
Beernet: Building Self-Managing Decentralized Systems with
Replicated Transactional Storage

Boris Mejı́as and Peter Van Roy
Département d’ingénierie informatique

Université catholique de Louvain, Belgium
{firstname.lastname}@uclouvain.be

Distributed systems with a centralized architecture present the well known problems of single
point of failure and single point of congestion. Therefore, they do not scale. Decentralized
systems, especially as peer-to-peer networks, are gaining popularity because they scale well,
and they do not need a server to work. However, their complexity is higher due to the lack
of a single point of control and synchronization, and because consistent decentralized storage
is difficult to maintain when data constantly evolves. Self-management appears as a way of
handling this higher complexity. We present a decentralized system built with a structured
overlay network which is self-organized and self-healing, providing a transactional replicated
storage for small or large scale systems.

Introduction

There are many technological and social factors that make
peer-to-peer systems a popular way of conceiving distributed
systems nowadays. From the technological point of view,
the increment of network bandwidth and computing power
has definitely made an impact on distributed systems which
are becoming larger, more complex and therefore, difficult
to manage. Although classical client-server architecture pro-
vides a simple management scheme with centralized control
of the whole system, it does not scale because the server be-
comes a point of congestion and a single point of failure. If
the server fails, the whole system collapses.

The key to deal with the complexity of large-scale
distributed systems is to make it decentralized and self-
managing. Peer-to-peer networks, and especially in their
form of structured overlays, offer a fully decentralized ar-
chitecture which is self-organizing and self-healing. These
properties are very important to build systems that are more
complex than file-sharing, which is currently the most com-
mon use of peer-to-peer. Despite the nice design of many
existing structured overlay networks, many of them present
problems when they are implemented in real-case scenarios.
The problems arise due to basic issues in distributed com-
puting such as partial failure, imperfect failure detection and
non-transitive connectivity.

The key issue in distributed programming is partial fail-
ure. It is what makes distributed programming different from
concurrent programming. This is why we would like to quote
Leslie Lamport and his definition of a distributed system:

“A distributed system is one in which the

This work is supported by projects SELFMAN (contract number:
034084) and MANCOOSI (contract number: 214898)

failure of a computer you did not even know
it existed can render your own computer unus-
able”

It does not matter how much transparency can be provided
in distributed programming, it will always be broken by par-
tial failure. This is not particularly bad, but it means that
we need to take failures very seriously, understanding that
perfect failure detection is unfeasible in Internet style net-
works, and that a failure does not mean only the crash of
a process, but also a broken link of communication between
two processes, implying non-transitive networks. Because of
failures, we cannot trust the stability of the whole system to
a single node, or to a reduced set of nodes with some hierar-
chy. We need to build self-managing decentralized systems,
where data storage needs to be replicated and load balanced
across the network in order to provide fault tolerance.

The contribution we present in this paper is Beernet, a
development framework for decentralized systems that uses
our structured overlay network topology, called Relaxed-
ring (Mejı́as & Van Roy, 2008). The relaxed-ring deals
with non-transitive connectivity, making it suitable for Inter-
net applications. On top of the relaxed-ring, we implement
a replicated storage with the symmetric replication strategy
designed by (Ghodsi, 2006). To keep replicas consistent,
we developed a transactional support which offers three dif-
ferent protocols: two-phase commit, paxos consensus algo-
rithm (Moser & Haridi, 2007) and paxos with eager locking.
The validation of the first two protocols, and the design and
implementation of the last one is also part of our contribu-
tion. We will explain in detail why we needed eager locking.
We also describe decentralized applications developed with
Beernet as validation of the programming framework, and
to analyze the different scenarios that need different transac-
tional support.



2 BORIS MEJÍAS AND PETER VAN ROY

Self Management
The complexity of almost any system is proportional to its

size. This rule also holds for distributed systems. As systems
grow larger, they become more and more difficult to manage.
Therefore, increasing systems’ self manageability appears as
a natural way of dealing with high level complexity. By self
management, we mean the ability of a system to modify itself
to handle changes in its internal state or its environment with-
out human intervention but according to high-level manage-
ment policies. This means that human intervention is lifted
up to the level where policies are defined.

Typical self-management operations are: tune perfor-
mance, reconfigure, replicate data, detect failures and re-
cover from them, detect intrusion and attacks, add or remove
parts of the system, which can be components within a pro-
cess, or a whole peer, and others. Each of those actions or a
combination of them can be identified as self-configuration,
self-organization, self-healing, self-tuning, self-protection
and self-optimization, often called in literature self-* prop-
erties.

One of the key operations that a system must perform to
achieve self-managing behaviour is to monitor itself and its
environment. Once relevant information is collected, the sys-
tem can take decisions over which action to trigger to achieve
its goal. Once the action is triggered, the system needs to
monitor again to observe the effect of its action, developing
a constant feedback loop.

A basic example of a self-managing system working with
a feedback loop is air conditioning. A thermometer is con-
stantly monitoring the temperature of the room. The infor-
mation is given to a thermostat, where the desired tempera-
ture has been set. The thermometer does not need to know
about the goal temperature, it simple needs to monitor the
temperature of the room, so the system is very modularized.
When the temperature goes over a threshold value, the ther-
mostat decides to run the cooling down mechanism, which
is the actuator of the system. Room’s temperature is mon-
itored again to measure the cooling down effect, building a
feedback loop.

In peer-to-peer systems, monitoring is distributed and
based only on the local knowledge that every peer has. Peers
monitor each other and trigger actions in other peers. Since
there is no central point of control that observes the whole
system at once, global state can be inferred but always as an
approximation. Self-managing behaviour must be observed
as a property of the whole network, and not as an isolated
property of a single peer.

Structured Overlay Networks
A computer network, is a group of interconnected pro-

cesses able to route messages between them. Internet is a
group of interconnected networks, routing messages between
processes independently of the network where they belong.
An overlay network is a network built on top of another net-
work or set of networks. For instance, a group of processes
using the Internet to route their message is said to be an over-
lay network, where the Internet is the underlay network. Ac-

tually, the Internet itself can be seen as an overlay network
running on top of the group of local area networks.

Examples of unstructured overlay networks can be found
in what it is called the second generation of peer-to-
peer networks. This generation is mainly represented by
Gnutella (Gnutella, 2003) and Freenet (FreeNet Community,
2003), and it was developed having file-sharing as the main
goal. These networks do not rely on any server, and they
are able to route messages through their peers independently
of the underlay network. This generation was actually a so-
lution to Napster shut down, because there was no server
to stop. These systems are known as unstructured overlay
networks because peers are randomly connected without any
particularly defined structure. As we have discussed already,
nowadays almost any machine can behave as a client and a
server. Therefore, every peer can trigger queries as a client,
and handle queries from other peers, playing the role of a
server.

The algorithm to route messages in such unstructured net-
work is called flooding. It is very simple but highly band-
width consuming. It works as follows: the peer that triggers
the query sends it to all its neighbours with a time to live
(TTL) value. The TTL can be expressed in seconds or hops.
A hop is what it takes for a message to go from one peer
to another that is directly connected in the overlay (we do
not include the amount of hops involved in the underlay net-
work using TCP/IP connection). The growth in the amount
of messages is exponential, and many peers have to process
the same query several times, making the algorithm very in-
efficient. Another known problem is related to non-popular
items that are difficult to find if the TTL is not large enough.
Unfortunately, the larger the TTL, the more congested the
network.

