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Abstract Multi-Objective Combinatorial Optimization (MOCO) problems find a
wide range of practical application problems, some of which involving Boolean
variables and constraints. This paper develops and evaluates algorithms for solving
MOCO problems, defined on Boolean domains, and where the optimality criterion
is lexicographic. The proposed algorithms build on existing algorithms for either
Maximum Satisfiability (MaxSAT), Pseudo-Boolean Optimization (PBO), or Inte-
ger Linear Programming (ILP). Experimental results, obtained on problem instances
from haplotyping with pedigrees and software package dependencies, show that
the proposed algorithms can provide significant performance gains over state of
the art MaxSAT, PBO and ILP algorithms. Finally, the paper also shows that
lexicographic optimization conditions are observed in the majority of the problem
instances from the MaxSAT evaluations, motivating the development of dedicated
algorithms that can exploit lexicographic optimization conditions in general MaxSAT
problem instances.
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1 Introduction

Real-world optimization problems often involve multiple objectives, that can rep-
resent conflicting purposes. There has been a large body of work on solving multi-
objective combinatorial optimization (MOCO) problems, see for example [22, 23,
55, 60]. MOCO problems have natural Boolean formulations in some application
domains, e.g. 0–1 multiobjective knapsack problems or the problems studied in this
paper, and so Boolean-based optimization solutions could be expected to represent
effective alternative solutions [22, 26, 62]. This paper addresses MOCO problems
where the variables are Boolean, the constraints are represented by linear inequali-
ties (or clauses), and the optimization criterion is lexicographic. Given a sequence of
cost functions, an optimization criterion is said to be lexicographic whenever there is
a preference in the order in which the cost functions are optimized. There are many
examples where optimization is expected to be lexicographic. For example, suppose
that instead of requiring a balance between price, horsepower and fuel consumption
for choosing a new car, you have made a clear hierarchy in your mind: you have a
strict limit on how much you can afford, then you will not consider a car with less than
150 hp and after that the less the fuel consumption the better. Not only you establish
a priority in your preferences, but also each optimization criterion is defined in such
a way that the set of potential solutions gets subsequently reduced. Such kind of
problems are present not only in your daily life but also in many real applications,
and representative examples can be found in recent surveys [22, 23, 55].

This paper develops and evaluates algorithms for Boolean lexicographic optimiza-
tion problems, and has four main contributions. First, the paper formalizes Boolean
Lexicographic Optimization. Second, the paper shows that a significant percentage
of problem instances from the Maximum Satisfiability (MaxSAT) evaluations exhibit
different forms of lexicographic optimization. Third, the paper describes practical
algorithms for solving Boolean Lexicographic Optimization, either based on pseudo-
Boolean optimization (PBO), 0–1 Integer Linear Programming (ILP), or MaxSAT
algorithms. Fourth, the paper illustrates the practical usefulness of the proposed al-
gorithms. The experimental evaluation focuses on two concrete applications, namely
haplotyping with pedigree information [30] and software package dependencies [40].
Nevertheless, the techniques proposed in this paper are general, and can be used in
other contexts.

The paper is organized as follows. Section 2 overviews MaxSAT, PBO, and
Lexicographic Optimization. Moreover, Section 2 overviews Boolean Multilevel
Optimization (BMO), as proposed in [8], but extends BMO with less restrictive
conditions, thus increasing its applicability. Section 3 shows that lexicographic
optimization conditions are encoded in the majority of problem instances from
recent MaxSAT evaluations [7]. Afterwards, Section 4 describes four alternative ap-
proaches for solving lexicographic optimization problems. Three of these approaches
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have been studied before in restricted settings of lexicographic optimization [8];
the fourth approach is novel. Section 5 conducts a detailed experimental evaluation
on hard problem instances from haplotyping with pedigree information, allowing a
detailed comparison of state of the art MaxSAT, PBO and ILP solvers against the
algorithms proposed in this paper. Section 5 also summarizes the results of recent
software package dependencies competitions [42], a practical application where the
use of BLO techniques is essential. Section 6 summarizes related work and Section 7
concludes the paper.

2 Preliminaries

This section overviews the Maximum Satisfiability (MaxSAT) problem and its
variants, as well as the Pseudo-Boolean Optimization (PBO) problem. The main
approaches used by state of the art solvers are briefly summarized, including recent
unsatisfiability-based MaxSAT algorithms. To conclude, this section provides a brief
overview of MOCO focusing on lexicographic optimization.

In the remainder of this paper, standard definitions of Boolean Satisfiability
(SAT), and related areas are assumed. Extensive treatment of these topics can be
found in recent references (e.g. [14, 29, 36, 47, 53, 57]). A detailed account of 0–1 ILP
can be found in [58, 64].

2.1 Maximum satisfiability

Given a CNF formula C, the Maximum Satisfiability (MaxSAT) problem consists in
finding an assignment that maximizes the number of satisfied clauses. Well-known
variants of the MaxSAT problem include weighted MaxSAT, partial MaxSAT and
weighted partial MaxSAT [36]. The partial variants of MaxSAT distinguish between
hard and soft clauses, where hard clauses must be satisfied, and the objective is to
maximize the sum of the weights of satisfied soft clauses. For the weighted variants of
MaxSAT, soft clauses are associated a weight, whereas for the unweighted versions,
soft clauses have weight 1. All these formulations find a wide range of practical
applications (e.g. [46]). The general weighted partial MaxSAT problem formulation
assumes a CNF formula C, where each clause c ∈ C is associated a weight w, and
where clauses that must be satisfied have weight w = �. The optimization problem
is to find a truth assignment such that the sum of the weights of the satisfied clauses
is maximized.

The last decade has seen a large number of alternative algorithms for MaxSAT.
These can be broadly categorized as branch-and-bound with lower bounding,
decomposition-based, translation to pseudo-Boolean (PB) constraints and unsat-
isfiability based. Branch-and-bound algorithms integrate lower bounding and infer-
ence techniques, and represent the more mature solutions, i.e., which have been
studied more extensively in the past. Examples of branch-and-bound algorithms
include: MaxSatz [37], IncMaxSatz [38], WMaxSatz [5], and MiniMaxSAT [34].
A well-known example of translation to PB constraints is SAT4J-MaxSAT [12].
Examples of decomposition-based solvers include Clone [52] and sr(w) [54]. A recent
alternative are unsatisfiability-based algorithms, that build on the success of modern
SAT solvers, and which have been shown to perform well on problem instances
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from practical applications [29, 47]. In recent years, several unsatisfiability-based
MaxSAT algorithms have been proposed. A first approach was outlined in [25]. This
work has been extended in a number of different ways, and recent solvers include
MSUnCore [45, 48–50], WBO [45], WPM1 and PM2 [3], and WPM2 [4].

2.2 Pseudo-Boolean Optimization

Pseudo-Boolean Optimization (PBO) is an extension of SAT where constraints are
linear inequalities, with integer coefficients and Boolean variables. The objective in
PBO is to find an assignment to problem variables such that all problem constraints
are satisfied and the value of a linear objective function is optimized. The PBO
normal form [10] is defined as follows:

minimize
∑

j∈N
v j · l j

subject to
∑

j∈N
aijl j ≥ bi,

l j ∈ {x j, x̄ j}, x j ∈ {0, 1}, aij, bi, v j ∈ N+
0

(1)

Observe that any pseudo-Boolean formulation can be translated into a normal
form [57].

