
Learning from the future of component based
repositories

Pietro Abate,
Ralf Treinen, Roberto Di Cosmo, Stefano Zacchiroli

PPS, Université Paris Diderot

CBSE 2012 - Bertinoro, Italy

Software Distributions as Components

A software distribution is a collection of packages.

Packages are reusable software units which can be combined
together in distributions

Packages are independent units and follow their own
decentralized development and versioning

The main difference with component based systems it that
packages cannot be composed together to form larger
components

Packages are used in different community as FOSS Linux
distributions, BSD, Eclipse plugins, etc

Software Distributions as Components

A software distribution is a collection of packages.

Packages are reusable software units which can be combined
together in distributions

Packages are independent units and follow their own
decentralized development and versioning

The main difference with component based systems it that
packages cannot be composed together to form larger
components

Packages are used in different community as FOSS Linux
distributions, BSD, Eclipse plugins, etc

Software Distributions as Components

A software distribution is a collection of packages.

Packages are reusable software units which can be combined
together in distributions

Packages are independent units and follow their own
decentralized development and versioning

The main difference with component based systems it that
packages cannot be composed together to form larger
components

Packages are used in different community as FOSS Linux
distributions, BSD, Eclipse plugins, etc

Software Distributions as Components

A software distribution is a collection of packages.

Packages are reusable software units which can be combined
together in distributions

Packages are independent units and follow their own
decentralized development and versioning

The main difference with component based systems it that
packages cannot be composed together to form larger
components

Packages are used in different community as FOSS Linux
distributions, BSD, Eclipse plugins, etc

Software Distributions

Packages are described by a rich set of meta-data
(dependencies, conflicts, . . .)

Repository: set of packages

Installation: healthy subset of a repository

Installability problem: given a repository R and a package
p ∈ R, does there exist an installation I ⊆ R with p ∈ I ?

Software Distributions

Packages are described by a rich set of meta-data
(dependencies, conflicts, . . .)

Repository: set of packages

Installation: healthy subset of a repository

Installability problem: given a repository R and a package
p ∈ R, does there exist an installation I ⊆ R with p ∈ I ?

Software Distributions

Packages are described by a rich set of meta-data
(dependencies, conflicts, . . .)

Repository: set of packages

Installation: healthy subset of a repository

Installability problem: given a repository R and a package
p ∈ R, does there exist an installation I ⊆ R with p ∈ I ?

Software Distributions

Packages are described by a rich set of meta-data
(dependencies, conflicts, . . .)

Repository: set of packages

Installation: healthy subset of a repository

Installability problem: given a repository R and a package
p ∈ R, does there exist an installation I ⊆ R with p ∈ I ?

Distribution evolution

quality vs freshness

FOSS distributions are constantly under pressure

strict time based release cycle

provide a rock solid platform and satisfying user experience.

During the release cycle a distribution is in continuous state of flux.

Sometimes packages are broken (not installable)

Transient problems

Packages have to be recompiled on all architectures : packages
can be broken while waiting for a package to be available.
Moreover, the compilation of a package can be delayed because
it may depend on other packages that are not yet available. . .

Non Transient problems : There are Package that needs
update because there is a problem in the metadata of a
package.

Distribution evolution

quality vs freshness

FOSS distributions are constantly under pressure

strict time based release cycle

provide a rock solid platform and satisfying user experience.

During the release cycle a distribution is in continuous state of flux.

Sometimes packages are broken (not installable)

Transient problems

Packages have to be recompiled on all architectures : packages
can be broken while waiting for a package to be available.
Moreover, the compilation of a package can be delayed because
it may depend on other packages that are not yet available. . .

Non Transient problems : There are Package that needs
update because there is a problem in the metadata of a
package.

More Formally, Our questions

The present : checking the health of a distribution

Given a repository R and a package (p, n) ∈ R, is (p, n)
uninstallable w.r.t R (distcheck) ?