Flooding routing works fine for networks with a tree
topology, because it avoids that peers receives messages
more than once, but it is very costly for unstructured over-
lay networks, being inefficient in bandwidth and processing-
power usage. Another problem is that there is no guarantee
of reachability or consistency properties, which we consider
important to build decentralized systems that constantly up-
date the values of the stored items. Even though Gnutella can
keep large amount of peers connected, it does not mean that
scalable services can be built on top of it because of the prob-
lems on efficiency, reachability and consistency (Markatos,
2002; Ripeanu, Foster, & Iamnitchi, 2002). Also, according
to (Daswani & Garcia-Molina, 2002), it is not difficult to per-
form a query-flood DoS attack in Gnutella-like networks, but
their success depend on the topology of the network and the
place of the originator of the attack, which is related to the
reachability issue we already discussed.

Distributed Hash Tables

The third generation of peer-to-peer networks, also known
as structured overlay networks (SONs), is the result of
academia’s interest in peer-to-peer systems. It clearly aims
to solve the problems of unstructured networks by providing
efficient routing, guaranteeing reachability and consistent re-



BEERNET: BUILDING SELF-MANAGING DECENTRALIZED SYSTEMS WITH REPLICATED TRANSACTIONAL STORAGE 3

trieval of information. Adding structure makes it possible
to achieve these improvements, but it also creates new chal-
lenges such as dealing with disconnections of peers and non-
transitive links. SONs typically provide a distributed hash
table (DHT) where every peer is responsible for a part of the
hash table. There are two basic operations that every DHT
must provide: put(key, value) and get(key). The put
operation stores the value associated with its key such that
every peer can retrieve it with the get operator. If another
value was already stored under the same key, the value is
overwritten.

Chord (Stoica, Morris, Karger, Kaashoek, & Balakr-
ishnan, 2001; Dabek et al., 2001) is one of the most
known and referenced SON. By describing and analyz-
ing Chord in this section, we will also review the main
principles behind many others ring-based peer-to-peer sys-
tems, such as Chord# (Schütt, Schintke, & Reinefeld,
2007), DKS (Ghodsi, 2006), OpenDHT (Rhea et al., 2005),
P2PS (Mesaros, Carton, & Van Roy, 2005) and the Relaxed-
Ring (Mejı́as & Van Roy, 2008). In Chord, peers are self-
organized forming a ring with a circular address space of
size N. Hash keys are integers from 0 to N − 1. The ring
can be seen as a double-linked list with every peer having
two basic pointers: predecessor and successor (abbreviated
as pred and succ). Figure 1 depicts an example of a Chord
ring. Only pointers of peer identified with id q are drawn on
the figure but every peer holds equivalent pointers. Peers p
and s corresponds to pred and succ respectively. This means
that p < q < s, where ‘<’ is defined on the circular address
space following the ring clockwise.

The ring provides a DHT where every peer is responsible
for the storage of a set of keys determined by its own id and
its predecessor. In the case of q, the peer is responsible for
the range (p, q], (i.e., excluding pred’s id and including its
own). If the ring is perfectly linked, there is no overlapping
of peers’ responsibilities, and therefore, every lookup opera-
tion gives consistent results.

To provide efficient routing, Chord uses a set of extra
pointers called fingers or long references. They are chosen
dividing the address space in halves. The farther finger of q
is the responsible of key (q + N/2) mod N. In our example in
Figure 1, we consider q = 0 to label finger keys, and there-
fore, the ideal farther finger key is N/2. In the figure there
is no peer holding exactly that key, but peer k is currently
the responsible. Closer fingers are chosen using the same
formula but dividing N by powers of 2. The fingers, together
with pointers to pred and succ, form the routing table of a
peer. Ideally, every peer holds references to log2N fingers.

Figure 1 shows three different events producing churn.
Churn means that new peers constantly join the ring, and
some peers also leave the ring. The events we observe are:
peer j joins as k’s predecessor, peer b leaves voluntarily the
network, and peer m crashes. In the case of the join, k ac-
cepts j only if j belongs to k’s range of responsibility. Since
N/2 > j > q, peer j becomes the new responsible of N/2,
and therefore, it is a more suitable finger for q. This value
needs to be updated somehow. A similar situation occurs
when b leaves, because c becomes the new responsible of

Figure 1. Example of Chord ring with some events causing churn.

N/4. The difference here is that now q has temporary no fin-
ger for that value until it knows about c. The crash of m does
not affect q’s routing table, but it surely affect other peers’
routing table, and the responsibility of m’s successor. These
events help us to understand the complexity of the system.
We will discuss now the existing strategies to deal with these
events.

Self Organization and Self Healing

The ring maintenance is addressed differently by each
SON. We know that Chord, OpenDHT and Chord# rely on
periodic stabilization to fix successor, predecessor and finger
pointers. Periodic stabilization constantly checks the prede-
cessor pointer of the successor of each peer. If a new node
is detected in between two nodes, the predecessor notifies its
new successor fixing the ring. Fingers are also queried about
its predecessor. If the predecessor is closest to the ideal fin-
ger key, the routing table is updated. Such strategy has the
advantage of treating leaves as failures. Therefore, there is
no need to define a protocol for gentle leaves, because point-
ers will be fixed in the next round of stabilization. However,
this implies that stabilization needs to be run often enough,
increasing bandwidth consumption. With respect to routing,
it has been shown by (Krishnamurthy & Ardelius, 2008) that
logarithmic routing cannot be guaranteed if the period for
stabilization is larger than a certain threshold. More prob-
lematically, it has also been shown by (Ghodsi, 2006) that
lookup inconsistencies can appear in Chord just because of
churn, even if failures do not occur. This is a serious problem
for correctness. To avoid this problem, DKS introduces the
concept of correction-on-change, meaning that pointers are
fixed as soon as a failure, leave or join is detected. Peers do
not wait for a periodic check. To avoid lookup inconsisten-
cies, DKS defines a protocol for atomic join/leave, requir-
ing that a peer respect the locking protocol before it leaves
the network. Unfortunately, this strategy is not very fault-
tolerant, and it relies on peers not leaving the network before



4 BORIS MEJÍAS AND PETER VAN ROY

they acquire the needed locks.
The relaxed-ring also follows the correction-on-change

strategy for ring maintenance, but it does not rely on locks,
and more importantly, it does not rely on transitive connec-
tivity. The strategy is to allow branches when a peer is not
able to connect to its predecessor. The ring does not need
to be perfectly double link to work, but every peer needs to
know who its successor is in order to provide lookup consis-
tency. The relaxation of the ring implies a degradation on the
routing complexity, becoming log(N) + b, where b is the size
of the branch where the searched node is locate. Empirical
evaluation (Mejı́as & Van Roy, 2008) estimates that b < 1,
so the degradation is very small.

Replication strategies

Plain DHT is not enough to provide a fault tolerant stor-
age service. Some sort of replication is needed to keep every
item in the network even when a responsible leaves the sys-
tem. Some of the used strategies are successor list, leaf-set,
multiple hashing and symmetric replication. The most basic
mechanism is probably the first one proposed in (Stoica et
al., 2001), where log2N replicas are stored on the successor
list of the responsible of each key. When a node fails, the
successor takes over the responsibility, and therefore, it is a
good idea that the successor stores the replicas of the items.
A very similar strategy is the one used by networks having
an overlay topology like Pastry, using the leaf-set (Rowstron
& Druschel, 2001a, 2001b) for storing the replicas. The leaf-
set is composed by log2N/2 successor and log2N/2 prede-
cessors. This strategy also generates a different replica set
for each peer. It has the same advantages as in the successor
list strategy, because it does not add extra connections, and
the peer that should take over the responsibility in case of a
failure already has the values of the replicas.

