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Abstract

Calculating differences between models is an important
and challenging task in Model Driven Engineering. Model
differencing involves a number of steps starting with identi-
fying matching model elements, calculating and represent-
ing their differences, and finally visualizing them in an ap-
propriate way. In this paper, we provide an overview of
the fundamental steps involved in the model differencing
process and summarize the advantages and shortcomings
of existing approaches for identifying matching model ele-
ments. To assist potential users in selecting one of the ex-
isting methods for the problem at stake, we investigate the
trade-offs these methods impose in terms of accuracy and
effort required to implement each one of them.

1 Introduction

With the increasing adoption of MDE, the development
of versioning mechanisms for supporting the evolution of
model-based artefacts is becoming essential [23, 5]. System
development and evolution processes require modifying the
involved artefacts several times. Consequently, nurturing
the detection of differences between models is essential to
model development and management practices.

In an MDE setting, the document comparison algorithms
provided by version control systems like CVS [8], and
SVN [7] have been shown to be inadequate since they com-
pare models at a particularly low level, and lack a rea-
sonable organization and abstraction from designer’s per-
spective [13]. In this respect, there has been intense re-
search in the field of model comparison, especially for
UML diagrams [1, 15, 24]. Recently, a number of works

have proposed generalizations of such approaches in or-
der to compare models conforming to any arbitrary meta-
model [12, 18].

Calculating model differences is a difficult task since it
relies on model matching which can be reduced to the graph
isomorphism [16]: the problem of finding correspondences
between two given graphs. Theoretically, the graph iso-
morphism problem is NP-hard [12] and the available ap-
proaches tend to deal with the computational complexity by
providing solutions which are modeling language specific
or are able to approximate the exact solution.

In this paper, we analyse a number of existing model
matching approaches and evaluate them against several re-
quirements such as accuracy, efficiency, tool and domain
independence. Based on the results of our analysis, we ar-
gue that there is no single best solution to model matching
but instead that the problem should be treated by deciding
on the best trade-off within the constraints imposed in the
context, and for the particular task at stake.

The paper is structured as follows. Section 2 introduces
the problem of model differencing and examines it under
different perspectives. Section 3 describes the most signifi-
cant model matching approaches which are then compared
in the context of a common case study in Section 4.Finally,
Section 5 concludes the paper and provides directions to
further work on the subject.

2 Model differencing in MDE

The problem of determining model differences is intrinsi-
cally complex. The overall problem can be separated into
three phases [2]:

– calculation, a procedure, method or algorithm able to



compare two distinct models;
– representation, the outcome of the calculation must be

represented in some form which is amenable to further
manipulations;

– visualization, model differences are often required to
be visualized in a human-readable notation which en-
ables the designer to grasp the rationale behind the
modifications which the models have undergone.

The following paragraphs provide a brief discussion on ex-
isting approaches to each one of these phases.

Calculation The task of model comparison consists of
identifying the mappings and the differences between two
models. In the context of software evolution, difference
calculation has been intensively investigated as witnessed
by a number of approaches ranging from text comparisons
to model differencing techniques. Specialized differenc-
ing methods, such as [1, 15, 24], have been introduced to
strictly compare UML models. A generalization of the work
by Xing and Stroulia [24] is proposed in [12] which presents
an approach based on structural similarity which is able to
compare not only UML diagrams but also models conform-
ing to arbitrary metamodels. The problem of calculating
differences between models conforming to arbitrary meta-
models, has been taken into account also by [18] which pro-
pose a comprehensive modeling management environment
based on the Maude language [6].

Representation The information obtained from the dif-
ference calculation step needs to be properly represented in
a difference model, so that it can be used for subsequent
analysis and manipulation [4]. Finding a suitable repre-
sentation for model differences is crucial for its exploita-
tion, as for instance deriving refactoring operations from a
delta document describing how a database schema evolved
in time. The effectiveness of model difference representa-
tions is often compromised by factors such as the calcula-
tion method or the scope of the model difference. For in-
stance, in the case of edit scripts [1, 13] the representation
is operational since it describes how to modify the initial
model in order to obtain the final model. Such a represen-
tation notation requires ad-hoc tools and suffers from a lack
of abstraction by reducing the manipulation or analysis pos-
sibilities. In other cases, the representation may be model
based and enable automatic manipulation of the differences,
as in the case of coloring [15], but the visualization and the
representation tend to overlap and the overall method is af-
fected by the way the differences are computed.