Looking at the future

Outdated Given a repository R and a package (p, n) ∈ R, is
(p, n) uninstallable w.r.t all possible futures of R?

Challenged Given a repository R and a packages (p, v) ∈ R, how
many package will be broken in a future repository
W containing (p,w) and v < w .

To be made more precise

Define “possible futures of R”

More Formally, Our questions

The present : checking the health of a distribution

Given a repository R and a package (p, n) ∈ R, is (p, n)
uninstallable w.r.t R (distcheck) ?

Looking at the future

Outdated Given a repository R and a package (p, n) ∈ R, is
(p, n) uninstallable w.r.t all possible futures of R?

Challenged Given a repository R and a packages (p, v) ∈ R, how
many package will be broken in a future repository
W containing (p,w) and v < w .

To be made more precise

Define “possible futures of R”

More Formally, Our questions

The present : checking the health of a distribution

Given a repository R and a package (p, n) ∈ R, is (p, n)
uninstallable w.r.t R (distcheck) ?

Looking at the future

Outdated Given a repository R and a package (p, n) ∈ R, is
(p, n) uninstallable w.r.t all possible futures of R?

Challenged Given a repository R and a packages (p, v) ∈ R, how
many package will be broken in a future repository
W containing (p,w) and v < w .

To be made more precise

Define “possible futures of R”

Example : Will (foo,1) ever be installable?

Package: foo

Vers ion : 1

Depends: (baz (=2.5) | bar (=2.3)) ,

(baz (<2.3) | bar (>2.6))

Package: baz

Vers ion : 2.5

Con f l i c t s : bar (> 2.4)

Package: bar

Vers ion : 2.3

Upgrading baz alone will not work since baz can only be upgraded
to versions greater than the current version 2.5, hence baz(< 2.3)
can never be satisfied. Upgrading bar alone will not work either
since when we upgrade it to a version greater than 2.6 then we will
get a conflict with baz in its current version.

Example : Challenged Packages

Package: foo

Vers ion : 1.0

Depends: bar (<= 3.0) | bar (>= 5.0)

Package: bar

Vers ion : 1.0

Package: baz

Vers ion : 1.0

Depends: foo (>= 1.0)

What if we upgrade package bar ? Package bar challenges
package foo for versions between <= 3.0 and >= 5.0

Is the problem difficult?

Not-installability of a package w.r.t. a current repository:
co-NP complete : the problem can be reduced to 3-SAT

Not-installability of a package w.r.t. all possible futures:

co-NP hard, since it allows to encode the original
non-installability problem.
however, there are infinitely many possible futures of a
repository!

Is the problem difficult?

Not-installability of a package w.r.t. a current repository:
co-NP complete : the problem can be reduced to 3-SAT

Not-installability of a package w.r.t. all possible futures:

co-NP hard, since it allows to encode the original
non-installability problem.
however, there are infinitely many possible futures of a
repository!

Is the problem difficult?

Not-installability of a package w.r.t. a current repository:
co-NP complete : the problem can be reduced to 3-SAT

Not-installability of a package w.r.t. all possible futures:

co-NP hard, since it allows to encode the original
non-installability problem.
however, there are infinitely many possible futures of a
repository!

Is the problem difficult?

Not-installability of a package w.r.t. a current repository:
co-NP complete : the problem can be reduced to 3-SAT

Not-installability of a package w.r.t. all possible futures:

co-NP hard, since it allows to encode the original
non-installability problem.

however, there are infinitely many possible futures of a
repository!

Is the problem difficult?

Not-installability of a package w.r.t. a current repository:
co-NP complete : the problem can be reduced to 3-SAT

Not-installability of a package w.r.t. all possible futures:

co-NP hard, since it allows to encode the original
non-installability problem.
however, there are infinitely many possible futures of a
repository!

What are possible futures of R?

