-compat → I 2.3.5−3

libc6

. . . average formula has 400 literals, KDE installation 32’000

Stefano Zacchiroli (Univ.Paris 7/Debian) Mancoosi 10 Ago 2008 / DebConf8 15 / 35

Good qualities for a repository

An installation is a subset of a repository packages; a healthy installation
is one in which all packages have their dependencies installed (abundance)
and no pairs of conflicting packages are co-installed (peace)

i.e. what our package managers are meant to enforce!

A package in a repository is installable if there exists at least one healthy
installation which contains it

i.e. there is at least one way for our users to install it

A package repository is trimmed if every package it contains is installable
wrt the repository itself

i.e. there are no “broken” packages

Shipping non-trimmed repositories = shipping packages that users will not
be able to install

Stefano Zacchiroli (Univ.Paris 7/Debian) Mancoosi 10 Ago 2008 / DebConf8 16 / 35

Outline

1 EDOS
Formalizing inter-package relationships for fun and profit
. . . profiting: the EDOS tools and QA

2 Mancoosi

Stefano Zacchiroli (Univ.Paris 7/Debian) Mancoosi 10 Ago 2008 / DebConf8 17 / 35

The EDOS toolchain

Several tools have been developed during EDOS (≈ 110’000 OCaml LOCs),
some examples:

edos-debcheck command line checker for package installability

pkglab interactive, console-based environment for repository
inspection

ceve parser/converter between package list formats

tart cut a repository into slices (e.g. media), so that packages
available on the i-th slice are installable using only slices up
to i

Let’s see some of them in more detail . . .

Stefano Zacchiroli (Univ.Paris 7/Debian) Mancoosi 10 Ago 2008 / DebConf8 18 / 35

edos-debcheck

edos-debcheck takes as input an APT package list (e.g.
/var/lib/apt/lists/*) and checks whether one, several, or all
packages in it are installable wrt that repository.

It is based on a customized SAT solver and it is quite fast: checking
installability of all package in main testing/amd64 takes 5 seconds on an
entry-level machine.

Example

edos-debcheck </var/lib/apt/lists/... main binary-amd64 Packages

Parsing package file... 1.2 seconds 21617 packages

Generating constraints... 2.3 seconds

Checking packages... 1.5 seconds

acx100-source (= 20070101-3): FAILED

alien-arena (= 7.0-1): FAILED

alien-arena-browser (= 7.0-1): FAILED

alien-arena-server (= 7.0-1): FAILED

alsa-firmware-loaders (= 1.0.16-1): FAILED

amoeba (= 1.1-19): FAILED

...

explanation can be required as well

Stefano Zacchiroli (Univ.Paris 7/Debian) Mancoosi 10 Ago 2008 / DebConf8 19 / 35

edos-debcheck (cont.)

Noteworthy success story

emdebian is using edos-debcheck before package uploads to ensure that
the upload won’t introduce package brokenness in the archive.
The path between upload and the archive in Debian can be significantly
longer (e.g. NEW-processing), but a dput patch implementing pre-upload
hooks is pending; using it edos-debcheck can be optionally used as a
pre-upload sanity check.

Debian packages: edos-debcheck, edos-rpmcheck

Stefano Zacchiroli (Univ.Paris 7/Debian) Mancoosi 10 Ago 2008 / DebConf8 20 / 35

pkglab

pkglab is an interactive, console-based environment to explore
package repositories of package-based software distributions.

Features:

load current and past package lists

package installability checks (a-la edos-debcheck)

functional query language (map, filter, fold, . . .)

inspect historical evolution of repositories (not possible with plain
edos-debcheck)

Debian packages: dose2 (underlying library), ceve (package list
parser/converter), pkglab (interactive environment).
All available in experimental/NEW.

Stefano Zacchiroli (Univ.Paris 7/Debian) Mancoosi 10 Ago 2008 / DebConf8 21 / 35

pkglab — examples

(* interactive equivalent of edos-debcheck *)

> $diag <- check($unstable,$unstable)

Solver: Computing closure

Solver: Done, 22156 packages in closure

Solver: Numbering

Solver: Converting to boolean problem

Solver: Done, formula of size 200184

<diagnosis:closure size 22156, 141 failures>

> #show $diag

Diagnosis:

Conflicts: 13997

Disjunctions: 155280

Dependencies: 164279

Failures (total 141):

Package acidlab’0.9.6b20-22@all

cannot be installed:

acidlab’0.9.6b20-22@all depends on one of:

- libphp-phplot’4.4.6+5.0rc1.dfsg-0.1@all

libphp-phplot’4.4.6+5.0rc1.dfsg-0.1@all

depends on missing:

- php3

- php3-cgi

- php4

- php4-cli

(* same check in stable of a few months ago *)

check(acidlab’0.9.6b20-22@all,

contents(%debian/stable/main/i386,

2008-03-20))

(...)