Modern PBO algorithms generalize the most effective techniques used in modern
SAT solvers. These include unit propagation, conflict-driven learning and conflict-
directed backtracking [15, 44]. Despite a number of common techniques, there are
several alternative approaches for solving PBO. The most often used approach is to
conduct a linear search on the value of the objective function. In addition, the use
of binary search has been suggested and evaluated in the recent past [25, 57]. SAT
algorithms can be generalized to deal with pseudo-Boolean constraints [10] natively
and, whenever a solution to the problem constraints is identified, a new constraint
is created such that only solutions corresponding to a lower value of the objective
function are allowed. The algorithm terminates when the solver cannot improve the
value of the cost function. Another often used solution is based on branch-and-bound
search, where lower bounding procedures to estimate the value of the objective
function are used, and the upper bound is iteratively refined. Several lower bounding
procedures have been proposed over the years, e.g. [18, 44]. There are also algorithms
that encode pseudo-Boolean constraints into propositional clauses [9, 21, 63] and
solve the problem by subsequently using a SAT solver. This approach has been
proved to be very effective for several problem sets, in particular when the clause
encoding is not much larger than the original pseudo-Boolean formulation.

Although MaxSAT and PBO are different formalisms, there are well-known
mappings from MaxSAT to PBO and vice-versa [2, 32, 34]. The remainder of
the paper uses both formalisms interchangeably. A set of clauses or constraints is
denoted by C. Without loss of generality, linear constraints are assumed to represent
clauses, thus representing instances of the Binate Covering Problem [18]. For the
general case where linear constraints represent PB constraints, there are well-known
mappings from PB constraints to CNF formulas [21, 57, 63], which could be used if
necessary.

Mappings from soft clauses to cost functions and vice-versa are also well-known
[34]. For example, suppose the cost function min

∑
j v j · x j. A set of soft clauses can

replace this cost function: for each x j create a soft clause (x̄ j) with cost v j. Similarly,
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a set of soft clauses can be represented with a cost function. Suppose a set of soft
clauses Ca, where each clause c j ∈ Ca is associated a weight w j. Replace each clause
c j with c′

j = c j ∨ s̄ j, where s j is a relaxation variable, and create the cost function
min

∑
j w j · s j.

2.3 Boolean Multilevel Optimization

Boolean Multilevel Optimization (BMO) [8] is a restriction of weighted (partial)
MaxSAT, with an additional condition on the clause weights. This section presents
the original definition of BMO [8], and outlines extensions to the original BMO
definition in Sections 2.3.2 and 2.3.3.

2.3.1 Complete BMO

BMO is defined on a set of sets of clauses C = C0 ∪ C1 ∪ . . . ∪ Cm, where {C0,

C1, . . . , Cm} forms a partition of C, and a weight is associated with each set of clauses:
〈w0 = �, w1, . . . , wm〉, such that wi is associated with each clause c in each set Ci.

C0 represents the hard clauses, each with weight w0 = �. Although C0 may be
empty, it is assumed that Ci 
= ∅, i = 1, . . . , m.

Definition 1 (Complete BMO) An instance of Weighted (Partial) Maximum Sat-
isfiability is an instance of (complete) BMO iff the following condition holds:

wi >
∑

i+1≤ j≤m

w j · |C j| i = 1, . . . , m − 1 (2)

Example 1 Consider the following set of sets of clauses and clause weights:

〈C0 = {c1, c2}, C1 = {c3, c4, c5}, C2 = {c6, c7}, C3 = {c8, c9}〉
〈w0 = 40 = �, w1 = 9, w2 = 3, w3 = 1〉

The basic complete BMO condition holds for all i, 1 ≤ i ≤ 2:

w2 = 3 >
∑

3≤ j≤3

w j · |C j| = 1 · 2 = 2

w1 = 9 >
∑

2≤ j≤3

w j · |C j| = 3 · 2 + 1 · 2 = 8

BMO can be viewed as a technique for identifying lexicographic optimization
conditions in MaxSAT and PBO problem instances. The existence of lexicographic
conditions allows solving the original problem instance with iterative algorithms.
Hence, a more complex problem instance is solved by iteratively solving (possibly)
easier problem instances. The relationship between BMO and lexicographic opti-
mization is further highlighted in the following sections.

2.3.2 Complete BMO condition using upper bounds

There are a number of refinements that can be made to the basic complete BMO
condition proposed in Section 2.3.1 and in [8]. Suppose one knows an upper bound
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on the number of clauses that can be satisfied for each Ci, with 1 ≤ i ≤ m. Let the
upper bound be represented by UB(Ci). Then, the BMO condition can be refined as
follows.

Definition 2 (Complete BMO with upper bounds) An instance of Weighted (Par-
tial) Maximum Satisfiability is an instance of (complete) BMO with upper bounds iff
the following condition holds:

wi >
∑

i+1≤ j≤m

w j · UB(C j) i = 1, . . . , m − 1 (3)

Example 2 Consider the following sequences of sets of clauses, clause weights and
upper bounds on the number of satisfied clauses:

〈C0 = {c1, c2}, C1 = {c3, c4}, C2 = {c5, c6, c7, c8}, C3 = {c9, c10}〉
〈w0 = 30, w1 = 12, w2 = 3, w3 = 1〉
〈U B(C1) = 2, U B(C2) = 3, U B(C3) = 2〉

The complete BMO condition (taking upper bounds into account) holds for all i,
1 ≤ i ≤ 2:

w2 = 3 >
∑

3≤ j≤3

w j · UB(C j) = 1 · 2 = 2

w1 = 12 >
∑

2≤ j≤3

w j · UB(C j) = 3 · 3 + 1 · 2 = 11

Clearly, the basic complete BMO condition using the number of clauses in each set
would not hold because of weight w1 = 12.

One additional straightforward optimization is that one can compute more accu-
rate upper bounds UB(C j) by taking into account the hard clauses in C0 for each C j;
clearly the hard clauses need to be satisfied when computing the upper bound for
each C j. Moreover, there are a number of alternative solutions for computing upper
bounds on the number of satisfied clauses. One solution is to use an unsatisfiability-
based MaxSAT solver to compute an upper bound on the number of satisfied clauses
in a given time bound [3, 45, 48, 50]. Another solution consists of solving the problem
exactly, with an existing MaxSAT solver.

2.3.3 Partial BMO condition

For some problem instances, it is not possible to validate the BMO condition for all
sets of clauses. However, it may still be possible to use BMO in a more restricted
form. Instead of considering all of the sets in C − C0, the new condition considers
only a subset of the sets in C − C0, defined by a sequence of integers 〈k1, k2, . . . , kl〉,
where k1 < k2 < . . . < kl and l < m, kl < m. The resulting BMO definition is given
below.

Definition 3 (Partial BMO) An instance of Weighted (Partial) Maximum Sat-
isfiability is an instance of partial BMO (with upper bounds) iff there exists
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〈k1, k2, . . . , kl〉, with k1 < k2 < . . . < kl and l < m, kl < m, such that the following
condition holds:

wki >
∑

ki+1≤ j≤m

w j · UB(C j) i = 1, . . . , l (4)

The new BMO condition (4) is only required to hold for some of the sets in C − C0.
For the cases where the condition holds, a dedicated BMO algorithm will need to
manipulate subsets of set C − C0. Using the above notation, a dedicated algorithm
would first compute the optimum solution for the set of clauses C0, C1, . . . , Ck1 . This
optimum solution is then used to filter the set of candidates for optimum assignments,
by requiring this set of sets of clauses to satisfy its optimum solution. Given the
computed result, the algorithm would then analyze Ck1+1, Ck1+2, . . . , Ck2 , and would
take into consideration the sets of clauses C0, C1, . . . , Ck1 , as well as their already
computed solution. The process would be iterated, in order, for each set of sets of
clauses considered in (4).