There are two main disadvantages on these two schemes.
First of all, churn introduces many changes on the partici-
pants of the replica sets. Each join/leave/fail event introduces
changes in log2N replica sets, affecting peers that are not di-
rectly involved with the churn events. The second disadvan-
tage is that there is a unique entry point for each replica set.
To find the successor list of the responsible of a key, first you
need to find who is the responsible. This means that the main
peer of the replica set is a point of congestion.

CAN (Ratnasamy, Francis, Handley, Karp, & Schenker,
2001) and Tapestry (Zhao et al., 2003) used multiple hashing
as replication strategy. The idea is that every item is stored
with different hash functions known to all peers in the net-
work. One disadvantage claimed in (Ghodsi, 2006) is that
you need to know the inverse of the hash functions to re-
cover from failures. A more crucial disadvantage is the lack
of relationship between the replica sets per item. There will
be a different replica set for almost every item stored in the
network, making the reorganization of replicas under every
churn event very costly.

Symmetric replication is a simple and effective replication
strategy presented in (Ghodsi, 2006) with several advantages
and few disadvantages. First of all, it does not have an entry

point of congestion as with the successor list and the leaf
sets. Members of the replica set are not indirectly affected
by churn, and as in multiple hashing, the replicas are spread
across the network, with the advantage that they are symmet-
rically placed using a regular polygon of f sides, where f is
the chosen replication factor. This strategy provides an easier
way of finding the replicas, and it balances the load more uni-
formly. A disadvantage shared by multiple hashing and sym-
metric replication is that both rely on a uniform distribution
of peers on the address space. However, this assumption is
very reasonable since many SONs also rely on this property
in order to achieve the promised logarithmic routing.

Beernet

Beernet stands for pbeer-to-pbeer network, where words
peer and beer are mixed to emphasise the fact that this is
a peer-to-peer network built on top of a relaxed-ring topol-
ogy, considering that beers are usually a mean to achieve
relaxation. Beernet is globally organized as a set of layers
providing higher level abstract with a bottom-up approach.
Figure 2 gives the global picture of how components are
organized. Components are objects running on their own
lightweight thread of execution and they all communicate
asynchronously through message passing. They are basically
actors, as in the actor model of (Hewitt, Bishop, & Steiger,
1973).

The bottom layer is the Network component. This actor
is composed by four other actors. The most basic communi-
cation is provided by perfect point-to-point link (Pp2p link)
that simply connects two ports. The Peer-to-peer link allows
a simpler way of sending messages to a peer using its global
representation, instead of extracting the port explicitly every
time a message is to be sent. Peer-to-peer link uses Pp2p link.
Network uses two failure detectors: one provided by Mozart,
and the other one implemented in Beernet itself. The Mozart
failure detector takes advantage of the fault-stream (Collet
& Van Roy, 2006) of every distributed entity. Beernet failure
detector is built as a self-tuning failure detector that uses its
own protocol to change the frequency and timeout values of
the keep alive messages. Both failure detectors are eventu-
ally perfect, meaning that they are strongly complete, and
eventually accurate.

The Relaxed-Ring component uses the Network compo-
nent to exchange messages between directly connected peers,
and to detect their failures. It has two main components:
the Relaxed-Ring maintenance and the Finger Table. The
relaxed-ring maintenance could actually be replace by a com-
ponent implementing any of the network topologies we de-
scribed in Section . We use the relaxed-ring because it is
cost efficient and it does not rely on transitive connectivity.
The finger table component is in charge of efficiently routing
messages that are not sent neither to the successor nor the
predecessor of a node.

The reliable message-sending layer is implemented on top
of the relaxed-ring maintenance. This layer includes the ba-
sic services Reliable Send, Multicast and Broadcast. Each of
them is running on its own actor, but they can collaborate if



BEERNET: BUILDING SELF-MANAGING DECENTRALIZED SYSTEMS WITH REPLICATED TRANSACTIONAL STORAGE 5

Figure 2. Beernet’s actor architecture. Every component run on its
own lightweight thread and they all communicate asynchronously
through message passing.

necessary, as the relaxed-ring maintenance collaborate with
the finger table. The basic DHT with its put and get opera-
tions is implemented on top of the messaging services.

In Beernet, we have decided to implement the transac-
tional layer, Trappist, having the replication layer as part
of the Trappist component. This is a major difference with
Scalaris (Schütt, Schintke, & Reinefeld, 2008), because they
present their architecture having replication and transaction
as two independent layers. We claim that replication needs
the transactional mechanism in order to restore replicas in
case of failures. Having the knowledge of the protocol that is
used to manage the replica is the best option to keep replica
maintenance efficient. That is why in Beernet the replica
maintenance also belongs to the transactional layer instead
of being an independent component.

There are still some orthogonal components within the
replica management that can be changed by equivalent ones.
For instance, we have chosen to work with Symmetric repli-
cation instead of successor list replication, or leaf set repli-
cation. To reach the replicas, the transactional layer will use
the Bulk operations (Ghodsi, 2006) which can be written for
any replication strategy.

The Trappist layer includes three different protocols to
provide transactional support: Paxos Consensus, Eager
Paxos Consensus and Two-Phase Commit. The three of them
are explained in detail in the next section. Two-phase com-
mit is not included in Figure 2 because its use is not recom-
mended for building applications. We have implemented it
for purely academic purposes. These protocols are enriched
by a Notification Layer component that contributes to de-
velop more synchronous collaborative applications.

Transactional Replicated Storage
The most basic operations provided by a DHT are

put(key value) and get(key). We have seen in Section
that this is not enough to provide fault tolerance, and that a
replication strategy should be used in order to guarantee data
storage. Replicas are not simple to maintain independently
of the chosen replication strategy. Therefore, it is very con-
venient to add transactional support to the DHT so as to man-
age the replicas, and to provide atomic operations over a set
of items.

The two-phase commit protocol (2PC) is one of the most
popular choices for implementing distributed transactions,
being used since the 1980s. Unfortunately, its use on peer-to-
peer networks is very inefficient because it relies on the sur-
vival of the transaction manager, as we will explain further
in this section. A three-phase commit protocol (3PC) has
been designed in order to overcome the limitation of 2PC.
However, 3PC introduces an extra round-trip which results
in higher latency and increased message load. We will see
how transactional support based on Paxos consensus (Moser
& Haridi, 2007; Gray & Lamport, 2006) works well in de-
centralized systems. This algorithm is especially adapted for
the requirements of a DHT and can survive a crash of the co-
ordinator during a transaction. Compared to 3PC, it reduces
latency and overall message load by requiring less message
round-trips.

We extends the Paxos consensus algorithm with an eager
locking mechanism, so as to fit the requirements we iden-
tify in synchronous collaborative applications. A notification
layer is also added to the transactional layer support, which
can be used by any of the transactional protocols we will
describe.

Two-Phase Commit
The pseudo-code in Algorithm 1 implements a swap op-

eration within a transaction. The objective is that the instruc-
tions from the beginning of the transaction (BOT) until its end
(EOT) are executed atomically to avoid race conditions with
other concurrent operations. The values of item i and item j
are stored on different peers. The operators put and get are
replaced by read and write in order to differentiate a regular
DHT from a transactional DHT. Since the operations have
different semantics, it is justified to use different keywords.