<diagnosis:closure size 557, 0 failures>

Stefano Zacchiroli (Univ.Paris 7/Debian) Mancoosi 10 Ago 2008 / DebConf8 22 / 35

pkglab — examples (cont.)

(* check co-installability of php{4,5} *)

> $d<-check_together(

php4’6:4.4.4-8+etch4@all,

php5’5.2.5-3@all, $a)

(...)

Solver: Not successful, 1 failures

> #show $d

Diagnosis:

(...)

Failures (total 1):

Packages php5’5.2.5-3@all

and php4’6:4.4.4-8+etch4@all

cannot be installed together:

php4’6:4.4.4-8+etch4@all

depends on missing

- libapache-mod-php4(>=’6:4.4.4-8+etch4)

- libapache2-mod-php4(>=’6:4.4.4-8+etch4)

- php4-cgi(>=’6:4.4.4-8+etch4)

(* works in the union of stable and unstable *)

> check_together(php4’6:4.4.4-8+etch4@all,

php5’5.2.5-3@all,

$a|contents(%debian/stable/main/i386,

2008-03-20))

(...)

<diagnosis_list:closure size 857,

0 failures>

Stefano Zacchiroli (Univ.Paris 7/Debian) Mancoosi 10 Ago 2008 / DebConf8 23 / 35

Finding uninstallable packages in Debian

edos-debcheck is used daily to monitor uninstallable packages in Debian,
Skolelinux, and Debian GNU/kFreeBSD:

http://edos.debian.net/edos-debcheck

Most common cases of uninstallable packages:

1 autobuilders catching-up (e.g.: arch:all package uploaded together
with arch:any packages + autobuilder delays): normal transient
uninstallabilities

2 a depends on b, with b not available on all archs: either build
problem with b, or too liberal architecture specification in a (should
be stricter)

I special case of the above: a is arch:all. A recent proposal of adding an
Install-To field was meant to address this (#436733)

3 serious packaging bugs, you should really fix them :-)

Stefano Zacchiroli (Univ.Paris 7/Debian) Mancoosi 10 Ago 2008 / DebConf8 24 / 35

http://edos.debian.net/edos-debcheck

Uninstallable packages — examples
Uninstallable packages in testing/main 17–23 June 2008:

Date alpha amd64 arm armel hppa i386 ia64 mips mipsel powerpc s390 sparc some every
23/06 367(7) 14(2) 217(4) 348(21) 369(9) 12(4) 48(3) 267(3) 269(3) 21(3) 56(3) 24(3) 628(32) 8(2)
∆ +0/−0 +0/−0 +0/−1 +0/−0 +0/−0 +0/−0 +0/−0 +0/−0 +0/−0 +0/−3 +0/−0 +0/−0 +0/−0 +0/−0
22/06 367(7) 14(2) 218(4) 348(21) 369(9) 12(4) 48(3) 267(3) 269(3) 24(4) 56(3) 24(3) 628(32) 8(2)
∆ +0/−0 +0/−0 +0/−0 +0/−0 +0/−0 +0/−0 +0/−0 +0/−3 +0/−3 +0/−0 +0/−3 +0/−3 +0/−0 +0/−0
21/06 367(7) 14(2) 218(4) 348(21) 369(9) 12(4) 48(3) 270(4) 272(4) 24(4) 59(4) 27(4) 628(32) 8(2)
∆ +0/−0 +0/−3 +0/−3 +0/−9 +0/−0 +0/−0 +0/−0 +0/−0 +0/−0 +0/−0 +0/−0 +0/−0 +0/−7 +0/−3
20/06 367(7) 17(3) 221(5) 357(24) 369(9) 12(4) 48(3) 270(4) 272(4) 24(4) 59(4) 27(4) 635(35) 11(3)
∆ +7/−0 +3/−0 +4/−3 +3/−27 +4/−0 +3/−0 +3/−0 +5/−11 +5/−0 +5/−0 +5/−0 +5/−0 +5/−16 +3/−0
19/06 360(5) 14(2) 220(6) 381(31) 365(8) 9(3) 45(2) 276(2) 267(2) 19(2) 54(2) 22(2) 646(42) 8(2)
∆ +0/−0 +0/−0 +0/−0 +0/−0 +0/−0 +0/−0 +0/−0 +0/−0 +0/−0 +0/−0 +0/−0 +0/−0 +0/−0 +0/−0
18/06 360(5) 14(2) 220(6) 381(31) 365(8) 9(3) 45(2) 276(2) 267(2) 19(2) 54(2) 22(2) 646(42) 8(2)
∆ +0/−0 +0/−0 +0/−0 +0/−0 +0/−0 +0/−0 +0/−0 +0/−0 +0/−0 +0/−0 +0/−0 +0/−0 +0/−0 +0/−0
17/06 360(5) 14(2) 220(6) 381(31) 365(8) 9(3) 45(2) 276(2) 267(2) 19(2) 54(2) 22(2) 646(42) 8(2)