Example 3 Consider the following sequences of sets of clauses, clause weights, and
upper bounds associated with each set of clauses:

〈C0 = {c1, c2}, C1 = {c3, c4}, C2 = {c5, c6}, C3 = {c7, c8, c9}〉
〈w0 = 25, w1 = 8, w2 = 2, w3 = 1〉
〈U B(C1) = 2, U B(C2) = 2, U B(C3) = 3〉

The complete BMO condition fails for i = 2:

w2 = 2 <
∑

3≤ j≤3

w j · UB(C j) = 1 · 3 = 3

However, partial BMO can be applied by considering sequence 〈k1 = 1〉, such that:

w1 = 8 >
∑

2≤ j≤3

w j · UB(C j) = 2 · 2 + 1 · 3 = 7

2.4 Lexicographic optimization

Multi-Objective Combinatorial Optimization (MOCO) [22, 23, 55] is a well-known
area of research, with many practical applications, including Operations Research
and Artificial Intelligence. Lexicographic optimization represents a specialization of
MOCO, where the optimization criterion is lexicographic. Motivated by the wide
range of practical applications, Lexicographic Optimization is also often referred
to Preemptive Goal Programming or Lexicographic Goal Programming [55]. This
section introduces Boolean Lexicographic Optimization (BLO), a restriction of
lexicographic optimization, where variables are Boolean, all cost functions and
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constraints are linear, and the optimization criterion is lexicographic. The notation
and definitions in this section follow [22], subject to these additional constraints.

A set X of variables is assumed, with X = {x1, . . . , xn}. The domain of the
variables is X = {0, 1}n. A point in X is represented as x ∈ X or (x1, . . . , xn) ∈ X .
A set of p linear functions is assumed, all of which are defined on Boolean variables,
fk : {0, 1}n → Z, 1 ≤ k ≤ p:

fk(x1, . . . , xn) =
∑

1≤ j≤n

vk, j · l j (5)

where l j ∈ {x j, x̄ j}, and vk, j ∈ N
+
0 . The p cost functions capturing the optimiza-

tion problem represent a multi-dimensional function: f : {0, 1}n → Z
p, with f(x) =

( f1(x), . . . , fp(x)).
The optimization problem is defined on these p functions, subject to satisfying a

set of constraints:

lexmin ( f1(x1, . . . , xn), . . . , fp(x1, . . . , xn))

subject to
∑

j∈N
aijl j ≥ bi,

l j ∈ {x j, x̄ j}, x j ∈ {0, 1}, aij, bi ∈ N
+
0

(6)

Any point x ∈ {0, 1}n which satisfies the constraints is called a feasible point.
For any two vectors y1, y2 ∈ Z

p, with y1 = (y1
1, . . . , y1

p) and y2 = (y2
1, . . . , y2

p), the
lexicographic comparison (<lex) is defined as follows: y1 <lex y2 iff y1

q < y2
q, where

q = min {k : y1
k 
= y2

k}. For example, y1 = (1, 2, 3, 2)<lex y2 = (1, 2, 4, 1), because the
coordinate with the smallest index where y1 and y2 differ is the third coordinate, with
y1

3 = 3 < y2
3 = 4.

Definition 4 (Lexicographic optimality) A feasible point x̂ ∈ {0, 1}n is lexicographi-
cally optimal if there exists no other x such that f(x) <lex f(x̂).

This section concludes by showing that it is possible to relate the BMO conditions
with BLO. Essentially, BMO models Weighted Partial MaxSAT problems where
the weights of the clauses capture a lexicographic optimization condition. Any of
the BMO conditions implicitly captures a sequence of Boolean functions, such
that the optimization process is to be performed in order, giving preference to the
function associated with the clauses with the largest weight, then to the clauses
with the second largest weight, and so on. As a result, problem instances modelling
some lexicographic optimization problem can be represented as explicit instances of
lexicographic optimization, or as instances of MaxSAT (or PB), where the costs used
respect one of the BMO conditions.

Example 4 The optimization problem from Example 3 can be formulated as an
instance of lexicographic optimization. The first step consists of adding a relaxation
variable s j to each soft clause. This can then be used for creating two cost functions,
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which capture the lexicographic optimization condition. The resulting formulation is
defined as follows:

lexmin ( f1(s3, . . . , s9), f2(s3, . . . , s9))

subject to c1 ∧ c2 ∧ ∧9
j=3(¬s j ∨ c j)

s j, xi ∈ {0, 1}, j ∈ {3, . . . , 9}, i ∈ N

(7)

where f1(s3, . . . , s9) = −(s3 + s4), f2(s3, . . . , s9) = −2 × (s5 + s6) − (s7 + s8 + s9),
and all clauses are defined over the xi variables.

3 Boolean lexicographic optimization in practice

This section overviews the use of Boolean lexicographic optimization in practical
applications. One example is the installation of software packages. Initial models
represented multiple criteria with BMO [8]. More recently [42, 43], the existence
of multiple criteria in software package installation is explicitly represented with
lexicographic optimization. More concretely, three different linear functions model
different criteria, and the optimum is defined lexicographically. Another area of
application is haplotyping with pedigree information [30, 31]. Two criteria are con-
sidered for haplotyping with pedigree information, namely Minimum Recombinant
Haplotyping Configuration (MRHC), which minimizes the number of recombinant
events within a pedigree, and the Haplotype Inference by Pure Parsimony (HIPP),
that aims at finding a solution with a minimum number of distinct haplotypes within
a population. Both criteria are represented with linear functions, and the optimum is
defined lexicographically.

Although the previous two example applications are significant, there are many
other examples. Somewhat surprisingly, many publicly available MaxSAT bench-
marks can be shown to encode some form of lexicographic optimization. This obser-
vation is a direct consequence of the relationship between BLO and (partial) BMO

Table 1 2008 MaxSAT evaluation statistics

Class #I %BMO %MinR %MedR %MaxR

Weighted/crafted/KeXu 15 100.00 100.00 100.00 100.00
Weighted/crafted/RAMSEY 48 58.33 0.11 0.50 25.00
Weighted/crafted/WMAXCUT/DIMACS_MOD 62 0.00 0.00 0.00 0.00
Weighted/crafted/WMAXCUT/RANDOM 40 0.00 0.00 0.00 0.00
Weighted/crafted/WMAXCUT/SPINGLASS 5 100.00 0.10 0.27 1.25
Weightedpartial/crafted/AUCTIONS/AUC_PATHS 88 95.45 1.49 2.50 10.53
Weightedpartial/crafted/AUCTIONS/AUC_REGIONS 84 96.43 0.46 0.72 2.97
Weightedpartial/crafted/AUCTIONS/AUC_SCH... 84 29.76 7.14 11.11 25.00
Weightedpartial/crafted/PSEUDO/factor 186 100.00 100.00 100.00 100.00
Weightedpartial/crafted/PSEUDO/miplib 16 37.50 0.78 2.56 7.69
Weightedpartial/crafted/QCP 25 0.00 0.00 0.00 0.00
Weightedpartial/crafted/WCSP/PLANNING 71 18.31 0.80 7.14 50.00
Weightedpartial/crafted/WCSP/SPOT5/DIR 21 80.95 25.00 33.33 66.67
Weightedpartial/crafted/WCSP/SPOT5/LOG 21 80.95 25.00 33.33 66.67
Weightedpartial/industrial/PROTEIN_INS 12 100.00 50.00 100.00 100.00
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Table 2 2009 MaxSAT evaluation statistics

Class #I %BMO %MinR %MedR %MaxR

Weightedpartial_crafted/KnotPipatsrisawat 191 97.91 0.06 0.14 1.27
Weightedpartial_crafted/min-enc/planning 56 16.07 0.80 7.14 33.33
Weightedpartial_crafted/min-enc/warehouses 18 100.00 0.04 0.08 5.26

outlined in the previous section. Moreover, these results suggest that lexicographic
optimization is often implicitly represented when modelling optimization problems
from practical applications. As the results below demonstrate, this is usually achieved
with different forms of the BMO condition: either complete BMO, complete BMO
with upper bounds, and partial BMO.