Visualization Differences often need to be presented ac-
cording to a specific need or scope, highlighting those
pieces of information which is relevant only for the pre-
scribed goal. In other words, a visualization is realized
by specifying a concrete syntax which renders the abstract

syntax (representation) and may vary from intuitive dia-
grammatic notations to textual catalogues (e.g. spreadsheet
data). The same representation may include different vi-
sualizations, not necessarily diagrammatic ones, depending
on the specific purpose the designer has in mind. In this re-
spect, both edit scripts and coloring represent two different
visualizations although they are generated directly by the
specific differencing algorithm and letting the representa-
tion be rendered by means of internal formats which prevent
them from being processed in tool chains. For instance, edit
scripts render both representation and visualization with the
same notation.

Calculation and representation are the central ingredients
for any model comparison solution. In the rest of the paper
we focus on the former aspect, while the latter is important
in tool chaining and user readability. A number of differ-
ence calculation approaches is analysed with respect to the
most intricate part of the calculation task: model matching.

3 Current approaches to model matching

As discussed in [19], there are several requirements for
model matching approaches including accuracy, a high level
of abstraction at which comparison is performed, indepen-
dence from particular tools, domains and languages, effi-
ciency, and minimal effort. In the following sections we
provide a review of existing approaches to model matching
and demonstrate that those requirements can each other. For
example, a language-specific matching algorithm is likely
to achieve better accuracy and performance than a generic
similarity-based algorithm, but on the other hand requires a
significant amount of effort to implement. As a result, we
argue that there is no single best solution to model matching
but instead that the problem should be treated as deciding
on the best trade-off within the constraints imposed in the
context, and for the particular task at stake. Table 1 pro-
vides a compact overview of the main existing approaches
and summarizes their features.

3.1 Static Identity-Based Matching

In this approach, it is assumed that each model element
has a persistent and non-volatile unique identifier that is as-
signed to it upon creation. Therefore, a basic approach for
matching models is to identify matching model elements
based on their corresponding identities (as in [1, 11]). The
main advantages of this approach are that it requires no con-
figuration from the user perspective and that it is particu-
larly fast. On the other hand, this approach does not apply
to models constructed independently of each other, and to
model representation technologies that do not support main-
tenance of unique identities.



Static identity-based Signature-based Similarity-based Customization support
Alanen and Porres [1] Language specific - - -
DSMDiff [12] - - Language independent -
EMFCompare [10] - - Language independent Custom matching algorithms
ECL [9] - - Language independent DSL for specifying custom

matching rules
Melnik et al. [20] - - Language independent Custom filters and parameters
Nejati et al. [14] - - Language specific -
Reddy et al. [17] - Language independent - -
Rivera et. al [18] - - Language independent -
SiDiff [22] - - Language independent Weight configuration, custom

algorithms for similarity calcu-
lation

TOPCASED [11] Language independent - - -
UMLDiff [24] - - Language specific -

Table 1. Model matching approaches

3.2 Signature-Based Matching

In [17], the authors recognize the limitations posed by
static identity-based matching and propose signature-based
matching instead. In this technique, the identity of each
model element is not static, but instead it is signature calcu-
lated dynamically from the values of its features by means
of a user-defined function specified using a model querying
language (e.g., see [17]). As this approach does not rely on
persistent identities it can be also used to compare models
that have been constructed independently of each other. Un-
fortunately, this additional benefit comes at a price: while
in the static-identity matching approach no configuration ef-
fort is required, in this approach developers need to specify
a series of functions that calculate the identities of different
types of model elements.