First approximation:

Packages can move to newer versions (there is a total and
dense ordering on version numbers)

Newer versions of packages my change their relations in any
way (quite pessimistic approximation)

Packages may be removed.

New packages may pop up.

There are infinitely many possible futures.

What are possible futures of R?

First approximation:

Packages can move to newer versions (there is a total and
dense ordering on version numbers)

Newer versions of packages my change their relations in any
way (quite pessimistic approximation)

Packages may be removed.

New packages may pop up.

There are infinitely many possible futures.

What are possible futures of R?

First approximation:

Packages can move to newer versions (there is a total and
dense ordering on version numbers)

Newer versions of packages my change their relations in any
way (quite pessimistic approximation)

Packages may be removed.

New packages may pop up.

There are infinitely many possible futures.

What are possible futures of R?

First approximation:

Packages can move to newer versions (there is a total and
dense ordering on version numbers)

Newer versions of packages my change their relations in any
way (quite pessimistic approximation)

Packages may be removed.

New packages may pop up.

There are infinitely many possible futures.

What are possible futures of R?

First approximation:

Packages can move to newer versions (there is a total and
dense ordering on version numbers)

Newer versions of packages my change their relations in any
way (quite pessimistic approximation)

Packages may be removed.

New packages may pop up.

There are infinitely many possible futures.

Formalization of futures : Optimistic future

Definition

A repository F is an optimistic future of a repository R if any
package in F − R has empty dependency and conflicts.

Optimistic futures : if we advance a package q to a newer version
then we may assume that this new version behaves as nicely as
possible, that is it does not depend on any other packages and
does not conflict with any packages.

Formalization of futures : Conservative future

Definition

depnames(R): names of packages used in dependencies in R. Let
R F . F is a conservative future of R if

names(F) = names(R) ∪ depnames(R)

Conservative future : a future F of R is conservative iff F contains
all packages of R, possibly in a newer version, and if F contains
only packages whose names occur in R, either as names of existing
packages or in dependencies.

Formalization of futures : Observational equivalence

open ended version space: the number of possible future
version being infinite, it is not possible to test them all
extensively.

We notice that it is sufficient to consider a finite number of
versions representative: for each package name we consider all
version numbers that are explicitly mentioned, plus one
intermediate, plus one that is beyond.

Build quotient under observational equivalence: identifying
versions that behave the same on all these unary predicates.

Example : (p, 5) ∈ R
Dependencies and conflicts in R on (p, �9), (p, �12), where �
is any comparison.

Representatives of future versions of p can be found in three
equivalence classes:

5, 6(∈]5, 9[), 9, 10(∈]9, 12[), 12, 13(> 12)

Formalization of futures : Observational equivalence

open ended version space: the number of possible future
version being infinite, it is not possible to test them all
extensively.

We notice that it is sufficient to consider a finite number of
versions representative: for each package name we consider all
version numbers that are explicitly mentioned, plus one
intermediate, plus one that is beyond.

Build quotient under observational equivalence: identifying
versions that behave the same on all these unary predicates.

Example : (p, 5) ∈ R
Dependencies and conflicts in R on (p, �9), (p, �12), where �
is any comparison.

Representatives of future versions of p can be found in three
equivalence classes:

5, 6(∈]5, 9[), 9, 10(∈]9, 12[), 12, 13(> 12)

Formalization of futures : Observational equivalence

open ended version space: the number of possible future
version being infinite, it is not possible to test them all
extensively.

We notice that it is sufficient to consider a finite number of
versions representative: for each package name we consider all
version numbers that are explicitly mentioned, plus one
intermediate, plus one that is beyond.

Build quotient under observational equivalence: identifying
versions that behave the same on all these unary predicates.

Example : (p, 5) ∈ R
Dependencies and conflicts in R on (p, �9), (p, �12), where �
is any comparison.