In order to evaluate the existence of lexicographic optimization conditions in
commonly used Boolean optimization benchmarks, we evaluated the existence of
one of the BMO conditions in weighted (partial) MaxSAT instances from the 2008
and 2009 evaluations [7, 33].

Table 1 summarizes the results for the (non-random) weighted and weighted
partial classes of the 2008 MaxSAT Evaluation [7, 33]. Class represents the class
of problem instances. #I represents the number of problem instances in a given
class. %BMO represents the percentage of instances where one of the BMO conditions
was successfully identified. %MinR denotes the smallest fraction of weights where
the BMO condition can be applied, over the total number of distinct weights for a
given problem instance, over all the problem instances of the class. For example,
if %MinR is 25, then there exists a problem instance where the BMO condition
was identified in 25% of the weights, and no other problem instance has a smaller
percentage of weights where the BMO condition was identified. %MedR denotes
the median fraction of weights where the BMO condition can be applied, over the
total number of distinct weights for a given problem instance, over all the problem
instances of the class. Finally, %MaxR denotes the largest fraction of weights where
the BMO condition can be applied, over the total number of distinct weights for
a given problem instance, over all the problem instances of the class. Observe
that, if both MinR and MaxR are 100%, then the complete BMO condition (2) (or
alternatively (3)) applies.

From the table it can be concluded that, for a universe of 778 problem instances
from the (non-random) weighted and weighted partial classes of the 2008 MaxSAT
Evaluation [7, 33], the existence of one of the BMO conditions was observed in 489
instances, representing close to 63% of the instances analyzed. These results were
obtained by using a trivial upper bound for each set Ci, i.e. |Ci|. Moreover, the use of
accurate upper bounds would only serve to improve these results.

Table 2 shows the results obtained for the classes of problem instances new in
the 2009 MaxSAT Evaluation.1 For the 2009 problem instances, one of the BMO
conditions is observed for 214 out of a total of 265 instances, which represents more
than 80% of the total number of instances. As expected, all instances from the
software upgradeability problem instances respect the (complete) BMO condition.

1http://www.maxsat.udl.cat/09/.

http://www.maxsat.udl.cat/09/
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Table 3 Example Mancoosi [8, 41] benchmark suites

Class #I %BMO %MinR %MaxR

MANCOOSI test 2100 100.00 100.00 100.00
MANCOOSI #3—live 2913 100.00 100.00 100.00

Finally, we analyzed problem instances from the problem of software package
dependencies [8, 41]. These results are shown in Table 3. As can be observed, all
problem instances exhibit BMO conditions.

We have also checked all the instances using more accurate upper bounds instead
of using |Ci| for each set Ci as the trivial upper bound. The solver we have used
is WMaxSatz [6], and we have computed the exact upper bound for each set Ci.
Table 4 shows the results obtained. Classes without improvements or classes that
take more than 30 min to compute the exact upper bound of an instance are not
shown in the table. We can see that in the two classes for which improvements
are observed (out of a total of 18 classes), now all the instances are identified as
BMO problems. Furthermore, we can identify some of the instances of the class
AUC_SCHEDULING as complete BMO problems with a 100% of MaxR instead
of the previous 25%.

As can be concluded, and according to existing problem instances, BMO con-
ditions tend to occur frequently in weighted and weighted partial MaxSAT prob-
lem instances from representative application domains, including combinatorial
auctions [35] (class AUC_...), optimal planning [17] (class PLANNING), obser-
vation satellite management [11] (class SPOT5), protein alignment [59] (class
PROTEIN_INS), spin glass problems [19] (class SPINGLASS), and software up-
gradeability problems [8]. The BMO conditions also occur in some artificially
generated instances, including number factorization [9] (class factor), Ramsey num-
bers [65] (class RAMSEY), and mixed integer programming [1] (class miplib). As
can also be observed, only for few classes of instances no BMO conditions were
identified: KeXu, RANDOM (MAXCUT), DIMACS_MOD and QCP [7].

The results above provide ample evidence that problem instances from a wide
range of application domains exhibit BMO conditions, and so can be solved with
algorithms that exploit BMO conditions, e.g. BLO algorithms. Nevertheless, for
problem instances not originating from industrial settings, i.e. for crafted and random
instances, existing algorithms can exploit BMO conditions to improve lower or upper
bounds on the optimum solution, but are still unable to compute the optimum in
most cases. The following justifications can be offered for these results (i) these
instances do not exhibit the structural properties that can exploited by modern SAT
solvers; and (ii) MaxSAT algorithms based on iterative SAT solving are still recent,
and still being actively improved upon. The situation is totally different for problem
instances originating from industrial settings. For these instances, BLO algorithms

Table 4 MaxSAT evaluation statistics using upper bounds

Class #I %BMO %MinR %MaxR

Weightedpartial/crafted/AUCTIONS/AUC_PATHS 88 100.00 1.49 10.53
Weightedpartial/crafted/AUCTIONS/AUC_SCHEDULING 84 100.00 5.26 100.00
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can exploit BMO conditions to provide remarkable performance improvements. This
is illustrated with two concrete applications in Section 5.

4 Algorithms for Boolean lexicographic optimization

This section describes four different algorithmic approaches for solving Boolean
Lexicographic Optimization problems as defined in Section 2.4. Each algorithm uses
the most suitable problem representation, i.e. either PBO or MaxSAT. As a result,
Section 4.2 assumes a PBO formulation, whereas Sections 4.3 and 4.4 assume a
MaxSAT formulation. Moreover, since MaxSAT problems can be mapped to PBO
and vice-versa [2, 34, 45], the algorithms described in this section can be applied to
either class of problems. The notation used follows earlier sections. Ci denotes a set
of clauses or PB constraints. μk denotes the optimum solution for some iteration k.

4.1 Aggregated cost function

A simple solution for solving Lexicographic Optimization problems is to aggregate
the different functions into a single weighted cost function [51]. In this case, any
MaxSAT or PBO algorithm can be used for solving BLO problems. The aggregation
is organized as follows. Let uk = ∑

j vk, j denote the upper bound on the value of
fk. Then define wp = 1, and wi = 1 + ∑p

k=i+1 wk · uk. The aggregated cost function
becomes:

min
p∑

k=1

wk ·
⎛

⎝
n∑

j=1

vk, j · l j

⎞

⎠ (8)

subject to the same constraints. Alternatively, the cost function can be represented
as a set of weighted soft clauses. In this case, the problem instance can be mapped to
PBO, with a unique cost function, where the weights are modified as outlined above.

Example 5 Consider the following BLO cost function:

lexmin (

f1
︷ ︸︸ ︷
2x1 + x̄2,

f2
︷ ︸︸ ︷
2x2 + x̄3,

f3
︷︸︸︷
x3 )

s.t. (x1 = 1)

The aggregated cost function for this problem is:

8 f1 + 2 f2 + f3 = 8 × (2x1 + x̄2) + 2 × (2x2 + x̄3) + x3,

and the corresponding soft clauses are (¬x1, 16), (x2, 8), (¬x2, 4), (x3, 2), (¬x3, 1).
Finally, the complete set of clauses is: {(x1,�), (¬x1, 16), (x2, 8), (¬x2, 4), (x3, 2),

(¬x3, 1)}. Observe that other sets of clauses could be considered, e.g. by observing
that x̄i = 1 − xi. For example, another aggregated cost function would be 16 × x1 +
4 × x2 + x3.

