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MOTIVATION

 P2P setting 

 Download of data items from several sources

 In MANCOOSI – download packages (info on 

packages) residing on several sources (peers)

 Sources often overlap and contain common items

 We want to avoid transmission of redundant
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MOTIVATION (cont.)

 Abstractly can be viewed as a union query

 Define the notion of optimal union plan (that 

minimize redundant data transmission)  

 Devise efficient algorithm to compute and execute

such plans

 Optimally exploit the network capabilities

 A key challenge is the lack of global map of items 

distribution
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FORMAL PROBLEM DEFINITION 

 A Peer To Peer Environment

 Each peer pi is holding a set of data items items(pi)

 All data items have the same size

 A Simple network model 
 communication is discreet - Working in rounds

 Communication is considered Reliable

 Each peer has a static upload and download rate

 Download(pi) 

 Upload(pi) 

 There are no other networks constraints 
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UNION PLAN

Union plan - a set of tuples of the form 
(from,to,item,time) s.t 
 No bandwidth constraints are breached

 All items in items(P) are sent to the target 
eventually 

Optimal plan - the maximal time point is 
minimal

Direct Plan 

Non redundant  plan

Theorem: there always exist a direct non-
redundant plan that is optimal 6



UNION PLAN (2)

 Proof sketch

 Each plan can be transformed into a non redundant plan

 We can remove all the item sent on path which don’t reach 

the target

 We can look at the set of items each peer is sending out 

from his on local items, all the sets are disjoint and cover 

all the union set.  

 The plan for this sets of items is optimal, we show in the 

next part we can build an optimal direct plan  given a 

disjoint set of items so both plans are equivalent and we 

are done.
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OPTIMAL UNION PLAN

 Global Knowledge Solution

 Oracle knows the items each peer holds

 Assign data algorithm

 Decide which item will be sent by which peer

 Send data algorithm

 Create the concrete plan which tells when each peer 

should send his data items
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ASSIGN DATA ALGORITHM

 Decide which peer send which data items

 Using CheckTime(t) algorithm 

 Which Assigns data to peers given the number of 
rounds, notify upon failure.

 Equivalence class is the set of items that resides only in 
a given set of peers. 

 Using max flow Computation the items from each 
equivalence class will be split among the equivalence 
class members
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CHECKTIME

 Graph vertex structure

 Source vertex 

 equivalence class layer

 Peers layer

 Target vertex 

 Sink vertex

 Graph edges structure 

 From Source to each equivalence class vertex (equivalence class 
size as the edge weight)

 Each equivalence class vertex to all his peer members vertex 
(equivalence class size as the edge weight)

 Each peer has an edge to the target vertex (weight equals the 
amount of data units he can send in t rounds)

 The target vertex is connected to the sink (weight equals the 
amount of data the target can possibly receive in t rounds )
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EXAMPLE

 3 peers p1,p2,p3 each can 
upload 2 item at each 
round

 The target p0 can receive 
3 items at each round 

 p1 and p2 share 100 items

 All three peers share 10 
items

 p1 also holds 150 items

 p2 also holds 100 items

 p3 also holds 60 items
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ASSIGN DATA (3)

 Searching for minimum time using check time 

(search boundaries using send data)

 Complexity 

 Polynomial in the size of the graph which is exponential 

in the number of peers 

 Correctness proof sketch

 Plan -> flow (trivial)

 Flow -> plan (needs send data part)
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SEND DATA ALGORITHM
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 Decide the peers data 
sending order

 Naïve solution 
 Why naïve is not good enough 

?

 3 peers each can send 2 items 
each round and get 3 items 
each round

 P0 have 300 items

 P1 and p2 have 50 items

 Naïve ends after 175 rounds

 Non naïve ends after 150 
rounds

 Time to finish 
Bottleneck metric 



SEND DATA ALGORITHM (2)

 correctness proof sketch

 Time to finish invariant 

 If(time_to_finish(pi) > time_to_finish(pj) at any round 

then  time_to_finish(pi) > time_to_finish(pj) – 1

 Assign data correctness 

 Allocating bandwidth according to send data

 Flow Constraints are not breached due to algorithm nature

 we shall look at the first non saturated round
 one of the peer sending data there has been sending data from the start, and will do so till 

the end (bottleneck)

 the edge from the peer to the target vertex enforce the plan time.

