
Optimized Union of
Non-disjoint Distributed
data sets

Itay dar, Tova milo, Elad Verbin
Tel Aviv University

OUTLINE

 Motivation

 (Optimal) Union Plan

 Compact Information Gathering

 Experimental Evaluation

 Related Work & future work

2

MOTIVATION

 P2P setting

 Download of data items from several sources

 In MANCOOSI – download packages (info on

packages) residing on several sources (peers)

 Sources often overlap and contain common items

 We want to avoid transmission of redundant

information 3

MOTIVATION (cont.)

 Abstractly can be viewed as a union query

 Define the notion of optimal union plan (that

minimize redundant data transmission)

 Devise efficient algorithm to compute and execute

such plans

 Optimally exploit the network capabilities

 A key challenge is the lack of global map of items

distribution

4

FORMAL PROBLEM DEFINITION

 A Peer To Peer Environment

 Each peer pi is holding a set of data items items(pi)

 All data items have the same size

 A Simple network model
 communication is discreet - Working in rounds

 Communication is considered Reliable

 Each peer has a static upload and download rate

 Download(pi)

 Upload(pi)

 There are no other networks constraints

5

UNION PLAN

Union plan - a set of tuples of the form
(from,to,item,time) s.t
 No bandwidth constraints are breached

 All items in items(P) are sent to the target
eventually

Optimal plan - the maximal time point is
minimal

Direct Plan

Non redundant plan

Theorem: there always exist a direct non-
redundant plan that is optimal 6

UNION PLAN (2)

 Proof sketch

 Each plan can be transformed into a non redundant plan

 We can remove all the item sent on path which don’t reach

the target

 We can look at the set of items each peer is sending out

from his on local items, all the sets are disjoint and cover

all the union set.

 The plan for this sets of items is optimal, we show in the

next part we can build an optimal direct plan given a

disjoint set of items so both plans are equivalent and we

are done.

7

OPTIMAL UNION PLAN

 Global Knowledge Solution

 Oracle knows the items each peer holds

 Assign data algorithm

 Decide which item will be sent by which peer

 Send data algorithm

 Create the concrete plan which tells when each peer

should send his data items

8

ASSIGN DATA ALGORITHM

 Decide which peer send which data items

 Using CheckTime(t) algorithm

 Which Assigns data to peers given the number of
rounds, notify upon failure.

 Equivalence class is the set of items that resides only in
a given set of peers.

 Using max flow Computation the items from each
equivalence class will be split among the equivalence
class members

9

CHECKTIME

 Graph vertex structure

 Source vertex

 equivalence class layer

 Peers layer

 Target vertex

 Sink vertex

 Graph edges structure

 From Source to each equivalence class vertex (equivalence class
size as the edge weight)

 Each equivalence class vertex to all his peer members vertex
(equivalence class size as the edge weight)

 Each peer has an edge to the target vertex (weight equals the
amount of data units he can send in t rounds)

 The target vertex is connected to the sink (weight equals the
amount of data the target can possibly receive in t rounds)

10

sink

source

p0

p1

{p1,p2,p3}{p1,p2}{p2}{p1} {p3}

p2 p3

EXAMPLE

 3 peers p1,p2,p3 each can
upload 2 item at each
round

 The target p0 can receive
3 items at each round

 p1 and p2 share 100 items

 All three peers share 10
items

 p1 also holds 150 items

 p2 also holds 100 items

 p3 also holds 60 items

11

150

(150)

sink

source

p0

p1

{p1,p2,p3}{p1,p2}{p2}{p1} {p3}

p2 p3

150 100 60

(50)

10100

(0) (0)(50)

2t

(200)

100 60 101010100 100

2t

3t

2t

(150) (70)

(150) (100) (100) (10)(60)

(100) (10)(60)

(420)

ASSIGN DATA (3)

 Searching for minimum time using check time

(search boundaries using send data)

 Complexity

 Polynomial in the size of the graph which is exponential

in the number of peers

 Correctness proof sketch

 Plan -> flow (trivial)

 Flow -> plan (needs send data part)

12

SEND DATA ALGORITHM

13

 Decide the peers data
sending order

 Naïve solution
 Why naïve is not good enough

?

