Optimized Union of

Non-disjoint Distributed
data sets

Itay dar, Tova milo, Elad Verbin
Tel Aviv University

OUTLINE

Motivation

(Optimal) Union Plan

Compact Information Gathering
Experimental Evaluation
Related Work & future work

MOTIVATION

P2P setting

Download of data items from several sources

In MANCOOQOSI — download packages (info on
packages) residing on several sources (peers)

Sources often and contain common items

We want to avoid transmission of
iInformation

MOTIVATION (cont.)

Abstractly can be viewed as a qguery

Define the notion of (that
minimize redundant data transmission)

Devise efficient algorithm to and
such plans

Optimally exploit the

A key challenge is the

FORMAL PROBLEM DEFINITION

A Peer To Peer Environment

Each peer p; is holding a set of data items items(p;)
All data items have the same size

A Simple network model
communication is discreet - Working in rounds
Communication is considered Reliable
Each peer has a static upload and download rate
Download(p;)
Upload(p;)
There are no other networks constraints

UNION PLAN

Union plan - a set of tuples of the form
(from,to,item,time) s.t
No bandwidth constraints are breached

All items in items(P) are sent to the target
eventually

Optimal plan - the maximal time point is
minimal

Direct Plan

Non redundant plan

Theorem: there always exist a direct non-
redundant plan that is optimal

UNION PLAN (2)

Proof sketch

Each plan can be transformed into a non redundant plan

We can remove all the item sent on path which don'’t reach
the target

We can look at the set of items each peer is sending out
from his on local items, all the sets are disjoint and cover
all the union set.

The plan for this sets of items is optimal, we show in the
next part we can build an optimal direct plan given a
disjoint set of items so both plans are equivalent and we
are done.

OPTIMAL UNION PLAN

Global Knowledge Solution
Oracle knows the items each peer holds

Assign data algorithm
Decide which item will be sent by which peer

Send data algorithm

Create the concrete plan which tells when each peer
should send his data items

ASSIGN DATA ALGORITHM

Decide which peer send which data items
Using CheckTime(t) algorithm

Which Assigns data to peers given the number of
rounds, notify upon failure.

Equivalence class is the set of items that resides only in
a given set of peers.

Using max flow Computation the items from each
equivalence class will be split among the equivalence
class members

CHECKTIME

Graph vertex structure
Source vertex
equivalence class layer
Peers layer
Target vertex
Sink vertex

Graph edges structure

From Source to each equivalence class vertex (equivalence class
size as the edge weight)

Each equivalence class vertex to all his peer members vertex
(equivalence class size as the edge weight)

Each peer has an edge to the target vertex (weight equals the
amount of data units he can send in t rounds)

The target vertex is connected to the sink (weight equals the
amount of data the target can possibly receive in t rounds)

EXAMPLE

3 peers py,p,,Pp; each can
upload 2 item at each
round

The target p, can receive
3 items at each round

p, and p, share 100 items

All three peers share 10
items

P, also holds 150 items
P, also holds 100 items
p; also holds 60 items

ASSIGN DATA (3)

Searching for minimum time using check time
(search boundaries using send data)
Complexity

Polynomial in the size of the graph which is exponential
In the number of peers

Correctness proof sketch
Plan -> flow (trivial)
Flow -> plan (needs send data part)

SEND DATA ALGORITHM

Decide the peers data
sending order

Naive solution
Why naive is not good enough
?

3 peers each can send 2 items
each round and get 3 items
each round

PO have 300 items
P1 and p2 have 50 items
Naive ends after 175 rounds

Non naive ends after 150
rounds

Time to finish
Bottleneck metric

SendData(input: P, pn; output: U7)

OO =] O s W R =

=00 =1
for each pc P
fitema(p) 1= |itema(p)|;
time_to_finish(p) := fitems(p) fupload(p);
end for
while there exists some peer p with fitems(p) = 0
f:=1t4+1,
feend(p) := 0 for every pc P,
free := downloadipg);
while free =0
choose a peer p, among those with fzend(p) < upload(p),
where time_to_finish(p) is maximal.
fesend(p) = feend(p) + 1;
fitemas(p) = fitemsip) — 1,
timeto_finish(p) := fitems(p) /upload(p);
tfree = free —1;
end while
for each p € P, with fsend(p) = 0, add to IV instructions
to send, at time £, feend(p) new items from p to g,
end while
return L7