In order to guarantee atomic commit of a transaction on
a decentralized storage, two-phase commit uses a validation
phase and a write phase, coordinated by a transaction man-
ager (TM). All peers responsible for the items involved in



6 BORIS MEJÍAS AND PETER VAN ROY

Algorithm 1 Swap transaction

BOT
x = read(item i);
y = read(item j);
write(item j, x);
write(item i, y);

EOT

the transaction, as well as their replicas, become transaction
participants (TP). Initially, the TM sends a request to every
TP to prepare the transaction. If the item is available, the TP
will lock it and acknowledge the prepare request. Otherwise,
it will reply abort. The write phase follows validation once
the replies are collected by the TM. If none of the partici-
pants voted abort, then the decision will be commit. When
the participants receive the commit message from the TM,
they will make the update permanent and release the lock
on the item. An abort message will discard any update and
release the item locks.

The problem with the 2PC protocol is that relies too much
on the survival of the transaction manager. If the TM fails
during the validation phase, it will block all the TPs that
acknowledged the prepare message. A very reliable TM is
required for this protocol, but it cannot be guaranteed on
peer-to-peer networks. Figures 3 and 4 depict 2PC proto-
col showing two possible executions. The diagrams do not
include the client, but they concentrate on the interaction
between the TM and the TPs. Figure 3 shows a success-
ful execution of the protocol where the TPs get the confir-
mation of the TM about the result of the transaction. Fig-
ure 4 spots the main problem of this protocol. If the TM
crashes after collecting the locks of the TPs, the TPs re-
mained locked forever if the algorithm is crash-stop. Post-
greSQL (PostgreSQL Global Development Group, 2009), a
well established object-relational database management sys-
tem, implements 2PC as a crash-recovery algorithm, mean-
ing that the TM can reboot and recover the state before the
crash to continue with the protocol. Discussing with Post-
greSQL developers, we have learned that a transaction could
hang for a whole weekend before the locks are released
again. This kind of behaviour is not feasible in peer-to-peer
networks when there is no certainty that a peer that leaves the
network will ever come back.

Paxos Consensus Algorithm

The 3PC protocol avoids the blocking problem of 2PC
at the cost of an extra message round-trip. This solution
might be acceptable for cluster-based applications but not for
peer-to-peer networks, where it is better to have less rounds
with more messages than adding extra rounds to the protocol.
This problem led to the recent introduction of a protocol for
atomic transactional DHT, by (Moser & Haridi, 2007), based
on Paxos consensus (Gray & Lamport, 2006).

The idea is to add replicated transaction managers (rTM)
that can take over the responsibility of the TM in case of

Figure 3. Two Phase Commit protocol reaching termination

Figure 4. Two Phase Commit protocol not knowing how to con-
tinue or unlock the replicas because of the failure of the transaction
manager.

failure. The other advantage is that decisions can be made
considering a majority of the participants reaching consen-
sus, and therefore, not all participants need to be alive or
reachable to commit the transaction. This means that as long
as the majority of participants survives, the algorithm termi-
nates even in presence of failures of the TM and TPs, without
blocking the involved items.

Figure 5 describes how the Paxos-consensus protocol
works. The client, which is connected to a peer that is part
of the network, triggers a transaction in order to read/write
some items from the global store. When the transaction be-
gins, the peer becomes the transaction manager (TM) for that
particular transaction. The whole transaction is divided in
two phases: read phase and commit phase. During the read
phase, the TM contacts all transaction participants (TPs) for
all the items involved in the transaction. TPs are chosen from
the peers holding a replica of the items. The modification to
the data is done optimistically without requesting any lock
yet. Once all the read/write operations are done, and the
client decides to commit the transaction, the commit phase
is started.

In order to commit the changes on the replicas, it is neces-
sary to get the lock of the majority of TPs for all items. But,
before requesting the locks, it is necessary to register a set of
replicated transaction managers (rTMs) that are able to carry
on the transaction in case that the TM crashes. The idea is
to avoid locking TPs forever. Once the rTMs are registered,
the TM sends a prepare message to all participants. This is
equivalent to request the lock of the item. The TPs answer



BEERNET: BUILDING SELF-MANAGING DECENTRALIZED SYSTEMS WITH REPLICATED TRANSACTIONAL STORAGE 7

Figure 5. Paxos consensus atomic commit on a DHT.

back with a vote to all TMs (arrow to TM removed for legi-
bility). The vote is acknowledged by all rTMs to the leader
TM. The TM will be able to take a decision if the majority
of rTMs have enough information to take exactly the same
decision. If the TM crashes at this point, another rTM can
take over the transaction. The decision will be commit if the
majority of TPs voted for commit. It will be abort otherwise.
Once the decision is received by the TPs, locks are released.

The protocol provides atomic commit on all replicas with
fault tolerance on the transaction manager and the partici-
pants. As long as the majority of TMs and TPs survives the
process, the transaction will correctly finish. These are very
strong properties that will allow the development of collab-
orative applications on a decentralized system without de-
pending on a server.

Self-management We can observe the property of self-
configuration in this transactional protocol in the way the
replicated transaction managers are chosen, and in the way
the replicas are found. Even when replicas should not change
from one transaction to the other, unless there is some churn,
the set of TM and rTMs tends to be different in every trans-
action. There is no intervention in the election of the mem-
bers of these sets, they just follow the high level policies and
self-configure to run the transaction. The self-healing prop-
erty can be observed when the TM fails. One of the rTM is
elected to become the new TM, and it finishes the transaction.
The election is done following the identifiers in the ring, so
they all reach an agreement.

Paxos with Eager Locking
We have observed how Paxos consensus algorithm for

atomic transactions on DHTs is extremely useful for build-
ing systems with decentralized storage based on symmetric
replication. The protocol works very well for applications
such as Wikipedia on Scalaris (Schütt et al., 2008; Plantikow,
Reinefeld, & Schintke, 2007) or the recommendation sys-
tem Sindaca, presented in Section . These systems are de-
signed to support asynchronous collaboration between appli-
cation’s users. The fact that Paxos consensus protocol works
with optimistic locking fits well asynchronous collaboration.

Figure 6. Paxos consensus with eager locking and notification to
the readers.

However, this locking strategy limits the functionality of syn-
chronous collaborative applications such as DeTransDraw, a
collaborative drawing tool that we will describe more in de-
tail in Section .

DeTransDraw has a shared drawing area where users ac-
tively make updates and observe the changes made by other
users. If two users make modifications to the same object at
the same time, at the end of the their work, when they decide
to commit, only one of them will get her changes committed,
and the other one will loose everything. Because users are
working synchronously, the probability that this happens is
much larger than in applications such as Wikipedia. This is
why a pessimistic approach with eager locking is needed.

We have adapted Paxos to support eager locking adding
a notification mechanism for the registered readers of ev-
ery shared item. We have implemented this new protocol
in Trappist, the transaction layer support of Beernet, with the
possibility of dynamically choosing between the two Paxos
protocols. Given this choice, the application can decide the
protocol to be used depending on the functionality that is pro-
vided to the users.