Representatives of future versions of p can be found in three
equivalence classes:

5, 6(∈]5, 9[), 9, 10(∈]9, 12[), 12, 13(> 12)

Formalization of futures : Observational equivalence

open ended version space: the number of possible future
version being infinite, it is not possible to test them all
extensively.

We notice that it is sufficient to consider a finite number of
versions representative: for each package name we consider all
version numbers that are explicitly mentioned, plus one
intermediate, plus one that is beyond.

Build quotient under observational equivalence: identifying
versions that behave the same on all these unary predicates.

Example : (p, 5) ∈ R
Dependencies and conflicts in R on (p, �9), (p, �12), where �
is any comparison.

Representatives of future versions of p can be found in three
equivalence classes:

5, 6(∈]5, 9[), 9, 10(∈]9, 12[), 12, 13(> 12)

Formalization of futures : Observational equivalence

open ended version space: the number of possible future
version being infinite, it is not possible to test them all
extensively.

We notice that it is sufficient to consider a finite number of
versions representative: for each package name we consider all
version numbers that are explicitly mentioned, plus one
intermediate, plus one that is beyond.

Build quotient under observational equivalence: identifying
versions that behave the same on all these unary predicates.

Example : (p, 5) ∈ R
Dependencies and conflicts in R on (p, �9), (p, �12), where �
is any comparison.

Representatives of future versions of p can be found in three
equivalence classes:

5, 6(∈]5, 9[), 9, 10(∈]9, 12[), 12, 13(> 12)

Wrapping up : Outdated Packages

So far we have a finite set (but huge) set F of repositories.

Since Packages (p, n) in any repository in F are unique

We can build a new repository (
⋃
F) by lumping together all

possible futures into one big repository

,Any F -installation is a
⋃
F -installation.

/There are
⋃
F installations that aren’t in any future

repository.

Wrapping up : Outdated Packages

So far we have a finite set (but huge) set F of repositories.

Since Packages (p, n) in any repository in F are unique

We can build a new repository (
⋃
F) by lumping together all

possible futures into one big repository

,Any F -installation is a
⋃
F -installation.

/There are
⋃
F installations that aren’t in any future

repository.

Wrapping up : Outdated Packages

So far we have a finite set (but huge) set F of repositories.

Since Packages (p, n) in any repository in F are unique

We can build a new repository (
⋃
F) by lumping together all

possible futures into one big repository

,Any F -installation is a
⋃
F -installation.

/There are
⋃
F installations that aren’t in any future

repository.

Wrapping up : Outdated Packages

So far we have a finite set (but huge) set F of repositories.

Since Packages (p, n) in any repository in F are unique

We can build a new repository (
⋃
F) by lumping together all

possible futures into one big repository

,Any F -installation is a
⋃
F -installation.

/There are
⋃
F installations that aren’t in any future

repository.

Wrapping up : Outdated Packages

So far we have a finite set (but huge) set F of repositories.

Since Packages (p, n) in any repository in F are unique

We can build a new repository (
⋃
F) by lumping together all

possible futures into one big repository

,Any F -installation is a
⋃
F -installation.

/There are
⋃
F installations that aren’t in any future

repository.

The problem when lumping together all futures

When considering
⋃
F : we have to exclude all installations

that mix binary packages coming from the same source but
different version.

Key observation: Binary packages coming from the same
source are synchronized !

Solution: add (versioned!) provides and conflicts:

If (p, n) has source s: Add
Provides: src:s (= n)
Conflicts: src:s (6= n)

Finally : One single distcheck run on a large repository to
identify all outdated packages..

The problem when lumping together all futures

When considering
⋃
F : we have to exclude all installations

that mix binary packages coming from the same source but
different version.

Key observation: Binary packages coming from the same
source are synchronized !

Solution: add (versioned!) provides and conflicts:

If (p, n) has source s: Add
Provides: src:s (= n)
Conflicts: src:s (6= n)

Finally : One single distcheck run on a large repository to
identify all outdated packages..