The main drawback of using an aggregated cost function is that exponentially large
weights need to be used in the aggregated cost function. For a MaxSAT approach,
this results in large weights being associated with some of the soft clauses.
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Observe that the BMO conditions described in Section 2.3 (see also [8]) allow
identifying problem instances where lexicographic optimization is represented with
an aggregated cost function. Despite being an apparently naive modelling solution,
the data from Section 3, demonstrates that the majority of the weighted (partial)
MaxSAT instances from past MaxSAT evaluations [7] respect one of the BMO con-
ditions. These results prove that these instances are essentially using an aggregated
cost function to model a naturally occurring lexicographic optimization problem.

4.2 Iterative pseudo-Boolean solving

An alternative solution for Boolean lexicographic optimization was proposed in the
context of BMO [8]. A formalization of this approach is shown in Algorithm 1,
and essentially represents an instantiation of the standard approach for solving
lexicographic optimization problems [22]. The algorithm executes a sequence of
p calls to a PBO solver, in decreasing lexicographic order. At each iteration, the
solution of the PBO problem instance is recorded, and a new constraint is added
to the set of constraints, requiring the cost function k to be equal to the computed
optimum value. After the p iterations, the algorithm identified each of the optimum
values for each of the cost functions in the lexicographically ordered cost function.
One important remark is that any PBO or ILP solver can be used.

Example 6 Consider the BLO problem from Example 5:

lexmin (

f1
︷ ︸︸ ︷
2x1 + x̄2,

f2
︷ ︸︸ ︷
2x2 + x̄3,

f3
︷︸︸︷
x3 )

s.t. (x1 = 1).

The PBO-based BLO algorithm works iteratively as follows. The first iteration finds
the optimum with respect to f1, which corresponds to solving the following PBO
instance:

min (2x1 + x̄2)

s.t. (x1 = 1).

A PBO solver is used to conclude that the optimum solution is 2. The second iteration
find the optimum with respect to f2, which corresponds to solving the following PBO
instance:

min (2x2 + x̄3)

s.t. (2x1 + x̄2 = 2) ∧ (x1 = 1).
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The optimal solution for this problem is 2. Finally, function f3 is minimized,

min (x3)

s.t. (2x2 + x̄3 = 2) ∧ (2x1 + x̄2 = 2) ∧ (x1 = 1).

The optimal solution for this PBO problem is 1. Hence, the lexicographic optimum
solution for the BLO problem is (2,2,1). Given the selected weights in Example 5,
the overall cost is 21. Observe that it would also be possible to convert the soft
clauses to a set of five functions (see Example 5), that would then be optimized
lexicographically. In this case the solution vector would be (1, 0, 1, 0, 1), which would
also represent an overall aggregated cost of 21. Finally, other lexicographic cost
functions could be considered, allowing different ways of computing the optimum
solution.

The main potential drawbacks of the PB-based approach are: (i) PB constraints
resulting from the cost functions need to be handled natively, or at least encoded to
CNF; (ii) each iteration of the algorithm yields only one new constraint on the value
of the cost function k. Clearly, clause reuse could be used, but that would require a
tighter integration with the underlying solver.

4.3 Iterative MaxSAT solving with weight rescaling

Another alternative approach is inspired on branch-and-bound MaxSAT algorithms,
and consists of iteratively rescaling the weights of the soft clauses [8]. Algorithm 2
shows this approach. At each one of the p steps, it finds the optimum value μk of the
current set Ck. The function RescaleWeights computes the weights for the clauses
taking into account the previous solutions for each one of the sets. For example, if set
C0<i<k has μi unsatisfied clauses, the weight for the set Ci−1 can be wi · (μi + 1), which
can be lower than wi · (|Ci| + 1). The function GetMinCost translates the optimum
solution given by the MaxSAT solver, that involves all the sets of clauses up to Ck,
to the number of unsatisfied clauses of current set Ck associated to μk. The weights
returned by the algorithm may affect the original weights, such that μi ≤ wi. The
same holds for the weight associated with hard clauses as it depends on the weights
given to soft clauses.

Example 7 Consider again the BLO problem from Example 5, but represented as a
weighted partial MaxSAT problem:

C = { (x1,�)
︸ ︷︷ ︸

C0

, (¬x1, 16)
︸ ︷︷ ︸

C1

, (x2, 8)
︸ ︷︷ ︸

C2

, (¬x2, 4)
︸ ︷︷ ︸

C3

, (x3, 2)
︸ ︷︷ ︸

C4

, (¬x3, 1)
︸ ︷︷ ︸

C5

}.
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First, observe that the BMO condition holds. Hence, the iterative MaxSAT with
weight rescaling algorithm can be used. At each step k, the formulae for weight
rescaling are wk = 1, wk−1 = |Ck| + 1 and wi−1 = wi · (μi + 1), for 1 < i < k.

In the first step, k = 1, the weights are rescaled such that w1 = 1 and w0 = 1 ×
(1 + 1) = 2 = �, so that the set of weighted clauses is

C = { (¬x1, 1)
︸ ︷︷ ︸

C1

, (x1,�)
︸ ︷︷ ︸

C0

}.

The minimum unsatisfiable cost for set C is μ1 = 1.
In the second step, k = 2, the weights are rescaled such that w2 = 1, w1 = 1 × (1 +

1) = 2 and w0 = 2 × (1 + 1) = 4 = �, and, therefore, the set of clauses is

C = { (x2, 1)
︸ ︷︷ ︸

C2

, (¬x1, 2)
︸ ︷︷ ︸

C1

, (x1,�)
︸ ︷︷ ︸

C0

}.

The number of unsatisfiable clauses introduced in this step is 0 and, hence, μ2 = 0.
In the third step, the weights are rescaled such that w0 = 1, w1 = 1 × (1 + 1) = 2,

w2 = 2 × (0 + 1) = 2 and w3 = 2 × (1 + 1) = 4 = � and the set of clauses is

C = { (¬x2, 1)
︸ ︷︷ ︸

C3

, (x2, 2)
︸ ︷︷ ︸

C2

, (¬x1, 2)
︸ ︷︷ ︸

C1

, (x1,�)
︸ ︷︷ ︸

C0

},

Because clauses C0 and C1 cannot be satisfied simultaneously, the minimal unsat-
isfiable cost for this step is μ3 = 1.

According to the same procedure, in the fourth step, the set of clauses is

C = { (x3, 1)
︸ ︷︷ ︸

C4

, (¬x2, 2)
︸ ︷︷ ︸

C3

, (x2, 4)
︸ ︷︷ ︸

C2

, (¬x1, 4)
︸ ︷︷ ︸

C1

, (x1,�)
︸ ︷︷ ︸

C0

}

and μ4 = 0. In the fifth step, the set of clauses becomes

C = { (¬x3, 1)
︸ ︷︷ ︸

C5

, (x3, 2)
︸ ︷︷ ︸

C4

, (¬x2, 2)
︸ ︷︷ ︸

C3

, (x2, 4)
︸ ︷︷ ︸

C2

, (¬x1, 4)
︸ ︷︷ ︸

C1

, (x1,�)
︸ ︷︷ ︸

C0

}

and μ5 = 1.
The minimal unsatisfiable solution is given by

∑p
i=1 wi · μi = 16 × 1 + 8 × 0 + 4 ×

1 + 2 × 0 + 1 × 1 = 21. Observe that, as before, this value can be converted to the
actual values of each of the original cost functions (see Example 5).

Although the rescaling method is effective at reducing the weights that need to
be considered, for very large problem instances the challenge of large clause weights
can still be an issue. This is in contrast with iterative pseudo-Boolean solving which,
for the cases corresponding to the complete BMO condition, weights are never used.