3.3 Similarity-Based Matching

While the previous two approaches treat the problem of
model matching as true/false identity (whether static or dy-
namic) matching, this category of approaches treats models
as typed attribute graphs and attempts to identify match-
ing elements based on the aggregated similarity of their
features. However, not all features of model elements are
equally important for model matching (e.g. classes with
matching names are more likely to be matching than classes
with matching values in their abstract feature). There-
fore, similarity-based algorithms typically need to be pro-
vided with a configuration that specifies the relative weight
of each feature. Typical examples of this category of ap-
proaches are SiDiff [22], the approach presented in [21], the
similarity flooding algorithm presented in [20], and DSMD-
iff [12] (which also incorporates signature based match-
ing). SiDiff provides also the means to specify custom al-
gorithms for computing the similarity of properties. The

built-in algorithm of EMF Compare [10] also falls within
this category but provides a fixed configuration. Compared
to identity-based matching, typed attribute graph matching
algorithms have been shown to produce more accurate re-
sults. On the other hand, establishing and fine-tuning the
weights of the features is a predominately empirical trial-
and-error process, and as such, finding the exact values of
weights that deliver the best results for a particular mod-
elling language can be particularly challenging. Moreover,
by being generic, such approaches fail to take into consid-
eration the semantics of the modelling language which, as
shown below in Section 3.4, if taken into consideration can
improve both the accuracy of the results, and also signifi-
cantly reduce the number of individual comparisons (search
space).

3.4 Custom Language-Specific Matching
Algorithms

This category involves matching algorithms tailored to a
particular modelling language such as UMLDiff [24] and
the work in [14] which specifically target UML models and
statecharts, respectively. The main advantage of a language-
specific matching algorithm is that it can incorporate the se-
mantics of the target language in order to provide more ac-
curate results, and also drastically reduce the search space
too. For instance, when comparing UML models, a UML-
specific matching algorithm can exploit the fact that two
classes or data types with the same name constitute a match
– for all practical reasons – regardless of their location in the
package structure, while the same does not hold for other
types of elements (such as parameters or operations). More-
over, it can incorporate the knowledge that it only makes
sense to compare two operations if the classes they belong
to are already known to match - and similarly for properties
and parameters -, thus drastically reducing the number of
comparisons that need to be performed. Also, if a single in-



Figure 1. Different versions of a sample UML model

heritance idiom is adopted – which is the standard practice
when UML is used to model a system that will later on be
implemented in a single-inheritance language such as Java
– the algorithm can compare generalizations based only on
the value of their specific feature, while disregarding the
value of their general feature.

However, all these advantages come at a high price.
While for previously discussed approaches developers need
to spend little (e.g. provide a configuration or write sig-
nature generators) or no effort at all (e.g. identity match-
ing), under this approach, they need to specify the com-
plete matching algorithm manually, which can be a particu-
larly challenging task. To ease the development of custom
matching algorithms, approaches such as EMF Compare
and the Epsilon Comparison Language (ECL) [9] provide
infrastructure that can automate the trivial parts of the com-
parison process, allowing developers to concentrate on the
comparison logic only. Nevertheless, even with such tool
support, the effort required to implement a custom match-
ing algorithm is still considerable.

4 Case Study

In this section we propose a brief demonstration of how dif-
ferent model matching approaches behave on a common ex-
ample. In particular, the sample UML models reported in
Figure 1 are considered throughout the section. The models
have been kept deliberately simple because of space limita-
tions, but we believe they are sufficient to indicate how the
concepts outlined in the previous section apply to concrete
models.

The refactoring operations which have been performed
on the model in Figure 1.a leading to the one in Figure 1.b
can be summarized as follows:

1. the classes School and Student have been moved
to a new package administration;

2. the parameter student of the operation register
in the class School has been modified by changing
its type from String to Student;

3. the attribute surname has been added in the class
Student

4. the attribute yearsOld has been renamed to age;
5. the class Person has been added in the new package

administration;
6. the package inventory has been added in the pack-

age school.
Static identity-based matching approaches like [1, 11]

are able to detect all the modifications previously itemized
without any user effort. Even the renaming of the attribute
yearsOld can be correctly discovered as depicted in Fig-
ure 2 which reports a fragment of the differences calculated
by the TOPCASED tool [11].