Figure 3.2: The SendData Algorithm

SEND DATA ALGORITHM (2)

correctness proof sketch
Time to finish invariant
If(time_to_finish(pi) > time_to_finish(pj) at any round
then time_to_finish(pi) > time_to_finish(p)) — 1
Assign data correctness

Allocating bandwidth according to send data
Flow Constraints are not breached due to algorithm nature

we shall look at the first non saturated round

one of the peer sending data there has been sending data from the start, and will do so till
the end (bottleneck)

the edge from the peer to the target vertex enforce the plan time.

Send Data Complexity
O(m*n+nlogn)

SEND DATA ALGORITHM

Optimized version

Bandwidth allocation is fixed during consecutive rounds
We also need to change the plan format

Groups of peer with different time to finish gets the same
amount of bandwidth to the group until 2 groups get
merged.

The bandwidth allocation inside a group during a time
interval doesn’t matter — so we make it regular (compress
plan size)

Complexity
O(P?)

COMPACT INFORMATION GATHERING

Deriving the Plan
Executing the Plan
The c-Cluster Algorithm

DERIVING THE PLAN

Assign data needs
The peers upload and download speeds
All equivalence class sizes

Send data needs
The peers upload and download speeds
Each peer data items AD allocation size

EQUIVALENCE CLASS SIZES ESTIMATION

Bottom k sketches

Computing jaccard distance ’ $1(1...M18; ‘
‘81 U...Us; ‘
Estimating set size using interpolation
_ e
Ui = |S1U...U8j|

s; Is known, v; is computed, so we can compute

By using the Inclusion
exclusion formula we can compute ‘ﬂpeﬁ items(p) —U,ep—p items(p)

asitequals 1Nl - Sepplitems@)|
+ X, pep_p | items(p) Nitems(p') |
b))

53

vp/ o ep—p | items(p) Nitems(p') Nitems(p”) |

|

=) [Myep-p items(p) |

EQUIVALENCE CLASS SIZES ESTIMATION

Si is choose such it's the biggest group.

Drawbacks

Exponential number of computation in the Inclusion
exclusion formula

Error builds up during computation.

Computing the distance for a high number of groups is
Inaccurate.

EXECUTING THE PLAN

Each peer needs to know which items he needs to
send according to the plan

To Do So we need to identify each item set

membership.

Using Compressed Wrapped bloom filters
Bloom filter

Compressed Bloom filters
Compressed Wrapped bloom filters

THE C-CLUSTER ALGORITHM

Scalabillity problem
Exponential number of sets
Estimation breaks down with too many sets

involved
c-Cluster Algorithm
EStimating c-Cluster(input: P, pg, ¢ > 1, r; output: I}
: . 1 | while the number of redundant items in P is above

Replication level e threshold

2 divide P into pairwise disjoint clusters (subsets of peers)
of size ¢

3 call AssignData for each cluster;

4 for each p = P,

remove from itemas(p) all the elements that where
not assigned to p by the AssignData;

5 | end while

6 | call SendData to obtain a union plan [7 for the pesers;
7 | return I7;

Figure 4.1: The e-Cluster Algorithm

EXPERIMENTAL EVALUATION

Syntactic results

Model settings
3 *1024 *1024 data items
750k down 75k up adsl cable line
Number of peers varied from 2 till 65
Parameters to tune
Cluster size
Bloom filter size

Replication threshold

EXPERIMENTAL EVALUATION

Comparison Metrics
PR
Naive algorithm
Send data from the peers in a round robin manner
PR = (Plan time + plan creation time)/ naive time
PR-data = (Plan time) / naive time