J. Marques-Silva et al.

4.4 Iterative unsatisfiability-based MaxSAT solving

Our final approach for solving BLO problems is based on unsatisfiability-based
MaxSAT algorithms [3, 4, 25, 45, 48–50]. A possible organization is shown in
Algorithm 3.

Similarly to the organization of the other algorithms, Algorithm 3 executes p
iterations, and each cost function is analyzed separately, in order. At each step
a (unsatisfiability-based) partial (weighted) MaxSAT solver is called on a set of
hard and soft clauses. The result corresponds to the minimum unsatisfiability cost
for the set of clauses Ck, given that an optimum solution is also computed for the
sets of clauses having weight larger than those in Ck. In contrast with previous
algorithms, the CNF formula is modified in each iteration. Clauses relaxed by the
unsatisfiability-based MaxSAT algorithm are kept and become hard clauses for the
next iterations. The hardening of soft clauses after each iteration can be justified by
associating sufficiently large weights with each cost function. When analyzing cost
function k, relaxing clauses associated with cost functions 1 to k − 1 are irrelevant
for computing the optimum value at iteration k. The set of clauses that become
hard depends on the MaxSAT algorithm used [3, 4, 45, 48–50]. The correctness of
the algorithm builds on the following: (i) unsatisfiability-based MaxSAT algorithms
are correct [3, 45]; and (ii) the transformations induced by unsatisfiability-based
MaxSAT algorithms are parsimonious, i.e. the number of models remains unchanged
in between iterations of the MaxSAT algorithm used. This guarantees that possible
solutions remain viable for subsequent iterations of the top-level algorithm. As
noted above, the unsatisfiability-based MaxSAT solver used can either solve partial
MaxSAT or partial weighted MaxSAT. The former applies in the case of complete
BMO, whereas the latter applies in the case of partial BMO.

The unsatisfiability-based lexicographic optimization approach inherits some of
the drawbacks of unsatisfiability-based MaxSAT algorithms. One example is that, if
the minimum unsatisfiability cost is large, then the number of iterations may render
the approach ineffective. Another drawback is that, when compared to previous
algorithms, a tighter integration with the underlying MaxSAT solver is necessary.

Interestingly, a well-known drawback of unsatisfiability-based MaxSAT algo-
rithms is addressed by the lexicographic optimization approach. Unsatisfiability-
based MaxSAT algorithms iteratively refine lower bounds on the minimum
unsatisfiability cost. Hence, in case the available computational resources are ex-
ceeded, the algorithm terminates without providing an approximate solution to
the original problem. In contrast, the lexicographic optimization approach allows
obtaining intermediate solutions, each representing an upper bound on the minimum
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unsatisfiability cost. Each intermediate solution μk can assume some solution for the
remaining instances, e.g. by either assuming all clauses unsatisfied or by using the
computed model to obtain a better estimate. Subsequent intermediate solutions will
refine this solution, but all represent upper bounds on the actual optimum solution.

Example 8 Consider once more the BLO problem from Example 5, but represented
as a weighted partial MaxSAT problem:

C = { (x1,�)
︸ ︷︷ ︸

C0

, (¬x1, 16)
︸ ︷︷ ︸

C1

, (x2, 8)
︸ ︷︷ ︸

C2

, (¬x2, 4)
︸ ︷︷ ︸

C3

, (x3, 2)
︸ ︷︷ ︸

C4

, (¬x3, 1)
︸ ︷︷ ︸

C5

}.

The algorithm starts by solving the following partial MaxSAT problem:

C = { (¬x1, 1)
︸ ︷︷ ︸

C1

, (x1,�)
︸ ︷︷ ︸

C0

}.

where C1 is soft and C0 is hard. The unsatisfiability-based MaxSAT solver returns cost
1, and the modified set of clauses:

C = { (¬x1 ∨ s1, 1)
︸ ︷︷ ︸

C1

, (x1, �)
︸ ︷︷ ︸

C0

}.

where, s1 is a fresh relaxation variable, that in this case is not constrained. Clause C1

is made hard for the second iteration, where the set of clauses becomes:

C = { (x2, 1)
︸ ︷︷ ︸

C2

, (¬x1 ∨ s1,�)
︸ ︷︷ ︸

C1

, (x1,�)
︸ ︷︷ ︸

C0

}.

The MaxSAT solver returns cost 0 (i.e. all clauses can be satisfied). For the third
iteration, the set of clauses becomes:

C = { (¬x2, 1)
︸ ︷︷ ︸

C3

, (x2, �)
︸ ︷︷ ︸

C2

, (¬x1 ∨ s1, �)
︸ ︷︷ ︸

C1

, (x1,�)
︸ ︷︷ ︸

C0

}.

The MaxSAT solver returns cost 1, and the modified set of clauses:

C = { (¬x2 ∨ s2, 1)
︸ ︷︷ ︸

C3

, (x2,�)
︸ ︷︷ ︸

C2

, (¬x1 ∨ s1,�)
︸ ︷︷ ︸

C1

, (x1,�)
︸ ︷︷ ︸

C0

}.

As before, s2 is a fresh relaxation variable, which in this example is unconstrained.
For the fourth iteration, the set of clauses becomes:

C = { (x3, 1)
︸ ︷︷ ︸

C4

, (¬x2 ∨ s2,�)
︸ ︷︷ ︸

C3

, (x2, �)
︸ ︷︷ ︸

C2

, (¬x1 ∨ s1, �)
︸ ︷︷ ︸

C1

, (x1,�)
︸ ︷︷ ︸

C0

}.

The MaxSAT solver returns cost 0 (i.e. all clauses can be satisfied). For the fifth
iteration, the set of clauses becomes:

C = { (¬x3, 1)
︸ ︷︷ ︸

C5

, (x3,�)
︸ ︷︷ ︸

C4

, (¬x2 ∨ s2,�)
︸ ︷︷ ︸

C3

, (x2,�)
︸ ︷︷ ︸

C2

, (¬x1 ∨ s1,�)
︸ ︷︷ ︸

C1

, (x1,�)
︸ ︷︷ ︸

C0

}.
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The MaxSAT solver returns cost 1, and the modified set of clauses:

C = { (¬x3 ∨ s3, 1)
︸ ︷︷ ︸

C5

, (x3,�)
︸ ︷︷ ︸

C4

, (¬x2 ∨ s2,�)
︸ ︷︷ ︸

C3

, (x2, �)
︸ ︷︷ ︸

C2

, (¬x1 ∨ s1, �)
︸ ︷︷ ︸

C1

, (x1,�)
︸ ︷︷ ︸

C0

}.

As before, s3 is a fresh relaxation variable, that is unconstrained (as the other re-
laxation variables for this problem). The final MaxSAT solution is μ = (1, 0, 1, 0, 1),
representing an aggregated cost of 21 = 16 × 1 + 4 × 1 + 1 × 1.

4.5 Discussion

The previous sections describe four different approaches for solving Boolean lex-
icographic optimization problems. Some of the main drawbacks were identified,
and will be evaluated in the results section. Although the proposed algorithms
return a vector of optimum cost function values, it is straightforward to obtain an
aggregated result cost function, e.g. using (8). Moreover, and besides serving to solve
complex lexicographic optimization problems, the proposed algorithms can provide
useful information in practical settings. For example, the iterative algorithms provide
partial solutions (satisfying some of the target criteria) during their execution. These
partial solutions can be used to provide approximate solutions in case computing the
optimum value exceeds available computation resources. Given that all algorithms
analyze the cost functions in order, the approximate solutions will in general be much
tighter than those provided by algorithms that refine an upper bound (e.g. Minisat+).