The “Debian weather”
for 27 June 2008: mostly
sunny in stable and
testing, at places overcast
and rainy in unstable.

clear < 1%
few clouds 1% . . . 2%
clouds 2% . . . 3%
showers 3% . . . 4%
storm > 4%

Stable:

Testing:

Unstable:

alpha amd64 arm hppa i386 ia64 mips mipsel powerpc

Stefano Zacchiroli (Univ.Paris 7/Debian) Mancoosi 10 Ago 2008 / DebConf8 25 / 35

Finding undeclared Conflicts in Debian

dpkg: error processing

/var/cache/apt/archives/gcc-avr_1%3a4.3.0-1_amd64.deb (--unpack):

trying to overwrite ‘/usr/lib64/libiberty.a’, which is also in

package binutils

. . . get rid of these before they reach our users.
0 naively: try co-installing together all package pairs (200’000’000)

. . . no way!
1 only consider pairs sharing at least one file (easy using Contents):

867 pairs (16 April 2008, amd64/sid)
2 restrict to pairs co-installable according to dependencies (easy using

pkglab): 102 pairs
3 still diversion can account for false positives: test pair installations in

chroot: 27 buggy package pairs detected

Reports: http://edos.debian.net/missing-conflicts/
BTS: user treinen@debian.org, tag edos-file-overwrite

Stefano Zacchiroli (Univ.Paris 7/Debian) Mancoosi 10 Ago 2008 / DebConf8 26 / 35

http://edos.debian.net/missing-conflicts/

Outline

1 EDOS
Formalizing inter-package relationships for fun and profit
. . . profiting: the EDOS tools and QA

2 Mancoosi

Stefano Zacchiroli (Univ.Paris 7/Debian) Mancoosi 10 Ago 2008 / DebConf8 27 / 35

The Mancoosi project [http://www.mancoosi.org]

Mancoosi picks up the baton from where EDOS left: the focus is now the
sysadm (our user and her interaction with package management.

name MANaging the COmplexity of the Open Source Infrastructure

funding European Commission, IST activities 7th framework
programme

timeframe February 2008 – January 2011

consortium universities (Paris 7, L’Aquila, Sophia Antipolis, Tel Aviv,
Louvain), research institutions (INESC-ID), companies
(Caixa Magica, Pixart, Edge-IT (i.e. Mandriva), ILOG)

objective develop rollback mechanisms for package upgrades and
better algorithms to plan package upgrade paths

Debian is not officially involved, but DDs are enrolled as researchers
among the ranks of Paris 7

Stefano Zacchiroli (Univ.Paris 7/Debian) Mancoosi 10 Ago 2008 / DebConf8 28 / 35

http://www.mancoosi.org

The upgrade problem

Upgrade problem = the problem posed by a meta-installer request of
changing the local status of installed packages
Solving an upgrade problem can fail for several reasons:

invocation error, dependency solving, package retrieval, package unpacking,
maintainer script execution, . . .