Error rate
Performance vs. optimal where possible

SYNTACTIC RESULTS

C cluster size

2 was chosen due to high bloom filter overhead with
larger c sizes

Bloom filter type and size
25 peers experiment

bloom filter | error rate % | PR
4 3.155 0.15
4 wlec 2.639 0.15
&8 0.190 0.20
8 wlc 0.145 0.20
16 0.005 0.28
16 wé&c 0.003 0.28

Figure 5.3: Bloom filters of varying sizes

REPLICATION LEVEL THRESHOLD
K 25 peers experiment

0.5 \
0.4 \

0.3 \\
M

PR

0.2
0.1
0 T T T T
0 5 10 15 20 25
Iterations
Figure 5.1: PR after each iteration
0.06
0.05 ot

0.04 /
| /
0.02 /

/

0 5 10 15 20 25
Iterations

Error rate %
(=]
[e]
w

SYNTACTIC RESULTS

1.6

0.8

0.4

0 l I I I I I
0 2 4 6 8 10 12

Number of item sets

Figure 5.7: Time / optimal plan time

14

SYNTACTIC RESULTS

PR

0.9

0.8 1
0.7

0.6
0.5

0.4

0.3

0.2

0.1

10 20 30 40 50 60 70
Number of item sets

Figure 5.4: Performance Ratio for growing number of sets

—— 256 bits
-#-512 bits
-0-1024 bits

C\II\ ITTA ADATIASA YTl 11 T™Toe
0.9

0.8 \
0.7 +*

...\
0.6 i

PR

0.5 +— \
0.4 !

\ \\
0.3 '

0.2 —

0.1

0 T T T T T

0 10
Number of item sets (256b)

0.9

70

0.8

07’1

oL
0.6 +—

- \\
0.5 i

—e— All
— — Unionh

PR

0.4 l\K

0.3

—m— All
— — Union

0.2

0.1

Number of item sets (512b)

70

SYNTACTIC RESULTS

Error rate %

0.008
0.007
0.006
0.005
0.004
0.003
0.002
0.001

0.000

N\

\‘\

10

20

30 40
Number of item sets

50

60

70

PR

WIKIPEDIA RESULTS

Using Wikipedia
OR queries over synonyms
Same parameters as in the syntactic version

1
0.9 —

0.8 H —m 0.9 1

0.777 | | 08’* —

06 1L m - 0.7 1 | — —

P . - M 06 41—

0.5 e o TR N]

0.4 1 —f — - a O

03 4+ | — - P 04 H —

02 H — — - A O 034+ 1 [— - L
01 44— — - A 02+ — — — - L

0 L L A 01 H — - N

0 T T T T T T T
B B D O O N DY S RN S5 oY
LR OIS RN AN R i O a2 N A A
SN I SR O S M LIPS DB S D DD DD S S D D
R PRSP S S LR S AR A A O D DR
& T & & TH T E e & F &P T &® & & 6\&\ \)(g A .&Q\
@-\S\’(\ Ay =) o N\ Ie) ‘969 d ‘59 =) C\J(\"b— b@\ \‘b- \\0 \Q:‘} =) Q
& &

Figure 5.8: PR for varying replication level : - o . . o .
- ; Figure 5.9: PR for varying number of synonyms (unioned sets)

Error Rate %

WIKIPEDIA RESULTS

0.045
0.04
0.035
0.03
0.025
0.02 -
0.015 -
0.01 -
O i
N ‘D

W bf\ b‘t’-\’\b@b@b‘i’\
» S O \&\\@\

¥
\Q:b' %Q Q

N
& & \@@@ 6@"’

RELATED WORK

Problem Hardness (Yao)
Computing set difference requires passing the entire data set

Practical set reconciliation (Minsky et al)
pairwise sets-reconciliation computing a characteristic polynomial
Estimating / guessing the set difference size

Passing n points, and factorizing and interpolating to find the missing
points.

Not so practicable in our context (four seconds to compute a 200 object
difference)

Informed content delivery across
adaptive overlay networks (byras et al)
Creating a tree of bloom filters
Solving again the pairwise case mostly
Employ erasure codes methods to solve data loss issue.
But they have a high error rate.

FUTURE WORK

Pretty vast
Real application usage (emule dht?)
Dynamic setting
Fault tolerance
Scalabllity issues