 Send Data Complexity

 O(m*n+nlogn)
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SEND DATA ALGORITHM

 Optimized version 

 Bandwidth allocation is fixed during consecutive rounds

 We also need to change the plan format 

 Groups of peer with different time to finish gets the same 

amount of bandwidth to the group until 2 groups get 

merged.

 The bandwidth allocation inside a group during a time 

interval doesn’t matter – so we make it regular (compress 

plan size)

 Complexity 

 O(P2)
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COMPACT INFORMATION GATHERING

 Deriving the Plan

 Executing the Plan

 The c-Cluster Algorithm
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DERIVING THE PLAN

 Assign data needs

 The peers upload and download speeds

 All equivalence class sizes

 Send data needs

 The peers upload and download speeds

 Each peer data items AD allocation size 
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EQUIVALENCE CLASS SIZES ESTIMATION

 Bottom k sketches

 Computing jaccard distance

 Estimating set size using interpolation

 si is known, vi is computed, so we can compute 

 By using the Inclusion 

exclusion formula we can compute 

as it equals 
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EQUIVALENCE CLASS SIZES ESTIMATION

 Si is choose such it’s the biggest group. 

 Drawbacks

 Exponential number of computation in the Inclusion 

exclusion  formula 

 Error builds up during computation.

 Computing the distance for a high number of groups is 

inaccurate. 
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EXECUTING THE PLAN

 Each peer needs to know which items he needs to 

send according to the plan 

 To Do So we need  to identify each item set 

membership.

 Using Compressed Wrapped bloom filters

 Bloom filter 

 Compressed Bloom filters  

 Compressed Wrapped bloom filters 
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THE C-CLUSTER ALGORITHM

Scalability problem 

 Exponential number of sets

 Estimation breaks down with too many sets 

involved

 c-Cluster Algorithm

 Estimating

Replication level
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EXPERIMENTAL EVALUATION

 Syntactic results

 Model settings 

 3 * 1024 *1024 data items 

 750k down 75k up  adsl cable line

 Number of peers varied from 2 till 65

 Parameters to tune 

 Cluster size 

 Bloom filter  size

 Replication threshold 
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EXPERIMENTAL EVALUATION

 Comparison Metrics 

 PR

 Naïve algorithm 

 Send data from the peers in a round robin manner

 PR = (Plan time + plan creation time )/ naïve time 

 PR-data = (Plan time) / naïve time

 Error rate

 Performance vs. optimal where possible 
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SYNTACTIC RESULTS

 C cluster size

 2 was chosen due to high bloom filter overhead with 

larger c sizes

 Bloom filter type and size 

 25 peers experiment 
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REPLICATION LEVEL THRESHOLD
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 25 peers experiment



SYNTACTIC RESULTS

26



SYNTACTIC RESULTS
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SYNTACTIC RESULTS
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SYNTACTIC RESULTS
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WIKIPEDIA RESULTS

 Using Wikipedia

 OR queries over synonyms 

 Same parameters as in the syntactic version
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WIKIPEDIA RESULTS
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RELATED WORK

 Problem Hardness (Yao)

 Computing set difference requires passing the entire data set 

 Practical set reconciliation (Minsky et al) 

 pairwise sets-reconciliation computing a characteristic polynomial

 Estimating / guessing the set difference size 

 Passing n points, and factorizing and interpolating to find the missing 

points.

 Not so practicable in our context (four seconds to compute a 200 object 

difference ) 

 Informed content delivery across 

adaptive overlay networks (byras et al ) 

 Creating a tree of bloom filters 

 Solving again the pairwise case mostly 

 Employ erasure codes methods to solve data loss issue.

 But they have a high error rate. 32



FUTURE WORK

 Pretty vast

 Real application usage (emule dht?)

 Dynamic setting

 Fault tolerance 

 Scalability issues 
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