Mancoosi will try to attack the upgrade problem from two sides:

rollback support there are impredictable failures (e.g. maintscripts), a
posteriori recovery techniques are the only way out

dependency solving not satisfying meta-installer state of the art (e.g.
incompleteness: the inability to find a solution when there is
one): we should to better!

we will focus on dependency solving, as we will mostly be involved in it

Stefano Zacchiroli (Univ.Paris 7/Debian) Mancoosi 10 Ago 2008 / DebConf8 29 / 35

The upgrade problem

Upgrade problem = the problem posed by a meta-installer request of
changing the local status of installed packages
Solving an upgrade problem can fail for several reasons:

invocation error, dependency solving, package retrieval, package unpacking,
maintainer script execution, . . .

Mancoosi will try to attack the upgrade problem from two sides:

rollback support there are impredictable failures (e.g. maintscripts), a
posteriori recovery techniques are the only way out

dependency solving not satisfying meta-installer state of the art (e.g.
incompleteness: the inability to find a solution when there is
one): we should to better!

we will focus on dependency solving, as we will mostly be involved in it

Stefano Zacchiroli (Univ.Paris 7/Debian) Mancoosi 10 Ago 2008 / DebConf8 29 / 35

Desiderata for dependency solving

completeness each time a solution to an upgrade problem does exists, a
meta-installer should be able to find it

optimality it should be possible to specify optimization criteria to
discriminate among otherwise equivalent solutions, e.g.:

minimize download size
minimize used disk space
blacklist packages maintained by J. Random DD
. . .

efficiency dependency resolution should be as fast as possible

Stefano Zacchiroli (Univ.Paris 7/Debian) Mancoosi 10 Ago 2008 / DebConf8 30 / 35

A dependency solver competition

We surely do not hope to find magically the silver bullet algorithm for
dependency solving, but we can help the fate organizing a dependency
solving competition

real-life upgrade problem collected a-la popcon (opt-in, data collector
plug-ins in meta-installers)

various tracks: plain resolution (speed), optimizing resolution (better
solution), . . .

developers and researchers can submit their implementations of their
algorithms

the winner gains fortune and glory

Similar competitions have proven fruitful to push state of the art in related fields,

such as SAT solving itself, why this one shouldn’t?

Stefano Zacchiroli (Univ.Paris 7/Debian) Mancoosi 10 Ago 2008 / DebConf8 31 / 35

Submitting problems for the competition

We are standardizing submission formats to contribute upgrade problems
for the competition. Each participating distribution will have its own
submission format (DUDF), to be converted in a common format later on
(CUDF).

sample submission for Debian’s apt

1 /var/lib/dpkg/status (excerpt of)

2 /var/lib/apt/lists/* (checksums of)

3 the given APT command

4 current APT conf (repositories, pinning, . . .)

5 “debian”, “apt-get”, vx.y.z, “dpkg” (tool identifiers)

6 “broken packages, the following packages can not . . . ” (outcome)

Additionally, the submission format can be useful for bugreports against
package managers.

Stefano Zacchiroli (Univ.Paris 7/Debian) Mancoosi 10 Ago 2008 / DebConf8 32 / 35

Debian and Mancoosi

Foreseeable contact points between Debian and Mancoosi:

common meta-installer ABI for pluggable solvers

the competition: Debian meta-installers participate as legacy tools,
and smart optimization ideas can travel a long way . . . submit yours!

state logging in meta-installers: we will develop state logging for at
least one meta-installer, integration and additional extra
implementations will be needed

Contact us!
debian@mancoosi.org
http://mancoosi.debian.net
(or ping/query/mail/. . . directly Ralf and Zack)

Stefano Zacchiroli (Univ.Paris 7/Debian) Mancoosi 10 Ago 2008 / DebConf8 33 / 35

http://mancoosi.debian.net

looking for more info about EDOS/Mancoosi?
a good starting point is the paper accompanying this talk: look it up on Penta!

Questions?

looking for something else than Q & A time?
. . . ok, here is some SPAM a friendly reminder: http://www.mancoosi.org

Stefano Zacchiroli (Univ.Paris 7/Debian) Mancoosi 10 Ago 2008 / DebConf8 34 / 35

http://www.mancoosi.org

Cheers!

the Mancoosi team, Feb 2008

Stefano Zacchiroli (Univ.Paris 7/Debian) Mancoosi 10 Ago 2008 / DebConf8 35 / 35

	EDOS
	Formalizing inter-package relationships for fun and profit
	…profiting: the EDOS tools and QA

	Mancoosi