The problem when lumping together all futures

When considering
⋃
F : we have to exclude all installations

that mix binary packages coming from the same source but
different version.

Key observation: Binary packages coming from the same
source are synchronized !

Solution: add (versioned!) provides and conflicts:

If (p, n) has source s: Add
Provides: src:s (= n)
Conflicts: src:s (6= n)

Finally : One single distcheck run on a large repository to
identify all outdated packages..

The problem when lumping together all futures

When considering
⋃
F : we have to exclude all installations

that mix binary packages coming from the same source but
different version.

Key observation: Binary packages coming from the same
source are synchronized !

Solution: add (versioned!) provides and conflicts:

If (p, n) has source s: Add
Provides: src:s (= n)
Conflicts: src:s (6= n)

Finally : One single distcheck run on a large repository to
identify all outdated packages..

The problem when lumping together all futures

When considering
⋃
F : we have to exclude all installations

that mix binary packages coming from the same source but
different version.

Key observation: Binary packages coming from the same
source are synchronized !

Solution: add (versioned!) provides and conflicts:

If (p, n) has source s: Add
Provides: src:s (= n)
Conflicts: src:s (6= n)

Finally : One single distcheck run on a large repository to
identify all outdated packages..

Outdated : Experimental results

In October 2011 we run our tools on the testing distribution
of Debian.

We found 110 outdated packages :

60% of those packages were outdated because of ongoing
transition from python 2.6 to python 2.7.
20% were outdated because of a single package package
kdebindings that was broken as part of a larger refactoring
process.
The remaining packages were broken because of outdated
dependencies and these problems were not known to the
developers and are now fixed also thanks to our contribution.

Outdated : Experimental results

In October 2011 we run our tools on the testing distribution
of Debian.

We found 110 outdated packages :

60% of those packages were outdated because of ongoing
transition from python 2.6 to python 2.7.
20% were outdated because of a single package package
kdebindings that was broken as part of a larger refactoring
process.
The remaining packages were broken because of outdated
dependencies and these problems were not known to the
developers and are now fixed also thanks to our contribution.

Outdated : Experimental results

In October 2011 we run our tools on the testing distribution
of Debian.

We found 110 outdated packages :

60% of those packages were outdated because of ongoing
transition from python 2.6 to python 2.7.

20% were outdated because of a single package package
kdebindings that was broken as part of a larger refactoring
process.
The remaining packages were broken because of outdated
dependencies and these problems were not known to the
developers and are now fixed also thanks to our contribution.

Outdated : Experimental results

In October 2011 we run our tools on the testing distribution
of Debian.

We found 110 outdated packages :

60% of those packages were outdated because of ongoing
transition from python 2.6 to python 2.7.
20% were outdated because of a single package package
kdebindings that was broken as part of a larger refactoring
process.

The remaining packages were broken because of outdated
dependencies and these problems were not known to the
developers and are now fixed also thanks to our contribution.

Outdated : Experimental results

In October 2011 we run our tools on the testing distribution
of Debian.

We found 110 outdated packages :

60% of those packages were outdated because of ongoing
transition from python 2.6 to python 2.7.
20% were outdated because of a single package package
kdebindings that was broken as part of a larger refactoring
process.
The remaining packages were broken because of outdated
dependencies and these problems were not known to the
developers and are now fixed also thanks to our contribution.

Wrapping up : Challenged Packages

We have a finite set (but huge) set F of repositories

For each package (p, v) we are interested to check those
futures that contain the packages p with a version w > v .

We can check only one representative for observational
equivalence class.

The number of versions to check is large and using a parallel
algorithm takes up to 20 mins on a standard desktop machine.

Wrapping up : Challenged Packages

We have a finite set (but huge) set F of repositories

For each package (p, v) we are interested to check those
futures that contain the packages p with a version w > v .

We can check only one representative for observational
equivalence class.