As discussed in Section 3, static identity-based matching
approaches reduce their applicability to the models which
maintain the persistent and non-volatile unique identifiers
assigned to the contained elements upon creation. In several
cases this can be a too strong restriction. For instance, to
compare the models in Figure 1 if they are created by means
of different tools the adoption of signature-based matching
approaches is preferable. EMFCompare [10] is one of the
possible approaches that can be used in this case. It re-
lies on a metamodel independent matching algorithm and
by using it without any extension to compare the models in
Figure 1, the differences in Figure 3 are returned. Since the
standard matching algorithm is not aware of the UML se-
mantics is not able to detect all the changes we expect. For
instance, the modifications to the School and Student
classes have been detected as deletions and additions of new
ones with new structural features.

Figure 2. Fragment of the differences calcu-
lated by TOPCASED tool



Figure 3. Differences calculated by EMFCompare

Depending on the problem at stake, the available time,
and the accuracy one wants to achieve, the user might want
a better comparison and in this case more information has to
be provided to the matching algorithm. In this respect, SiD-
iff [22] can be used. As said in the previous section, it is
a metamodel independent approach, hence in order to deal
with the model in Figure 1, a custom configuration has to be
provided by the users in order to manage UML models. Fig-
ure 4 reports the differences calculated by SiDiff configured
with the settings available in the Fujaba tool suite [3] imple-
mentation. All the differences have been correctly detected
but the renaming of the attribute yearsOld. In fact, SiDiff
detects this modification as a deletion of the yearsOld at-
tribute and an addition of the age one. This can not be con-
sidered an error of the approach since there is not a match
between them that can be specified in general with respect
to the semantics of UML.

Finally, if users need to specify a precise language-
specific comparison algorithm that incorporates the seman-
tics of the targeted language, they can use solutions such
as ECL, or build a custom matching engine atop the infras-
tructure provided by the EMF Compare framework. For the
specific example, we have implemented a rule-based com-
parison algorithm using ECL where, among others, we ex-
plicitly specified a rule that matches two attributes belong-
ing to matching classes even if they don’t have the same
name, as long as their types match and they are also the
only attributes of this type within their respective classes.
The ECL-based approach also allowed us to reduce signif-

Figure 4. Differences calculated by SiDiff

icantly the search space where this was reasonable to do.
For example, while we compare all classes of the one model
with all classes of the other model irrespectively of their lo-
cation in the model structure, we only compare attributes
and operations that belong to matching classes, and simi-
larly, parameters that belong to matching operations. As a
result, the yearsOld and age attributes were successfully
matched as shown in Figure 5. Nevertheless, as discussed
earlier, this was the most effort-consuming solution too, re-
quiring 120 lines of ECL code only for a small subset of the
UML2 metamodel.

5 Conclusions
From the discussion provided above, it becomes evident
that selecting a model matching approach for the problem
at stake involves deciding on a trade-off between the re-
quired accuracy and the effort necessary to accomplish the
differencing. Therefore, when devoting effort to configur-
ing/implementing a matching algorithm is not an option, a
combination of an identity and similarity-based algorithm
such as DSMDiff, SiDiff, or the built-in algorithm of EMF
Compare is a fair trade-off. However, if some effort can be
allocated to the task, establishing and fine-tuning a sensible
configuration for a similarity algorithm, or implementing a
custom signature-based approach is likely to pay off in the
form of more accurate results. Finally, in the case that im-
proved accuracy and performance justify allocating signif-
icant effort to the task, a custom matching algorithm based
on infrastructure such as EMF Compare or ECL is deemed
more appropriate.

Our arguments are based on practical experience ob-
tained through experimentation with several implementa-
tions of matching algorithms and tools. However, we do
not currently have directly comparable data for the different
approaches, mainly because of the diversity in terms of the
modelling technologies different algorithms and tools are
implemented atop. For instance, the available implementa-
tion of SiDiff is built on top of Fujaba and appears to be
supporting UML 1.3 models only. DSMDiff on the other
hand has been built on top of GME, while ECL and EMF
Compare operate on EMF models.



Figure 5. Differences calculated by ECL

In order to obtain directly comparable data regarding the
accuracy of each algorithm and the effort required to cus-
tomize it for the problem at stake, convergence in terms of
the modelling technology on which different tools operate
is essential. With the growing acceptance of EMF as the de-
facto standard in the Model Driven Engineering community
we expect that actively maintained and used tools and algo-
rithms will inevitably move towards this direction, and thus
a comparison based on concrete results should be feasible
in the not too distant future.
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