Figure 6 depicts the adapted protocol with eager locking.
The read-phase and commit-phase from the original protocol
has been replaced by locking-phase and commit-phase. The
read phase disappears because the transaction manager tries
eagerly to get the relevant locks to proceed with the trans-
action. Once the locks are collected, the client is informed
of the result. The goal is to prevent users from trying to
start working on items that are already locked. The client
of the transaction starts working on the changes on the items
as soon as the transaction begins. Starting to work on an item
is actually the trigger of the transaction.

When the user stops making modifications, it triggers the
commit-phase. The transaction manager can take the deci-
sion immediately because the majority of the votes have been
already collected at this stage. The decision is propagated to
the client, the replicated transaction managers and transac-
tion participants, as in the original Paxos algorithm. As there
is no read-phase, it is important that the decision is transmit-
ted to the TPs and rTMs together with the new state of the
item, and not only a commit/abort message.

This protocol is unfortunately more fragile than Paxos
without eager locking. By dividing the acquisition of locks
and the decision of commit, we can propagate information to



8 BORIS MEJÍAS AND PETER VAN ROY

Figure 7. Notification layer protocol. Peers register to each item
by becoming readers. The figure shows one notification for the de-
cision if the transaction is run with Paxos.

the readers more eagerly, but we increase the period of time
where the TM and the client need to survive. If the client
fails before committing its final value, the locks need to be
retrieved and released. If there is a false suspicion, we could
end up having two clients claiming the lock of an item. To
solve this, it is necessary to add timestamps not only to the
values of the items, but also to the locks. If the TM crashes
before the client commits its final decision, one of the rTM
becomes the new TM, and it needs to inform the client about
the failure recovery. Once the client is notified about the re-
covery, the client can commit the transaction using the new
TM.

Self-management The self-configuration property with re-
spect to the set of rTMs is inherited from the previous Paxos
protocol without eager locking. Self-healing is also achieved,
because the system can recover from the crash of the client
and the TM, and it can complete if the majority of partici-
pants survives. The mechanism is a bit more complex due to
the split of the locking and commit phase.

Notification Layer

The modification with eager locking provides notification
to the readers every time an item is locked and updated.
Sometimes it is not necessary to get a notification on locking,
and only the update is important. In such case, it is interest-
ing to have a layer of notification independent of the protocol
used to update the item. This kind of feature is useful to im-
plement applications such an online score board, where only
a few peers modify the state of the application, and many
peers participate as readers. For the readers is not necessary
to get a notification that some value is currently being update.
They just need to get the last value of the item.

The layer consists of a reliable multicast that sends a noti-
fication to all subscribed readers of an item. In order to make
the multicast efficient, if the amount of readers is smaller than
log(N), a direct message sending can be performed. If the
amount of readers is larger, the update message can be trans-
mitted using the multicast layer of the peer-to-peer network.

Figure 8. Notification layer protocol. The figure shows notifi-
cations for locking and decision, if transaction is run with Eager
Paxos.

Trappist
As we have previously mentioned in this section, the

transactional layer implementing these three protocols is
called Trappist, which stands for Transactions over peer-to-
peer with isolation, where isolation means that transactions
are atomic and with concurrency control. In this section we
show how to use the transactional support of Beernet, which
is implemented with the Mozart (Mozart Consortium, 2008)
programming system. By describing Trappist’s API, we also
analyse the high level abstractions provided by the system,
and how replica maintenance is hidden from the program-
mer. We start by creating a Beernet peer. Currently, nodes
in Beernet are created by default with transactional support.
However, to prevent conflicts with previous versions we ex-
plicitly flag transactions to be included in the following ex-
ample:

functor
import

Pbeer at ’Pbeer.ozf’
define

Node = {Pbeer.new args(transactions:true)}
...

The most basic support provided by Beernet corresponds
to the DHT operations put and get. This operations do not
replicated the value of the item, but they are also part of the
implementation of the transactional layer which actually re-
alizes the replication. What follows is an example of how put
and get can be used.

{Node put(key value)}
Value = {Node get(key $)}

To use the transactional layer, the user must write a pro-
cedure with one argument, typically named T M. This argu-
ment represents a transactional object, which is an instance
of the transaction manager that triggers the transaction. The
object receives the operations read and write, which are al-
most equivalent to put and get. The main semantic difference
between the operations is that if the transaction is aborted,
write has no effect on the stored data. And if the transaction
succeeds, the value is written at least on the majority of the



BEERNET: BUILDING SELF-MANAGING DECENTRALIZED SYSTEMS WITH REPLICATED TRANSACTIONAL STORAGE 9

replicas. Other operations received by the transactional ob-
ject are commit and abort, to explicitly trigger those actions
on the protocol. The operation remove is also implemented
in order to delete an item from the DHT.

To run the transaction, the user must invoke the method
executeTransaction, which receives three arguments: the
procedure containing the operations, a port to receive the
outcome of the transaction, and the protocol to be used for
running the transaction. Note that at the creation of the node,
we did not specify the protocol to be used by every transac-
tion. This is because the protocol can be chosen dynamically,
allowing the users to choose the best suitable protocol for
every functionality. We consider this to be a very important
property of our system. With respect to the procedure con-
taining the transactional operations, it is the equivalent to the
pseudo code we presented in Algorithm 1. One difference
is that the commit operation needs to be explicitly triggered,
being the equivalent to EOT (end of transaction). The advan-
tage of making the commit explicit, is that transactions that
only read values do not need to run the commit phase.

Algorithm 2 is a complete example for writing two items
with key/value pairs: hello/“Charlotte′′ and f oo/bar. The
outcome of the transaction appears on variable S tream,
which is the output of port Client. If the outcome of the
transaction is commit, it guarantees that both items where
successfully stored at least in the majority of the correspon-
dent replicas.

Algorithm 2 Using transactions with Paxos consensus to
write two items

declare
Stream Client
Trans = proc {$ TM}

{TM write(hello ”Charlotte”)}
{TM write(foo bar)}
{TM commit}

end
{NewPort Stream Client}
{Node executeTransaction(Trans Client paxos)}
if Stream.1 == commit then

{Browse ”transaction succeeded”}
end

To retrieve the values the user passes a variable which has
no value yet. The value is bound by the transactional object.
Algorithm 3 shows how to retrieve the values stored under
keys hello and f oo.

Note that it is not necessary to catch exceptions using
Beernet, because the outcome is reported on the stream of
the client’s port. If there is a failure on the transaction, the
outcome will be abort, and the user will be able to take
the corresponding failure recovery action. If the item is not
found, the variable used to retrieve the value is bound to a
failed value. This language abstraction will raise an excep-
tion whenever is used. Like this, exceptions are triggered in
the calling site, and not at any of the peers. Now, to prevent
catching exceptions when using the value, the Mozart pro-

gramming system provides Boolean checkers to test whether
a variable is bound to a failed value or not.

Algorithm 3 Using transactions with Paxos consensus to
read two items

declare
V1 V2
Trans2 = proc {$ TM}

{TM read(hello V1)}
{TM read(foo V2)}

end
{Node executeTransaction(Trans2 Client paxos)}
{Browse ”for hello I got”#V1}
{Browse ”for foo I got”#V2}

Applications

This section describes applications designed and imple-
mented using Beernet: Sindaca, DeTransDraw and a small
decentralized wiki. The first one, Sindaca, uses intensively
the transactional DHT layer Trappist. DeTransDraw bene-
fits from the Eager locking protocol in order to provide syn-
chronized collaboration. The small wiki was designed and
implemented by students during a course in distributed pro-
gramming. We present them here to show the impact of the
contribution of this work.