The proposed techniques can also be used for solving already existing problem
instances. Indeed, existing problem instances may encode lexicographic optimization
in the cost function or in the weighted soft clauses. This information can be exploited
for developing effective solutions [8]. For example, the BMO condition essentially
identifies PBO or MaxSAT problem instances where lexicographic optimization is
modelled with an aggregated cost function (represented explicitly or with weighted
soft clauses) [8]. In some settings, this is an often used modelling solution. Hence,
the BMO condition can be interpreted as an approach to identify an aggregated
cost function in an optimization problem, so that it can be solved as a lexicographic
optimization problem.

Finally, the algorithms proposed in the previous sections accept cost functions
implicitly specified by soft constraints. This provides an added degree of modelling
flexibility when compared with the abstract definition of (Boolean) lexicographic
optimization.

5 Experimental results

This section evaluates the application of Boolean Lexicographic Optimization in two
concrete practical applications: haplotyping with pedigrees [31] and package depen-
dencies [40, 61]. Besides these two concrete applications, the algorithms proposed
in previous sections were also applied to instances from the MaxSAT evaluation
analyzed in Section 3. For these instances, it was in general possible to observe
that MaxSAT solvers based on iterative SAT calls achieve improved lower bounds.
However, the lack of structure in these problem instances still prevents them from
being solved with MaxSAT solvers based on iterative SAT calls.
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Table 5 Aborted problems
instances (out of 500)

BLO Solution Solver # Aborted

Default BLO

Default solvers CPLEX 465 464
Iterated PBO Minisat+ 496 56

BSOLO 456 500
SCIP 495 474
SAT4J-PB 463 435

Iterated MaxSAT SAT4J-MaxSAT 464 404
with rescaling WPM1 69 72

MSUnCore 84 85
MiniMaxSat 500 500

Iterated Unsat-based MSUnCore 84 51
MaxSAT

5.1 Haplotyping with pedigrees

This section evaluates existing state of the art PBO and MaxSAT solvers, as well
as the algorithms described in Section 4, on lexicographic optimization problem
instances resulting from haplotyping with pedigree information [30, 31]. The problem
of haplotyping with pedigrees is an example of lexicographic optimization, because
there are two cost functions and preference is given to one of the cost functions.

All experimental results were obtained on 3 GHz Xeon 5160 servers, with 4
GB of RAM, and running RedHat Enterprise Linux. The CPU time limit was
set to 1,000 s, and the memory limit was set to 3.5 GB. For the experimentation,
a well-known commercial ILP solver as well as the best performing PBO and
MaxSAT solvers of the most recent evaluations2 were considered. As a result, the
following solvers were used in the experiments: CPLEX, SCIP, Minisat+, BSOLO,
MiniMaxSat, MSUnCore, WPM1, SAT4J-PB, SAT4J-MaxSAT. Other well-known
MaxSAT solvers (many selected among the best performing in recent MaxSAT
evaluations) were also considered. However, the large size and intrinsic hardness
of the problem instances resulted in these solvers being unable to provide results for
any instance. Consequently, these solvers were discarded.

The instances coming from the haplotyping with pedigree information problem
can be generated with different optimizations to the core model [30, 31]. For the
results presented in this section, 500 of the most difficult problem instances were
selected.3 These instances are the most difficult for the best performing solver; hence,
any other instances would be easier to solve by the best performing solver. The
results are organized in two parts. The first part evaluates the number of instances
aborted within the CPU time and physical memory limits. The second part compares
the CPU times. In all cases, the focus is on evaluating the effectiveness of the
proposed algorithms for solving lexicographic optimization problems. The approach
considered as default corresponds to the aggregated cost function algorithm.

Table 5 shows the number of aborted instances, i.e., instances that a given solver
cannot prove the optimum within the allowed CPU time limit or memory limit. The

2http://www.maxsat.udl.cat/, and http://www.cril.univ-artois.fr/PB09/.
3Problem instances available from http://sat.inesc-id.pt/publications/amai11-lexopt/.

http://www.maxsat.udl.cat/
http://www.cril.univ-artois.fr/PB09/
http://sat.inesc-id.pt/publications/amai11-lexopt/
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Fig. 1 Original Minisat+ and SCIP vs. iterated pseudo-Boolean solving

smallest numbers in each line are highlighted in bold. The results allow drawing
several conclusions. First, for some solvers, the use of dedicated lexicographic
optimization algorithms can provide remarkable performance improvements. A
concrete example is Minisat+. The default solver aborts most problem instances,
whereas Minisat+ integrated in an iterative pseudo-Boolean BLO solver ranks
among the best performing solvers, aborting only 56 problem instances (i.e. the
number of aborted instances is reduced in more than 85%). Second, for some other
solvers, the performance gains are significant. This is the case with MSUnCore. For
MSUnCore, the use of unsatisfiability-based lexicographic optimization reduces the
number of aborted instances in close to 40%. SAT4J-PB integrated in an iterative
pseudo-Boolean solver reduces the number of aborted instances in close to 6%.
Similarly, SCIP integrated in an iterative pseudo-Boolean solver reduces the number
of aborted instances in more than 4%. Despite the promising results of using iterative
pseudo-Boolean solving, there are examples for which this approach is not effective,
e.g. BSOLO. This suggests that the effectiveness of this solution depends strongly
on the type of solver used and on the target problem instances. The results for the
MaxSAT-based weight rescaling algorithm are less conclusive. There are several
justifications for this. Given that existing branch and bound algorithms are unable
to run large problem instances, the MaxSAT solvers considered are known to be less
dependent on clause weights.
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Fig. 2 Iterated unsat-based MaxSAT vs. iterated pseudo-Boolean solving



Boolean lexicographic optimization

100

101

102

103

100 101 102 103

M
SU

nC
or

e-
B

L
O

MSUnCore

100

101

102

103

100 101 102 103

M
in

is
at

+-
B

L
O

SCIP-BLO

Fig. 3 Comparison of BLO solutions

Figures 1, 2, 3, 4 and 5 show scatter plots comparing the run times for different
solvers on the same problem instances. Each plot compares two different approaches,
where each point represents one problem instance, being the x-axis value given by
one approach and the y-axis value given by the other. Again, several conclusions
can be drawn. Figures 1, 2 and 3 confirm the effectiveness of the algorithms pro-
posed in this paper, namely iterative PB solving and iterative unsatisfiability-based
MaxSAT. Despite the remarkable improvements in the performance of Minisat+
when integrated in a lexicographic optimization algorithm, MSUnCore integrated
in a lexicographic optimization algorithm provides the best performance in terms
of aborted problem instances. Nevertheless, the use of BLO adds overhead to the
solvers, and so for most instances the best performance is obtained with the default
solver WPM1. These conclusions are further highlighted in Figs. 4 and 5. Although
WPM1 is the best performing algorithm without lexicographic optimization support,
MSUnCore with lexicographic optimization provides more robust performance,
namely for the hardest problem instances.

The experimental results provide useful insights about the behavior of the solvers
considered. For example, Minisat+ performs poorly when an aggregated cost func-
tion is used. However, it is among the best performing solvers when integrated in the
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Fig. 4 BLO improvements on MSUnCore vs. WPM1
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Fig. 5 BLO improvements on Minisat+ vs. WPM1

iterative pseudo-Boolean solving framework. In contrast, the improvements to SCIP
are far less notable.

These performance differences are explained by the structure of the problem
instances. For Minisat+, the main challenge is the relatively complex aggregated
cost function. Hence, the use of iterated pseudo-Boolean solving eliminates this
difficulty, and so Minisat+ is able to perform very effectively on the resulting
problem instances, which exhibit hard to satisfy Boolean constraints. In contrast,
SCIP is less sensitive to the cost function, and the iterative approach does not help
with solving the (hard to solve) Boolean constraints. Hence, the use of iterative
pseudo-Boolean solving is less effective for SCIP for the problem instances con-
sidered. The performance different between Minisat+ and BSOLO also provides
relevant insights. Minisat+ and BSOLO operate in fundamentally different modes.
Minisat+ conducts a linear search on the values of the cost function and BSOLO
implements branch-and-bound search. The results suggest that BLO helps PBO
solvers that implement a linear search of the cost function. The results for MSUnCore
and iterative unsatisfiability-based MaxSAT indicate that the use of BLO solvers
provides added robustness, at the cost of additional overhead for problem instances
that are easy to solve.