The number of versions to check is large and using a parallel
algorithm takes up to 20 mins on a standard desktop machine.

Wrapping up : Challenged Packages

We have a finite set (but huge) set F of repositories

For each package (p, v) we are interested to check those
futures that contain the packages p with a version w > v .

We can check only one representative for observational
equivalence class.

The number of versions to check is large and using a parallel
algorithm takes up to 20 mins on a standard desktop machine.

Wrapping up : Challenged Packages

We have a finite set (but huge) set F of repositories

For each package (p, v) we are interested to check those
futures that contain the packages p with a version w > v .

We can check only one representative for observational
equivalence class.

The number of versions to check is large and using a parallel
algorithm takes up to 20 mins on a standard desktop machine.

Challenged Packaged : Results for Debian Lenny

Source Version Target Version Breaks
python-defaults 2.5.2-3 ≥ 3 1079
python-defaults 2.5.2-3 2.6 ≤ . < 3 1075
e2fsprogs 1.41.3-1 any 139
ghc6 6.8.2dfsg1-1 ≥ 6.8.2+ 136
libio-compress-base-perl 2.012-1 ≥ 2.012. 80
libcompress-raw-zlib-perl 2.012-1 ≥ 2.012. 80
libio-compress-zlib-perl 2.012-1 ≥ 2.012. 79
icedove 2.0.0.19-1 > 2.1-0 78
iceweasel 3.0.6-1 > 3.1 70
haskell-mtl 1.1.0.0-2 ≥ 1.1.0.0+ 48
sip4-qt3 4.7.6-1 > 4.8 47
ghc6 6.8.2dfsg1-1 6.8.2dfsg1+ ≤ . < 6.8.2+ 36
haskell-parsec 2.1.0.0-2 ≥ 2.1.0.0+ 29

Table: Top Challenged Packages in debian lenny

Conclusions

Outdated Packages can give us an effective way to pinpoint
those package that need manual intervention in order to be
fixed. We routinely use our tools to analyse the debian testing
distribution and signal problems when araise.

Challenged package give us an effective way to predict the
impact of the upgrade of a component in a repository.

Our analysis is general enough that it can be applied to other
component base system with similar characteristic.

All our tools are free software, modular and available in major
FOSS distributions : http://mancoosi.org/software

http://mancoosi.org/software

Conclusions

Outdated Packages can give us an effective way to pinpoint
those package that need manual intervention in order to be
fixed. We routinely use our tools to analyse the debian testing
distribution and signal problems when araise.

Challenged package give us an effective way to predict the
impact of the upgrade of a component in a repository.

Our analysis is general enough that it can be applied to other
component base system with similar characteristic.

All our tools are free software, modular and available in major
FOSS distributions : http://mancoosi.org/software

http://mancoosi.org/software

Conclusions

Outdated Packages can give us an effective way to pinpoint
those package that need manual intervention in order to be
fixed. We routinely use our tools to analyse the debian testing
distribution and signal problems when araise.

Challenged package give us an effective way to predict the
impact of the upgrade of a component in a repository.

Our analysis is general enough that it can be applied to other
component base system with similar characteristic.

All our tools are free software, modular and available in major
FOSS distributions : http://mancoosi.org/software

http://mancoosi.org/software

Conclusions

Outdated Packages can give us an effective way to pinpoint
those package that need manual intervention in order to be
fixed. We routinely use our tools to analyse the debian testing
distribution and signal problems when araise.

Challenged package give us an effective way to predict the
impact of the upgrade of a component in a repository.

Our analysis is general enough that it can be applied to other
component base system with similar characteristic.

All our tools are free software, modular and available in major
FOSS distributions : http://mancoosi.org/software

http://mancoosi.org/software

Questions?

Pietro Abate
pietro.abate@pps.jussieu.fr

http://mancoosi.org/~abate http://www.mancoosi.org/

http://mancoosi.org/~abate
http://www.mancoosi.org/