Sindaca

This section presents the design and functionality of our
community-driven recommendation system named Sindaca,
which stands for Sharing Idols N Discussing About Com-
mon Addictions. The name spots the main functionality of
this application which is making recommendations on music,
videos, text and other cultural expressions. It is not designed
for file sharing to avoid legal issues with copyright. It allows
users to provide links to official sources of titles. Users get
notifications about new suggestions, and they can vote on the
suggestions to express their preferences.

We have implemented a web interface to have access to
Sindaca. All requests done through the web interface are
transmitted to a peer in the network which triggers the corre-
sponding operations in the peer-to-peer network. The results
are transmitted back to the web server, which presents the
information in HTML format as in any web page. Using a
web interface to transmit information between the end user
and the peer-to-peer network has been used previously in var-
ious projects. A very related one is the peer-to-peer version
of the Wikipedia, implemented using Scalaris (Plantikow et
al., 2007; Schütt et al., 2008). We have extended this ar-
chitecture with a notification layer which allows eager infor-
mation updates. This layer is also used in the DeTransDraw
application, as we will see in Section . However, this eager
notification feature is not provided on the web interface.

To generalize the similitudes and differences between Sin-
daca and the above mentioned applications, we can say the



10 BORIS MEJÍAS AND PETER VAN ROY

following: the Wikipedia on Scalaris uses optimistic trans-
actions using the Paxos consensus algorithm. DeTransDraw
uses pessimistic eager-locking transactions using Paxos con-
sensus algorithm with a notification layer. Sindaca is a com-
bination of those strategies. It uses optimistic transactions
with Paxos algorithm extended with the notification layer,
both implemented in Trappist.

It is important to remark that Sindaca is not implemented
on top of a database supporting SQL queries. Sindaca is
implemented on top of a transactional distributed hash table
with symmetrically replicated state. Therefore, the basic unit
for storage is the key-value pair, which is what it is called
item. The information of every user is stored as one item.
The value of such item is a record with the basic informa-
tion: user’s id, username and password. We have chosen a
very minimal record to build the prototype, but the value can
potentially store any data such as user’s real name, contact
information, age, description, etc. The key of the item is an
Oz name (Mozart Consortium, 2008), which is unique and
unforgeable, acting like a capability reference, as in (Miller
& Shapiro, 2003). This strategy provides us certain level of
security, because only programs that are able to map user-
names with their capability can have access to the key, and
therefore, access to the item. The username-capability map-
ping is only available to programs holding the corresponding
capability to the mapping table.

Creating a user Code 4 shows the transaction to create a
user. First of all, it is necessary to read the list of users to
verify that the new username is not already in use. This is
done by reading the item under key users, and verifying if
Username is a member of it. In such case, the transaction
is aborted with the operation {TM abort}. If the transaction
continues, we read the item nextUser to get a user identifier.
Then, we create a new item with the capability key UserCap.
Afterwards, the value of the nextUser item is incremented,
and the item with the list of users is also updated.

This code helps us to describe the expressiveness of the
transactional support, and how the issues concerning replica-
tion, configuration and failure handling, are hidden from the
programmer.

Jalisco transactions Apart from the code to create users,
there are other transactions in charge of adding recommen-
dations done by user, or adding votes from a user about oth-
ers recommendation. The outcome of a transaction is either
abort or commit. This outcome will be sent to a port where
the application will decide the next step. When the trans-
action to create new users aborts because the username is
already in use, the application will need to request the new
user to choose a different username before attempting to run
a new transaction. In the case of creating new recommen-
dation and voting, getting abort as outcome of the transac-
tion only means that there where some concurrent transac-
tions that committed first, creating a temporary conflict with
our transaction. In such case, the transaction can be retried
without any modification until it is committed. To simplify

Algorithm 4 Creating a new user.

proc {CreateUser TM}
Users UserId UserCap

in
UserCap = {NewName}
{TM read(users Users)}
if {IsMember Username Users} then

UsernameInUse = true
{TM abort}

else
{TM read(nextUser UserId)}
{TM write(UserCap user(username:Username

id:UserId
passwd:Passwd
cap:UserCap
recommed:nil
votes:nil
voted:nil))}

{TM write(nextUser UserId+1)}
{TM write(users {AddTo Users

Username UserCap})}
{TM commit}

end
end

the process of retrying, we have implemented the procedure
Jalisco, which comes from the Mexican expression “Jalisco
nunca pierde” (Jalisco never loses). This procedure will sim-
ply retry a transaction until it is committed. The code is
shown in Code 5.

Algorithm 5 Jalisco transaction retries a transaction until it
is committed

fun {Jalisco Trans}
P S
proc {InsistingLoop S}

{ThePbeer executeTransaction(Trans P paxos)}
case S
of abort|T then

{InsistingLoop T}
[] commit| then

commit
end

end
in

{NewPort S P}
{InsistingLoop S}

end

The function creates a port to receive the outcome of the
transaction. The InsistingLoop executes the transaction
on the peer ThePbeer, and it waits on the stream of the port
to check the outcome of the transaction. If it is abort, it just
continues with the loop. If it is commit, it simply returns that
the transaction has committed.

This is simply a design pattern to be used in transactional



BEERNET: BUILDING SELF-MANAGING DECENTRALIZED SYSTEMS WITH REPLICATED TRANSACTIONAL STORAGE 11

DHTs. It can be seen as a very simply feedback loop. The
outcome of the transaction is what is being monitored. The
action to be taken in case of abort is to insist on running the
transaction until the relevant locks are granted. Once they are
granted and the message commit is monitored, the feedback
loop ceases to monitor.

DeTransDraw

DeTransDraw is a decentralized collaborative graphical
editor with a shared drawing area. It provides synchronous
collaboration between users with graphical support for noti-
fications about other users’ activities. Conflict resolution is
achieved with a decentralized transactional service with stor-
age replication, and self-management replication for fault-
tolerance. The transactional service also allows the appli-
cation to prevent performance degradation due to network
latency, which is an important feature for synchronous col-
laboration.

DeTransDraw is implemented on top of Beernet, and
it uses the paxos consensus algorithm with eager locking.
Since Beernet provides a DHT, the drawing information has
to be stored in form of items. Each drawing object is an item
where its identifier is the key, and the value corresponds to
the position, shape, colour, and other properties of the figure.
The application has been implemented in our research group,
being Jérémie Melchior the main developer.

Figure 9 shows the protocol of the application, where the
client talks to the peer-to-peer network through the transac-
tion manager. The protocol is an instance of Eager Paxos
consensus algorithm, as it is described in the previous sec-
tion, combined with the notification layer that communi-
cates with the readers. In this case, the readers are all
the other users of DeTransDraw. We can observe that
the client tries to acquire the locks of some figure with
begin transaction. Confirmation of acquiring the locks
is locked granted. The commit message triggers the up-
date of the figures with the modifications done by the user.
As we mentioned already, the TM is different for every trans-
action, and the set of replicated TMs is chosen with the same
strategy as symmetric replication. The key to generate the
replica set is the one of the TM. The transaction participants
(TPs) are all the peers storing a replica of the drawing ob-
jects involved in the transaction. Therefore, two concurrent
transactions modifying disjoint sets of drawing objects could
have completely different sets of TM, rTMs and TPs.