5.2 Software package dependencies

The issue of installing, upgrading and removing software packages finds a wide
range of applications, including the Eclipse ecosystem [13], and the Linux operating
system [20, 40, 41], among others. This section focus on the problem of package
dependencies for the Linux operating system. A number of recent competitions
have been organized [42, 43], that consider a wide range of criteria when installing,
removing or upgrading software packages, and that also promote the development
and evaluation of new algorithmic solutions. In this section we summarize the results
of the MISC #3—live competition.4

4The MISC competitions are organized by the MANCOOSI EU project. The MISC #3—live results
are available from http://www.mancoosi.org/misc-live/20101126/results/.

http://www.mancoosi.org/
http://www.mancoosi.org/misc-live/20101126/results/
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Table 6 Summary of MISC #3—live results

Class No BLO BLO

#2,SAT4J #2,WBO #2,ASP #4,MSU

Paranoid 0 1 4 3 2
Trendy 0 0 1 3 6
NRC-user track 0 0 0 0 1
CRUN-user track 0 0 1 1 2
CNRN-user track 0 0 1 1 2
Total wins (out of 29) 0 1 7 8 13
Percent wins (%) 0.00 3.45 24.14 27.59 44.83

Table 6 summarizes these results, and shows the number of wins by each type of
solver for each subclass in each class of problem instances. The first column denotes
each class of problem instances, which can be one of the following [42, 43]:

– The Paranoid track, which targets solutions that solve the user request, but
also minimizes all of the following: (i) the number of packages removed in the
solution; and (ii) the packages changed by the solution. The Paranoid class has
ten subclasses of instances.

– The Trendy track, which targets solutions that solve the user request, but also
minimizes all of the following: (i) the number of packages removed in the
solution; (ii) the number of outdated packages in the solution; (iii) the number
of package recommendations that are not satisfied; and finally (iv) the number
of extra packages installed. The Trendy class has 10 subclasses of instances.

– A number of additional tracks, which solve the user request, but also aim for an
optimal solution according to an optimization criterion provided by the user. The
criterion is constructed from a list of utility functions each of which is taken from
a fixed list of possible functions. In addition, a polarity can be specified to allow
maximizing or minimizing each of the functions. The following user tracks were
considered:

– NRC-User Track: denotes -notuptodate,-removed,-changed.
– CRUN-User Track: denotes-changed,-removed,-unmet_recommends,

-new.
– CNTN-User Track: denotes-changed,-notuptodate,-removed,-new.

The second column denotes the aggregated results of solutions not based on
using BLO. The following columns denote solutions that implement some form of
BLO, where #N denotes the number of algorithm outlined in Section 4, followed by
the type of solver considered. The algorithms considered are (i) iterative Pseudo-
Boolean solving (see Section 4.2), represented with #2 in the table; and (ii) iterative
unsatisfiability-based MaxSAT solving (see Section 4.4), represented with #4 in the
table. Example solvers include the SAT4J PBO solver [12], the clasp ASP solver [27],
WBO [45] and MSUnCore (MSU) [48–50]. As can be concluded, solutions not
based on dedicated algorithms for BLO perform poorly. For any of the categories
in the MISC competition, the winner was a solution that implements some form
of BLO. Different implementations of the iterative pseudo-Boolean solving (one of
which uses ASP) win in slightly more than 50% of the categories (with native PBO
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or ASP solvers being the most effective), whereas the unsatisfiability-based MaxSAT
approach wins in slightly less than 50% of the categories. The results indicate that,
for the sets of problem instances considered, unsatisfiability-based solvers offer the
most robust performance.

6 Related work

Recent surveys on MaxSAT and PBO solvers are available in [36, 57]. Lexicographic
optimization has a long history of research, with many different algorithms and
applications. Examples of recent surveys are provided in [22, 23, 55]. The iterative
pseudo-Boolean solving approach (see Section 4.2) is tightly related with the stan-
dard organization of lexicographic optimization algorithms [22].

Boolean Multilevel Optimization (BMO) was first proposed in [8]. The original
BMO condition is referred to as complete BMO in this paper. Moreover, complete
BMO is extended in a number of ways, allowing flexibility in the identification of
conditions where BMO conditions arise, and so where dedicated algorithms can be
used.

In the area of Boolean-based optimization procedures, there has been preliminary
work on solving pseudo-Boolean MOCO problems [39]. Nevertheless, this work ad-
dresses exclusively Pareto optimality, and does not cover lexicographic optimization.
In the area of constraints and preferences, lexicographic optimization has been the
subject of recent work (for example, [24]), but the focus has been on the use of
standard CSP algorithms. Recent work has proposed analyzing cost functions using
their binary representation [16, 28, 56]. This can be viewed as a restricted form of
BLO, where the individual Boolean functions represent the bits of the cost function
representation. The BMO conditions proposed in [8] and in this paper extend this
basic use of lexicographic optimization.

Some of the algorithms outlined in this paper were first proposed elsewhere, for
problem instances respecting the complete BMO condition [8]. This paper extends
and adapts these algorithms to all cases of BMO, and integrates them in a BLO
framework. The unsatisfiability-based algorithm for BLO was first proposed in this
paper.

7 Conclusions and future work

This paper formalizes the problem of Boolean lexicographic optimization (BLO),
and develops algorithms for this problem. General lexicographic optimization is a
well-known variant of multi-objective combinatorial optimization [22], with a large
number of practical applications. The restriction considered in this paper assumes
Boolean variables, linear constraints and linear cost functions. The paper formalizes
Boolean Lexicographic Optimization, and demonstrates that lexicographic optimiza-
tion conditions are naturally occurring, being present in the majority of problem
instances from recent MaxSAT evaluations [7].

The paper outlines four different algorithmic solutions for BLO, either based on
aggregating cost functions in a single cost function, iterative pseudo-Boolean solving,
iterative MaxSAT with weight rescaling and iterative unsatisfiability-based MaxSAT.
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The four algorithmic solutions were evaluated using complex lexicographic opti-
mization problem instances from haplotyping with pedigree information [31]. In
addition, the paper summarizes and analyzes results from recent competitions on
software package dependencies [42]. The experimental evaluation allows drawing
several conclusions. First, the use of a single aggregated cost function can impact
performance negatively. This is demonstrated both by our own implementations
for the haplotyping with pedigrees problem, but also by solvers evaluated in the
software package dependencies competitions. Second, the use of iterative solutions
(either based on PBO solvers or on unsatisfiability-based MaxSAT solvers) can yield
significant performance gains when compared with the original solvers, resulting in
remarkable reductions in the number of problem instances unsolved.

Future work will address tighter integration between default solvers and the
algorithms for lexicographic optimization. Concrete examples include clause reuse
and incremental interface with the default solvers. This can be done at different
levels. For example, lexicographic optimization can exploit an incremental interface
to the MaxSAT solver MSUnCore. Similarly, at present MSUnCore does not exploit
the incremental interface of the underlying SAT solver (i.e. PicoSAT); this will
change in future releases of the solvers. A side effect of an incremental interface to
MaxSAT and SAT solvers is that reuse of learned clauses is automatically provided.
Another area of research is the development of effective techniques for exploiting
BMO conditions in existing problem instances from the MaxSAT evaluations [7].
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