 3 peers each can send 2 items
each round and get 3 items
each round

 P0 have 300 items

 P1 and p2 have 50 items

 Naïve ends after 175 rounds

 Non naïve ends after 150
rounds

 Time to finish
Bottleneck metric

SEND DATA ALGORITHM (2)

 correctness proof sketch

 Time to finish invariant

 If(time_to_finish(pi) > time_to_finish(pj) at any round

then time_to_finish(pi) > time_to_finish(pj) – 1

 Assign data correctness

 Allocating bandwidth according to send data

 Flow Constraints are not breached due to algorithm nature

 we shall look at the first non saturated round
 one of the peer sending data there has been sending data from the start, and will do so till

the end (bottleneck)

 the edge from the peer to the target vertex enforce the plan time.

 Send Data Complexity

 O(m*n+nlogn)
14

SEND DATA ALGORITHM

 Optimized version

 Bandwidth allocation is fixed during consecutive rounds

 We also need to change the plan format

 Groups of peer with different time to finish gets the same

amount of bandwidth to the group until 2 groups get

merged.

 The bandwidth allocation inside a group during a time

interval doesn’t matter – so we make it regular (compress

plan size)

 Complexity

 O(P2)

15

COMPACT INFORMATION GATHERING

 Deriving the Plan

 Executing the Plan

 The c-Cluster Algorithm

16

DERIVING THE PLAN

 Assign data needs

 The peers upload and download speeds

 All equivalence class sizes

 Send data needs

 The peers upload and download speeds

 Each peer data items AD allocation size

17

EQUIVALENCE CLASS SIZES ESTIMATION

 Bottom k sketches

 Computing jaccard distance

 Estimating set size using interpolation

 si is known, vi is computed, so we can compute

 By using the Inclusion

exclusion formula we can compute

as it equals

18

EQUIVALENCE CLASS SIZES ESTIMATION

 Si is choose such it’s the biggest group.

 Drawbacks

 Exponential number of computation in the Inclusion

exclusion formula

 Error builds up during computation.

 Computing the distance for a high number of groups is

inaccurate.

19

EXECUTING THE PLAN

 Each peer needs to know which items he needs to

send according to the plan

 To Do So we need to identify each item set

membership.

 Using Compressed Wrapped bloom filters

 Bloom filter

 Compressed Bloom filters

 Compressed Wrapped bloom filters

20

THE C-CLUSTER ALGORITHM

Scalability problem

 Exponential number of sets

 Estimation breaks down with too many sets

involved

 c-Cluster Algorithm

 Estimating

Replication level

21

EXPERIMENTAL EVALUATION

 Syntactic results

 Model settings

 3 * 1024 *1024 data items

 750k down 75k up adsl cable line

 Number of peers varied from 2 till 65

 Parameters to tune

 Cluster size

 Bloom filter size

 Replication threshold

22

EXPERIMENTAL EVALUATION

 Comparison Metrics

 PR

 Naïve algorithm

 Send data from the peers in a round robin manner

 PR = (Plan time + plan creation time)/ naïve time

 PR-data = (Plan time) / naïve time

 Error rate

 Performance vs. optimal where possible

23

SYNTACTIC RESULTS

 C cluster size

 2 was chosen due to high bloom filter overhead with

larger c sizes

 Bloom filter type and size

 25 peers experiment

24

REPLICATION LEVEL THRESHOLD

25

 25 peers experiment

SYNTACTIC RESULTS

26

SYNTACTIC RESULTS

27

SYNTACTIC RESULTS

28

SYNTACTIC RESULTS

29

WIKIPEDIA RESULTS

 Using Wikipedia

 OR queries over synonyms

 Same parameters as in the syntactic version

30

WIKIPEDIA RESULTS

31

RELATED WORK

 Problem Hardness (Yao)

 Computing set difference requires passing the entire data set

 Practical set reconciliation (Minsky et al)

 pairwise sets-reconciliation computing a characteristic polynomial

 Estimating / guessing the set difference size

 Passing n points, and factorizing and interpolating to find the missing

points.

 Not so practicable in our context (four seconds to compute a 200 object

difference)

 Informed content delivery across

adaptive overlay networks (byras et al)

 Creating a tree of bloom filters

 Solving again the pairwise case mostly

 Employ erasure codes methods to solve data loss issue.

 But they have a high error rate. 32

FUTURE WORK

 Pretty vast

 Real application usage (emule dht?)

 Dynamic setting

 Fault tolerance

 Scalability issues

33