Figure 10 shows how the action of selecting drawing ob-
jects changes the state of the network. The figure shows four
application windows. The window at the top left corner is a
screenshot of PEPINO (Grolaux, Mejı́as, & Van Roy, 2007),
an application that monitors the network and shows it state.
In this case, the network is composed by 17 peers. The other
three windows are instances of DeTransDraw which are con-
nected to the network. Looking at the tool bars, we can de-
duce that the user at the top right corner draw the light-gray
oval, the user at the bottom left draw the small dark square,
and the highlighted user at the bottom right corner draw the
large gray rectangle. This highlighted user has selected the

Figure 9. DeTransDraw coordination protocol. It combines op-
timistic and pessimistic approach, using Trappist’s eager locking
Paxos and the notification layer to propagate the information to the
registered readers.

Figure 10. Locking phase in Detransdraw. The user with high-
lighted window has selected two figures to move them on the draw-
ing. Dark peers on the ring show where the locked replicas are.

two ovals acquiring the correspondent locks. We observe in
PEPINO some dark peers, and some other in slightly gray.
The peers in blue are the transaction participants which are
currently locked. They are the replicas storing the state of
the two ovals. Peers in cyan are the replicated transaction
manager, being the peer in green the transaction manager for
this operation. The other users do not see the modification
of the position of the figures, because the other user has not
committed yet its modification. Once the modifications are
committed, the locks are released, and the new state of the
ovals is replicated.

The software still needs more development to become a
real drawing tool, but it is well advanced as a proof of con-
cepts concerning its decentralized behaviour. It minimizes
the impact of network latency, allowing collaborative work
with conflict resolution achieved with transactional proto-
cols. It does not have any single point of congestion or fail-
ure, because every transaction has its own transaction man-
ager, with a set of replicated transaction managers symmetri-
cally distributed through the network. State is also decentral-
ized on the DHT, having each item symmetrically replicated.
Each transaction guarantees atomic updates of the majority



12 BORIS MEJÍAS AND PETER VAN ROY

of the replicas.

Decentralized Wikipedia

Wikipedia (Wikimedia Foundation, 2009) is an online en-
cyclopedia written collaboratively by volunteers, reaching
currently more than 13 million articles. A large community
of users constantly updates the articles and create new ones.
Such system can certainly benefit from scalable storage and
atomic commit, being a good case study for self-organizing
peer-to-peer networks with transactional DHT. A fully de-
centralized Wikipedia (Plantikow et al., 2007) was success-
fully built with Scalaris (Schütt et al., 2008), which is based
on Chord# (Schütt et al., 2007) using a transactional layer
implementing Paxos consensus algorithm (Moser & Haridi,
2007). The real Wikipedia runs on a server farm with a fix
amount of nodes, with a centrally-managed database. The
decentralized version allows the network to add more nodes
to the system when more storage capacity is needed. The
stored items are symmetrically replicated, and each transac-
tion runs its own instance of a transaction manager, prevent-
ing the system from having a single point of congestion.

To validate our implementation of the atomic transac-
tional DHT using Paxos consensus algorithm, which is part
of Trappist, running on top of the Relaxed-Ring, we decided
to give the task of implementing a decentralized Wikipedia
to the students of the course “Languages and Algorithms for
Distributed Applications”, given at the Université catholique
de Louvain, as a course for engineering and master students.
The students had two weeks to develop their program hav-
ing access to Beernet’s API for building their peer-to-peer
network, and for using the transactional layer to store and
retrieve data from the network.

To store data in a DHT, the information has to be stored
as items with a key-value pair. A paragraph in an article
was the granularity used to organize the information of the
wiki. Articles were stored as a list of paragraphs. Using
articles as the minimal granularity would have not been con-
venient because users never update more than one article at
the time. Therefore, the transactional layer would have been
used to update only an item at the time, being useful only for
managing replica consistency. Furthermore, such granularity
would not allow concurrent user to work on the same arti-
cle. Figure 11 depicts how using paragraphs as the minimal
granularity can be useful to allow concurrent users updating
the same article. On the figure, both users get a copy of an
article composed by three paragraphs. Each paragraph has
its own version, marked as timestamps (ts). User A modifies
paragraph 1 and 3, while user B modifies paragraph 2. When
user A commits her changes, the transactional layer guaran-
tees that both paragraph will be updated, or none of them
will. This property is particularly interesting if we consider
that the article could be source code of a program instead.
Allowing only one change could introduce an error in the
program. Continuing with the example, since modifications
of users A and B do not conflict, both transactions commit
successfully. Consequently, if user B would have also modi-
fied either paragraph 1 or 3, only one of the commits would

Figure 11. Users A and B modify different paragraphs of the same
document. Both can successfully commit their changes because
there are no conflicts.

have succeeded. It is up to the application to decide how to
resolve the conflict.

Code 6 has been taken and modified from one of the stu-
dent projects, with permission of the authors Alexandre Bul-
tot and Laurent Herbin. The code performs several transac-
tions so as to update the article. The modifications are di-
vided into two lists of paragraphs, which are determined by
the application: ToCommit, containing all paragraphs with
modifications, and newly added paragraphs too; ToDelete
are obviously the paragraphs that will be deleted. These
procedures imply several calls to write and remove on the
transactional object. Calling executeTransaction on the
Node guarantees that all of them will be committed, or the
whole update fails. This version is slightly simplified, be-
cause adding and removing items has also implications on
the list of paragraphs of the article. The representation of
such list is application dependent, so we will not include it
on these code samples.

As we can see, reading an article and committing the cor-
respondent updates is fairly simple using the transactional
DHT API. As an average, the student projects were about 600
lines of code, including the graphical interface, and the code
for bootstrapping the peer-to-peer network. The students
were not asked to implement an HTML interface. Instead,
they could implement a simple GUI using the Mozart pro-
gramming system, to make it simpler to interact with Beer-
net.

The feedback from the students helped us to improve our
system, and it confirmed us that the provided API is suit-
able for other programmers to develop applications on top of
our system. The students agreed that all the complexity of
building the network, routing messages, storing and retriev-
ing data from the replicas, was well hidden behind the API.
Unfortunately, they got the feeling that their student project
did not let them test their skills on distributed programming
for decentralized systems, because they were working on a
higher level. This is of course positive for Beernet as pro-
gramming framework, but we need to reconsider the project



BEERNET: BUILDING SELF-MANAGING DECENTRALIZED SYSTEMS WITH REPLICATED TRANSACTIONAL STORAGE 13

Algorithm 6 Committing updates and removing paragraphs

proc {RobustCommit ToCommit ToDelete}
Trans = proc {$ Obj}

for UpdPar in ToCommit do
{Obj write(UpdPar.id UpdPar.text)}

end
for DelPar in @ToDelete do

{Obj remove(DelPar.id DelPar.text)}
end
{Obj commit}

end
in

{Node executeTransaction(Trans Client paxos)}
end

as an academic activity.

Future Development

We are planning to develop a system to help Linux users
to efficiently choose and install packages by sharing knowl-
edge among them. One of the targets of the application is to
create an inference recommendation system that can suggest
packages according to what the other users in the community
are using. For instance, the majority of Java developers use
Eclipse as their IDE. Therefore, if a user has installed the
package for Java development, the system could suggest the
installation of Eclipse. Similarly for Ruby developers, the
system could suggest Ruby-on-Rails. The second target of
the application is to share the knowledge acquired with re-
spect to installability. In Linux, packages depend and have
conflict with other packages. Therefore, installing one may
imply to uninstall another one needed by a third one. But
dependencies have also alternatives, so it is possible to find
work arounds that satisfy the installation of any set of pack-
ages. Finding a solution can be highly time-consuming, but,
if another user has already found the work around, the in-
formation could be shared with the rest of the community.
These two goals imply a decentralized storage where every
peer contributes with information. We need to further investi-
gate about which transactional protocols are the best suitable
for its design and implementation.

Conclusion
We have started this work discussing about the complexity

of building dynamic distributed systems. We explained why
decentralized systems overcome the disadvantages of classi-
cal centralized architectures, and we also explained that self-
management is the key to deal with the higher complexity of
decentralized systems. We also identified the need for main-
taining the state of the system replicated across the network.

In Section , we reviewed existing solutions to build self-
organized and self-healing structured overlay networks as
the base for decentralized systems. We decided to use the
relaxed-ring as our network topology for Beernet, because
of its cost-efficient ring maintenance which does not relies

on transitive connectivity. The basic DHT provided by the
relaxed-ring has been improved with a replication layer built
op top of it. The layer is built using symmetric replication as
the replication strategy. To guarantee the consistency and co-
herence of the replicas, a transactional layer called Trappist
is in charge of providing atomic updates of the items, with
the guarantee that the majority of the replicas store the lat-
est value. Trappist implements three different transactional
protocols, which are described in Section . This layer is part
of the whole implementation of Beernet, which as a whole
provides a self-managing peer-to-peer network with transac-
tional replicated DHT.

To validate the ideas presented in this paper, we showed
in Section a set of applications built on top of Beernet. They
take advantages of the different transactional protocols to
provide synchronous and asynchronous collaborative tools.
One of the applications we presented is design and imple-
mented by a third party, validating Beernet as programming
framework.

References
Collet, R., & Van Roy, P. (2006). Failure handling in a network-

transparent distributed programming language. In Advanced
topics in exception handling techniques (p. 121-140).

Dabek, F., Brunskill, E., Kaashoek, M. F., Karger, D. R., Morris,
R., Stoica, I., et al. (2001). Building peer-to-peer systems with
Chord, a distributed lookup service. In Hotos (p. 81-86). IEEE
Computer Society.

Daswani, N., & Garcia-Molina, H. (2002). Query-flood dos attacks
in gnutella. In Ccs ’02: Proceedings of the 9th acm conference
on computer and communications security (p. 181-192). New
York, NY, USA: ACM.

FreeNet Community. (2003). The freenet project. http://
freenetproject.org.

Ghodsi, A. (2006). Distributed k-ary system: Algorithms for dis-
tributed hash tables. Unpublished doctoral dissertation, KTH –-
Royal Institute of Technology, Stockholm, Sweden.

Gnutella. (2003). Gnutella. http://www.gnutella.com.
Gray, J., & Lamport, L. (2006). Consensus on transaction commit.

ACM Trans. Database Syst., 31(1), 133-160.
Grolaux, D., Mejı́as, B., & Van Roy, P. (2007, September).

PEPINO: PEer-to-Peer network INspectOr. In M. Hauswirth,
A. Wierzbicki, K. Wehrle, A. Montresor, & N. Shahmehri
(Eds.), The seventh ieee international conference on peer-to-
peer computing (p. 247-248). IEEE Computer Society.

Hewitt, C., Bishop, P., & Steiger, R. (1973). A universal modular
actor formalism for artificial intelligence. In Proc. of the 3rd
ijcai (p. 235-245). Stanford, MA.

Krishnamurthy, S., & Ardelius, J. (2008). An analytical framework
for the performance evaluation of proximity-aware structured
overlays (Tech. Rep.). Swedish Institute of Computer Science
(SICS), Sweden.

Markatos, E. P. (2002). Tracing a large-scale peer to peer system:
an hour in the life of gnutella. In 2nd ieee/acm international
symposium on cluster computing and the grid.

Mejı́as, B., & Van Roy, P. (2008). The relaxed-ring: a fault-tolerant
topology for structured overlay networks. Parallel Processing
Letters, 18(3), 411-432.

Mesaros, V., Carton, B., & Van Roy, P. (2005). P2PS: Peer-to-peer
development platform for mozart. In P. V. Roy (Ed.), Moz (Vol.
3389, p. 125-136). Springer.



14 BORIS MEJÍAS AND PETER VAN ROY

Miller, M. S., & Shapiro, J. S. (2003, December). Paradigm
regained: Abstraction mechanisms for access control. In
V. Saraswat (Ed.), Asian’03. Springer Verlag.

Moser, M., & Haridi, S. (2007). Atomic Commitment in Transac-
tional DHTs. In Proceedings of the coregrid symposium. core-
grid series. Springer.

Mozart Consortium. (2008). The mozart-oz programming system.
http://www.mozart-oz.org.

Plantikow, S., Reinefeld, A., & Schintke, F. (2007). Transactions
for distributed wikis on structured overlays. In Managing virtu-
alization of networks and services (p. 256-267). Available from
http://dx.doi.org/10.1007/978-3-540-75694-1\ 25

PostgreSQL Global Development Group. (2009). PostgreSQL:
The world’s most advanced open source database. http://
www.postgresql.org/.

Ratnasamy, S., Francis, P., Handley, M., Karp, R., & Schenker, S.
(2001). A scalable content-addressable network. In Sigcomm
’01: Proceedings of the 2001 conference on applications, tech-
nologies, architectures, and protocols for computer communica-
tions (p. 161-172). New York, NY, USA: ACM.

Rhea, S., Godfrey, B., Karp, B., Kubiatowicz, J., Ratnasamy,
S., Shenker, S., et al. (2005). Opendht: A public dht ser-
vice and its uses. Available from citeseer.ist.psu.edu/
rhea05opendht.html

Ripeanu, M., Foster, I., & Iamnitchi, A. (2002). Mapping the
gnutella network: Properties of large-scale peer-to-peer systems

and implications for system. IEEE Internet Computing Journal,
6, 2002.

Rowstron, A., & Druschel, P. (2001a). Pastry: Scalable, decen-
tralized object location, and routing for large-scale peer-to-peer
systems. Lecture Notes in Computer Science, 2218, 329.

Rowstron, A., & Druschel, P. (2001b). Storage manage-
ment and caching in PAST, a large-scale, persistent peer-to-
peer storage utility. Available from citeseer.ist.psu.edu/
rowstron04storage.html

Schütt, T., Schintke, F., & Reinefeld, A. (2007). A structured over-
lay for multi-dimensional range queries. In Euro-par 2007.

Schütt, T., Schintke, F., & Reinefeld, A. (2008). Scalaris: reliable
transactional p2p key/value store. In Erlang ’08: Proceedings of
the 7th acm sigplan workshop on erlang (p. 41-48). New York,
NY, USA: ACM.

Stoica, I., Morris, R., Karger, D., Kaashoek, F., & Balakrishnan,
H. (2001). Chord: A scalable peer-to-peer lookup service for
internet applications. In Proceedings of the 2001 acm sigcomm
conference (p. 149-160).

Wikimedia Foundation. (2009). Wikipedia, the free encyclopedia.
http://en.wikipedia.org/wiki/Wikipedia.

Zhao, B. Y., Huang, L., Stribling, J., Rhea, S. C., Joseph, A. D., &
Kubiatowicz, J. D. (2003). Tapestry: A global-scale overlay for
rapid service deployment. IEEE Journal on Selected Areas in
Communications.


